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Abstract: Fuzzy Inference Systems (FIS) have gained traction as a key player in Explainable AI (XAI). Created through exchanging
vectors in common against linguistic input variables, threshold output membership functions; transparent, rule-based reasoning that aids
in mitigating the challenges facing Al systems when it comes to interpretability. A real-world case was explored: predicting the price of a
house. In the case of the regression problem, the location score, house size, and the number of bedrooms were features used in estimating
house prices, which led to a Mean Mean Absolute Error (MAE): $10,000 and Root Mean Squared Error (RMSE): $14,142.14. In
addition, novel evaluation metrics for FIS were proposed, while some future directions such as hybrid neuro-fuzzy systems, dynamic
rule learning, and Green Al techniques were also furnished. This work through a comprehensive investigation illustrates how FIS as
a framework is capable of bridging the need for interpretability and accuracy, compatibility, adaptability, therefore a ideal model for
transparent and explainable decisions around sensitive fields like public or health environment and autonomous systems. This research
highlights the importance of FIS in engaging trust and accountability in AI, and lends insights in its application and deliverables.

Keywords: Fuzzy Inference Systems, Explainable Artificial Intelligence, House Price Prediction, Membership Functions, Rule-Based
Systems, Dynamic Rule Learning, Green Al

1 Introduction to Fuzzy Inference Systems and explainable artificial intelligence (XAI). The major
(FIS) difference with Boolean logic is that it operates in
complete certainty ( 0 or 1 ) whereas the fuzzy logic
could take intermediate to zero values [1,2,3,4,5].
Mathematically, a fuzzy set A in a universe of discourse X
is defined as:

1.1 Definition and Historical Background

A Fuzzy Inference System (FIS) is a system that uses a
set of fuzzy logic rules to map inputs to outputs in a
manner similar to human reasoning. Its applications are
widespread, including control systems, decision-making, A={(x,ua(x)) | x€X}, (1)
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where pa(x) is the membership function that assigns a
degree of membership to each element x in X. This
concept was first introduced [6] to deal with systems that
exhibit vagueness and ambiguity [7,7,8,9].

FIS uses these fuzzy sets to model knowledge in the
form of linguistic rules, such as:

IF x is A THEN y is B, 2)

where A and B are fuzzy sets describing input x and output
y, respectively.

It was Mamdani who first set the path for the
development of FIS [10] with a method for controlling a
steam engine based on fuzzy logic. [11] subsequently
proposed a more mathematically sound variant in which
the rules are represented as linear functions of the input
variables.

1.2 Role of FIS in Al Explainability

In the context of Al, explainability means how systems
are able to make their decisions or predictions
comprehensible to humans systematically. By utilizing
linguistic rules and graphical representations, both of
which help make the reasoning process transparent, FIS
fosters Al explainability. The explainability is
mathematically justified as FIS are based on rules:

R,' :1F X1 is A,’l AND X2 is Ai2 THENy is Bl'

where is the -th rule in the rule base, are fuzzy sets
representing linguistic variables for the inputs, and is the
fuzzy set for the output. The reasoning process involves
the following steps:

—Fuzzification: Convert crisp input values into fuzzy
sets.

—Inference: Evaluate the degree of activation of each
rule.

—Aggregation: Combine the outputs of all rules.

—Defuzzification: Convert the fuzzy output into a crisp
value.

This process can be represented mathematically as:

y = defuzzify <U UB; ()’))

i=1

where max and min are aggregation operators (e.g.,
Zadeh’s max-min composition).

In addition, for visual explainability, FIS plots both
the membership functions and rule surfaces to help the
stakeholders recognize the correlation between inputs and
outputs.

1.3 Comparison of Fuzzy Logic with Crisp
Logic in Al Systems

Fuzzy logic is an extension of classical (crisp) logic with
degrees of truth instead of binary true/false. This allows it
to be particularly well-suited for real-world systems,
where there is uncertainty built in.

In crisp logic, a proposition P is either true (1) or false
(0). For example:

1 ifx>0
P pr—
(x) {O otherwise

In fuzzy logic, the truth value of P is a continuous function
of x, such as:

1 ifx>6
up(x) =< (x—=5) if5<x<6
0 otherwise

This allows fuzzy logic to model imprecise concepts like
“tall,” ”hot,” or "fast” using membership functions.

In the context of Al, fuzzy logic excels in applications
requiring human-like reasoning. For example:

—Crisp Logic: Requires precise inputs and produces
deterministic outputs, often leading to a lack of
interpretability.

—Fuzzy Logic: Handles imprecise inputs and provides
outputs with degrees of certainty, enhancing
interpretability.

The mathematical foundation of fuzzy logic, including

its ability to model uncertainty and imprecision, makes it
an essential tool for explainable Al systems.

2 Mathematical Foundations of Fuzzy
Inference Systems

2.1 Basic Concepts of Fuzzy Sets and
Membership Functions

2.1.1 Definition of a Fuzzy Set

A fuzzy set A in a universe of discourse X is characterized
by a membership function fi4 (x) that maps each element x
in X to a real number in the interval [0, 1]:

Ha(x) : X —[0,1]

The value of 4 (x) represents the degree of membership
of x in A, where 0 indicates no membership and 1
indicates full membership. Intermediate values (e.g., 0.4,
0.7) describe partial membership.

For instance, if X = {young, middle-aged, old}, a
fuzzy set A for young age” might assign:
U4 (middle-aged) = 0.5,

Ha(young) = 1, tia(old) =0
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2.1.2 Examples of Membership Functions

—Triangular Membership Function: Defined by three
parameters a, b, and c:

0 ifx<a
=4 ifa<x<b
— ) b-a 1 —
S = T
0 ifx>c

Example: Modeling “warm temperature” with a = 20,
b =25, c=30.

—Trapezoidal Membership Function: Defined by four
parameters a, b, ¢, and d:

0 ifx<a
g ifa<x<b

ta(x) 1 ifb<x<c
42 ifc<x<d
0 ifx>d

—Gaussian Membership Function:

_ (xfc)z

Halx) = 207

where c is the center and ¢ is the standard deviation.

2.2 Operations on Fuzzy Sets

—Union (OR Operation): The union of two fuzzy sets
A and B in the universe of discourse X is a fuzzy set C,
where the membership function fic(x) represents the
maximum degree of membership between A and B:

He (x) = max(pia (x), up (x))

—Intersection (AND Operation): The intersection of
two fuzzy sets A and B is a fuzzy set C, where the
membership function ¢ (x) is the minimum degree of
membership between A and B:

pe(x) = min(ua (x), up (x))
—Complement (NOT Operation): The complement of

a fuzzy set A in X is a fuzzy set A, where the
membership function is defined as:

pz(x) =1 — pa(x)

—Algebraic Sum: The algebraic sum combines two
fuzzy sets A and B using the formula:

He(x) = pa(x) + pp(x) — pa(x) - up(x)

—Algebraic Product: The algebraic product defines the
intersection of two fuzzy sets A and B as:

He(x) = Ha(x) - pp(x)

—Bounded Sum: The bounded sum operation is defined
as:

He(x) = min(1, a (x) + pp(x))

-Bounded Difference: The
operation is defined as:

bounded difference

e (x) = max(0, i (x) — s (x))

—Drastic Sum: The drastic sum operation is defined as:

pa(x) if pp(x) =0
te(x) = pp(x) if pa(x) =0
1 otherwise

—Drastic Product: The drastic product operation is
defined as:

pa(x) if pp(x) =1
te(x) = Q up(x) if pa(x) =1
0 otherwise

Fuzzy set operations are the mathematical foundation
for merging, augmenting, and interpreting fuzzy sets in
fuzzification. These operations serve as a mechanism for
modeling and computing uncertainty in real-world
applications [13].

2.3 Fuzzy Relations
2.3.1 Cartesian Product of Fuzzy Sets

The Cartesian product of two fuzzy sets A (on X) and B
(on Y) creates a fuzzy relation Ron X x Y:

Hg(x,y) = min(ia (x), tp(y))
For example, if A represents “high temperature” and B

represents “high pressure,” the fuzzy relation R describes
the interaction between these two variables.

2.3.2 Composition of Fuzzy Relations

Given two fuzzy relations R (on X X Y) and S (on Y X Z),
the composition T is defined as:

HUr (X,Z) = Sugmin(“R(x7y)auS ()’7 Z))
ye

This operation is widely used in fuzzy inference systems
to propagate relationships through multiple stages.
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3 Fuzzy Rule-Based Systems

3.1 Structure of Fuzzy Rules

The foundation of fuzzy inference systems (FIS) is based
on the concept of fuzzy rules, which provide a way for the
system to learn the relationship between input and output
variables in a way that resembles human reasoning. Fuzzy
rules are normally represented as IF-THEN statements:

IF x; is A} AND x, is A THEN y is B

where:

—Xx1,Xp are input variables.

—-A1,A» are fuzzy sets corresponding to input variables.
-y is the output variable.

-B is a fuzzy set corresponding to the output.

3.2 Fuzzy Rule Construction

When constructing fuzzy rules, we have to define them
which can either represent known expert knowledge or
the system behavior. The rule base of the FIS stores these
rules. A fuzzy rule base is a set of rules:

R={R\,Ry,...,R,}

where 7 is the total number of rules.
Steps in Rule Construction:

—Identify Input and Output Variables: Define the
linguistic variables for the system (e.g., Temperature,
Speed).

—Define Fuzzy Sets for Each Variable: For example:

—Temperature: {Low, Medium, High}
-Speed: {Slow, Moderate, Fast}

—Generate Rules Based on Expert Knowledge:
Example:

—Rule 1: IF Temperature is High THEN Fan Speed
is Fast.

—Rule 2: IF Temperature is Medium THEN Fan
Speed is Moderate.

Table 1: Rule Base Example (with 2 inputs and 1 output)

Rule Input 1 Input 2 Output
(Temp) (Humidity) (Fan Speed)

R1 High Low Fast

R2 Medium High Moderate

3.3 Rule Weighting Mechanisms

Each fuzzy rule in the rule base can be assigned a weight
w; to reflect its relative importance in the inference
process. The weighted fuzzy rule is expressed as:

IF x; is A; AND x; is A THEN y is B with weight w;

where w; € [0, 1].
Mathematical Formulation of Weighted Rules: The
final output of the rule is scaled by its weight:

pa,(y) = wi - 1p(y)

Aggregation of Rules with Weights: In systems with
multiple rules, the aggregated output is calculated as:

HBg (¥) = max g, (7)

where g, (y) is the membership function for the
consequent of the i-th rule.
Example:

-Rule 1: ug, (y) =0.8- ug(y).
—Rule 2: up, (y) =0.5- up(y).

The aggregated output is:
UB,g, (¥) = max(0.8 - up(y),0.5 - up(y))

Rationale for using fuzzy rule-based systems: The
structure, construction, and weighting allow flexibility,
adaptability, and explainability for many applications [14]
such as Al and control systems.

4 Inference Mechanisms in Fuzzy Inference
Systems (FIS)

4.1 Types of Fuzzy Inference Systems

Fuzzy inference system (FIS) is a framework used when
you need to translate a set of fuzzy rules into an output
feature given a set of input features. The two most common
types of FIS are Mamdani FIS and Sugeno FIS, and they
differ mainly in the way they implement fuzzy rules and
defuzzification.

4.1.1 Mamdani FIS

The method was introduced by Mamdani and Assilian
(1975), this method used fuzzy sets in inputs and outputs
as well. The four steps of the inference process are
fuzzification, rule evaluation, aggregation, and
defuzzification.

Mathematical Representation: For a rule:

IF x; isA; AND x; is A THEN yis B
the firing strength of the rule is:

w; = min(ta, (X1), Ha, (x2))

The output membership function is aggregated across all
rules:

s, (v) = max{p;(y).wi}
Defuzzification is applied to produce a crisp output (e.g.,
centroid of area):

« _ Jy-us(y)dy
[ up(y)dy
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4.2 Sugeno FIS

The FIS [15] this approach uses crisp outputs expressed as
linear functions of the inputs. The rule is:

IF x; is Aj AND x; is A, THEN y = f(x1,x2)

where f(x1,x,) is a linear function of the inputs.
The final output is a weighted average:

_ Ywi fi(x1,x2)
y ZiWi

4.3 Fuzzy Implication and Composition
Methods

4.3.1 Fuzzy Implication

Fuzzy implication defines the relationship between the
antecedent and consequent in a rule. Common methods
for fuzzy implication include:

—Zadeh’s Max-Min Implication:
HUp; (xl ,)Cz) = min(NAl (x1)7 Ha, ()Cz))

—Larsen’s Product Implication:

U, (x1,%2) = Ma, (X1) - Ha, (x2)

4.3.2 Composition Methods

The composition operation aggregates all rules into a
combined output fuzzy set. For Mamdani FIS, the
composition is typically the max-min method:

HB,g, (¥) = mlaxmin(uAl (x1), Ha, (x2))

Alternatively, the max-product method can be used:

M (¥) = max(pa, (1) - i, (52))

4.4 Defuzzification Techniques

Defuzzification is the process of converting a fuzzy output
into a crisp value. Common methods include:

—Centroid of Area (COA): The centroid method
calculates the center of gravity of the output
membership function:

= Jy-up(y)dy
Jus(y)dy

This method provides a balanced representation of the
fuzzy output but is computationally expensive.

—Mean of Maxima (MOM): The mean of maxima
takes the average of the output values corresponding
to the maximum membership degree:

_ Zermax y
[Vinax |

where Ypax is the set of points with maximum
membership.

—Weighted Average (for Sugeno FIS): In Sugeno
systems, defuzzification is inherently a weighted
average of the rule outputs:

Y wi filxr,xo)
i1 Wi

where f;(x1,x2) is the crisp output of the i-th rule.
—Bisector of Area (BOA): The bisector method
divides the area under the output membership
function into two equal halves:

y = argmin,

/:oug(y)dy— /ywuB(y)dy‘

Fuzzy inference systems (FIS) are the heart of
decision-making based on fuzzy logic. In contrast,
Mamdani FIS is more linguistically interpretable, while
Sugeno FIS has lower computational complexity. Both
the selection of implication, composition, and
defuzzification methods are application-dependent,
trading accuracy for interoperability.

5 Explainability Through Fuzzy Inference
Systems

5.1 Interpretability of Fuzzy Rules

Intuition behind decisions taken are among the key issues
of fuzzy inference systems (FIS), especially when it
comes to areas where transparency and human-level
comprehensibility are essential. Since fuzzy rules are
written in natural language, they are by definition already
interpretable, resembling the type of reasoning that
people tend to use.
A fuzzy rule is typically expressed as:

IFx;isA; AND x, is A THEN y is B

where:

—x1,Xp are input variables,

-A1,Ay are fuzzy sets (linguistic terms like “High,”
,’LOW,’),

—y is the output variable, and

-B is the fuzzy set representing the output.

Mathematical Basis for Interpretability:

© 2025 NSP
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-Linguistic Representations: The use of fuzzy sets A
and B translates numerical values into qualitative
descriptors.

—Modularity: Each rule independently contributes to
the overall decision-making process, making it easier
to isolate and analyze individual rules.

—Graphical Representation: The membership
functions and the rule surfaces are the visual
representation for the relationships modeled by the
fuzzy rules.

—Rule Redundancy and Simplification: Rule bases
can be simplified using techniques like rule pruning or
merging similar rules.

5.2 Visualization of Membership Functions and
Rule Surfaces

Visualization is a potent tool to improve the explainability
of fuzzy inference systems. It enables stakeholders to
intuitively understand how inputs are translated into
outputs and how the rules affect the decision-making
process.

5.2.1 Membership Functions

Membership functions describe how crisp inputs are
fuzzified into degrees of membership in fuzzy sets. These
functions can be visualized as two-dimensional plots
showing the degree of membership pa(x) over the
universe of discourse X.

Types of Visualized Membership Functions:

—Triangular Membership Function:

0 ifx<a
X—d :
_ —a lfa<.x§b
Ha(x) % ifb<x<c
0 ifx>c

Example: Visualizing "Medium Temperature” with
a=20,b=25, c=30.
—Gaussian Membership Function:

(=)

) =¢ =

where c is the center and o controls the spread.

Triangular Membership Function
1.0f Triangular Membership

o o o
F [=)] [s+]
:

Membership Degree

o
IN]

0.0

0 20 40 60 80 100
Input (e.g., Temperature)

Gaussian Membership Function

1.0 Gaussian Membership

0.8

0.6

0.4

Membership Degree

0.2

0.0

0 20 20 60 80 100
Input (e.g., Speed)

Fig. 1: Comparative graph of Triangular and Gaussian
Membership Function

Triangular Membership Function: The triangular
membership function has a peak (maximum membership)
at b, with the slope defined by parameters a (start of the
triangle) and ¢ (end of the triangle). This function is
useful for linear approximations of fuzzy sets, such as
”Medium Temperature.”

Gaussian Membership Function: The Gaussian
membership function represents a smooth, bell-shaped
curve centered at ¢ with spread controlled by . It is ideal
for applications requiring a continuous transition between
fuzzy regions, such as “Comfortable Speed.” These
graphs provide an intuitive understanding of how input
values map to fuzzy sets, aiding the explainability of FIS.
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5.2.2 Rule Surface Plots

Rule surface plots are three-dimensional visualizations of
how input variables interact to produce the output variable.
For example:

—X-axis: Input Variable 1 (e.g., Temperature)
—Y-axis: Input Variable 2 (e.g., Humidity)
—Z-axis: Output Variable (e.g., Fan Speed)

The rule surface is constructed using the firing strength
w; of each rule and the aggregation of their effects:

n
=Y wi- filx1,x2)
i=1

where w; is the normalized firing strength:

Ma, (x1) - Ha, (x2)
Yo tay () - Ha, (x2)

P =

5.3 Case Study: Explainability in Regression
Problems

5.3.1 Introduction to the Case Study

This case study aims to showcase how we can leverage a
fuzzy inference system (FIS) to solve a regression problem
while keeping explainability in mind. The selected domain
is real estate, where transparency in decisions is important.

House prices prediction based on features like
location, size and number of bedrooms For example, real
estate professionals want interpretability to explain
pricing decisions to clients.

In this study, both of the above-mentioned problems
are solved with fuzzy rule-based systems; in fact, fuzzy
logic supplies interpretability to rule bases and
membership functions that allows modelling human
cognition.

5.3.2 Problem Statement

Problem Domain: House Price Prediction

—Objective: To estimate the selling price of houses
based on:

—Location Score:
neighborhood.

=Size (sqft): Area of the house.

—Number of Bedrooms: Indicates accommodation
capacity.

—Significance: Transparent decision-making in pricing
can build client trust and improve business practices
by explaining the impact of features like location and
size.

A numerical rating of the

5.3.3 Objectives

—Develop an Interpretable Fuzzy Inference System for
regression.

—Highlight the role of fuzzy rules and membership
functions.

—Ensure explainability through visualization and rule
simplification.

5.3.4 Case Study Design

—Dataset Overview: A synthetic dataset of 50 house
records is generated for this study (See Table 2).
—Inputs and Outputs:
—Inputs: Location Score, Size (sqft), Number of
Bedrooms.
—Output: Predicted Price ($).
—Membership Functions: Defined for Location Score,
Size, and Bedrooms.
—Fuzzy Rules: Developed based on domain expertise.

The Houses Dataset contains data for 50 houses and is
structured for a regression problem to predict house prices.
The dataset includes four features:

—Location Score: A numerical rating from 1 to 9,
reflecting the desirability of the neighborhood,
ranging from poor to excellent.

—Size (sqft): Represents the total area of the house,
ranging from 800 to 2500 square feet, categorized as
small, medium, or large.

—Bedrooms: Specifies the number of bedrooms, ranging
from 1 to 5, indicating the accommodation capacity.
—Price ($): The target variable represents the house’s

selling price, ranging from $100,000 to $500,000.

This dataset enables the creation of a fuzzy regression
model that provides interpretable insights into the factors
influencing house prices.

These datasets are tailored for fuzzy inference
systems, emphasizing transparency in predictions for
regression problems.

5.3.5 Inputs and Outputs:

Houses Dataset for House Price Regression

The Houses Dataset includes information on 50
houses, designed to predict the selling price of properties
based on three input features:
Inputs (Predictors):
(a) Location Score:

—Numerical rating from 1 to 9, representing the quality
of the house’s neighborhood.
—Categories:
1.Poor: 1 < Score < 4
2.Average: 4 < Score < 6
3.Good: 6 < Score < 8
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Table 2: Case study of a synthetic dataset of 50 house
Location  Size Price Location  Size Price
ID Score (sqft) Bedrooms ) ID Score (sqft) Bedrooms )
1 8 1600 3 193848 26 8 826 2 194476
2 7 1197 4 152921 27 6 1025 1 333841
3 2 2100 1 280798 28 8 2100 1 379163
4 8 1615 5 226141 29 1 1597 1 445757
5 1 2327 5 281372 30 8 2432 3 322866
6 9 2215 1 384821 31 4 1083 5 186672
7 9 1958 5 155609 32 1 1678 2 173847
8 2 2018 3 327897 33 8 1759 2 444894
9 7 1200 4 131024 34 4 2304 3 310706
10 3 1439 1 170313 35 6 1252 2 128251
11 7 1856 4 489957 36 8 1819 1 203481
12 9 1487 5 284078 37 4 1615 5 474710
13 4 1259 5 457429 38 3 1458 4 125945
14 1 1754 1 213632 39 9 2339 2 452996
15 2 1269 3 351451 40 3 1346 1 132217
16 1 2198 2 103051 41 9 2015 4 108308
17 5 1845 1 279819 42 2 1872 5 368093
18 5 1549 2 476836 43 2 2335 4 283062
19 7 2493 2 187235 44 2 816 1 494366
20 9 837 3 297484 45 6 1995 4 320552
21 9 1029 2 289407 46 3 2043 3 200235
22 3 2188 2 311810 47 9 957 4 174740
23 3 1362 3 303687 48 4 1276 2 478496
24 3 1237 2 173523 49 1 1869 2 428761
25 4 2106 2 336175 50 4 2196 3 325913

4.Excellent Score > 6
—Higher scores indicate more desirable locations,
positively influencing the house price.

(b) Size (sqft):

—Represents the area of the house in square feet, ranging
from 800 to 2500.
—Categories:
1.Small: 800 < Size < 1200
2.Medium: 1200 < Size < 1800
3.Large: Size > 1800
—Larger houses generally have higher prices.

(c) Number of Bedrooms:

—Indicates the accommodation capacity of the house,
ranging from 1 to 5 bedrooms.
—Categories:
1.Few: 1-2 bedrooms
2.Moderate: 3 bedrooms
3.Many: 4-5 bedrooms
—More bedrooms usually increase the house’s market
value.

Qutput (Target):
Predicted Price ($):

—A continuous variable ranging from $100,000 to
$500,000, representing the estimated market value of
the house.

—The price prediction is the result of fuzzy rules
combining the inputs (e.g., "Excellent Location” and
“Large Size” imply a higher price).

Dataset Description: They have, for example, this

dataset for simulating real estate market data, in which
location, size and bedrooms define house prices. These
features are fuzzified to linguistic terms (‘Excellent
Location”, ‘Large Size”, etc) and fuzzy rules are utilized
to estimate price in a transparent way.
Rule-Based Model Visualization: Example of FIS usage
fuzzy rules for a rule-based model visualization. This
increases explainability, as users can see why the model
made the predictions that it did.

5.3.6 Membership Functions for Regression Problems

Membership functions determine how to associate input
variables with linguistic term (e.g., ”High,” ”Normal”).
Following are the complete membership functions needed
along with the required calculations for both the
problems.

(a) Location Score: (Poor, Average, Good, Excellent)
Poor:

1 ,x<3
Hpoor = 5-3,3<x<5
—x ,x>5
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Average
0 ,x<3o0rx>7
x—3
Haverage = 373> 3<x<5
T—x
775 > S5<x <7
Good
0 ,x<50rx>9
x=5
HGooa = = 5<x<7
—X
977 > T<x< 9
Excellent
0 ,x<7
—7
HExcellent = gT7 , T<x<9
1 ,x>9
Location Score Membership Functions
1.0r —
/
0.8 /
/,‘
/
g /
g e [ Poor
£ — Average
ﬁ = Good
] = Excellent
204
U
=
0.2
0.0

Location Score

Fig. 2: Graph of Location Score Membership Functions

(b) Size (sqft): (Small, Medium, Large)

Small
1, x<1000
Usmatl = { T3, 1000 < x < 1200
0, x>1200
Medium
0 , x < 100007rx > 1800
bdedium = Wg’?&o , 1000 < x < 1500
—X
Tasl0—r 1500 < x < 1800
Large
0 ,x<1500
Hrarge = 4 7o52% . 1500 < x < 2000
1, x> 2000

Size Membership Functions

1.0r

081

06
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Fig. 3: Graph of Size Membership Functions

(c) Bedrooms: (Few, Moderate, Many)

Few
1 ,x<2
UFew = %,2<x§3
0 ,x>3
Moderate
0 ,x<20rx>4
-2
HModerate = )3€T2,2<x§3
2 .3<x<4
Many
0 ,x<3
HUMany = %,3<x§5
I ,x>5

These membership functions are defined based on
domain knowledge to fuzzify inputs for interpretable
predictions in regression problems.

The above visuals illustrate the membership functions
for inputs in the regression problem, used for house price
prediction:

1.Location Score Membership Functions:
—Poor: High membership for scores up to 3, tapering
off until 5.
—Average: Covers scores from 3 to 7, peaking at 5.
—Good: Ranges from 5 to 9, with maximum
membership at 7.
—Excellent: High membership for scores above 7.
2.Size Membership Functions:
—Small: High membership for house sizes up to
1200 sqft, decreasing until 1600 sqft.
—Medium: Covers house sizes from 1000 to 1800
sqft, peaking at 1500 sqft.
—Large: Membership increases for sizes above 1500
sqft, reaching maximum at 2000 sqft and beyond.
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Fig. 4: Graph of Bedrooms Membership Functions

3.Bedrooms Membership Functions:
-Few: High membership for 1-2 bedrooms,
decreasing until 3 bedrooms.
—Moderate: Covers 2—4 bedrooms, peaking at 3

bedrooms.
—Many: Membership starts from 3 bedrooms,

peaking at 5 bedrooms.

These membership functions fuzzify crisp inputs into
linguistic terms like “Poor Location” or “Large Size,”
enabling interpretable predictions in the fuzzy inference

system.

5.3.7 Fuzzy Rules for Regression Problems for House
Price

Below are the fuzzy rules for a problem, designed to
capture the relationships between the inputs and outputs
based on the membership functions.
Inputs:
—Location Score: (Poor, Average, Good, Excellent)
=Size (sqft): (Small, Medium, Large)
-Bedrooms: (Few, Moderate, Many)

Qutput:
—Predicted Price: (Low, Medium, High)
Rules:
—IF Location Score is Excellent AND Size is Large
THEN Price is High.

—IF Location Score is Good AND Size is Medium
THEN Price is Medium.

—IF Location Score is Poor AND Size is Small THEN
Price is Low.

—IF Location Score is Average AND Size is Medium
AND Bedrooms are Moderate THEN Price is Medium.

House Price Prediction: Rule Surface
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o
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Fig. 5: A 3D graph showing House Price Prediction Rule Surface

—IF Location Score is Excellent AND Bedrooms are
Many THEN Price is High.

—IF Location Score is Good AND Size is Large THEN
Price is High.

—IF Location Score is Poor AND Bedrooms are Few
THEN Price is Low.

—IF Location Score is Average AND Size is Small
THEN Price is Low.

-IF Size is Large AND Bedrooms are Many THEN
Price is High.

—IF Size is Small AND Bedrooms are Few THEN Price
is Low.

House Price Prediction Rule Surface:

—X-axis (Location Score): Represents location scores
from 1 to 10.

—Y-axis (House Size): Represents house sizes from 800
to 2500 sqft.

—Z-axis (House Price): Represents the membership
degree for high house price (0 to 1).

—Effect: The rule "Excellent Location AND Large Size
— High Price” illustrates that as location score and
house size improve, the price membership degree
increases.

The plot highlights the interaction between inputs and their
impact on the output based on the respective fuzzy rules,
making the model’s reasoning interpretable.

Key Observations
House Price Prediction Rules:

—The rules leverage location, size, and bedrooms to
estimate house prices in an interpretable manner.

—Example: ”IF Location is Excellent AND Size is Large
THEN Price is High” captures market expectations.
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Table 3: Regression Membership Functions Results

Location Poor Average Good Excellent
Score
2 1 0 0 0
6 0 0.5 0.5 0
8 0 0 0.5 0.5
Size (sqft) Small Medium Large
1000 0.5 0 0
1500 0 1 0
2000 0 0 1
Bedrooms Few Moderate Many
2 1 0 0
3 0 1 0
5 0 0 1
1.0 mmm |ocation Score
Size
mmm Bedrooms
0.8
g' 0.6
=
) “L

0.0

Poor Average Good Excellent Small Medium Large Few Moderate Many

Fig. 6: A Bar Graph Showing House Price Membership Degrees

These rules align with the defined membership functions
and provide an explainable decision-making framework
for the fuzzy inference systems. The above visualizations
demonstrate the fuzzy inference process outcomes for a
problem:

House Price Prediction

—Inputs:

—Location Score = 8 (Excellent)
=Size = 2000 sqft (Large)
—Bedrooms = 4 (Many)

—Visualization: Here are the membership degrees of
each of the combined linguistic terms, location, size,
and bedrooms. (IF Location is Excellent AND IF Size
is Large THEN High in Price) dominates, which leads
to a high prediction of membership in the predicted
price.

These bar charts show the inputs fuzzified into
membership degrees, keeping the results interpretable in
fuzzy inference systems.

5.3.8 Evaluation Metrics: Calculations and Results

Evaluation metrics help assess the performance of fuzzy
inference systems in regression tasks. Below, we calculate
the metrics for a problem.

Regression Metrics

Dataset Assumptions:

—Actual prices (Y4e): [200000, 300000, 400000,
250000, 350000]
—Predicted prices (¥req): [210000, 290000, 390000,

260000, 340000]

Mean Absolute Error (MAE):
The MAE measures the average absolute difference
between predicted and actual values:

n

1
MAE = ; Z ‘Ytrue,i ~Ipred,i
i=1

MALE — 200000-210000[-+[300000-290000}+400000—390000|-+ 250000 —260000}+350000—340000)
5
MAE = 10000410000+ 10000+10000+10000 = 10000
00 ean uare I'I'OI'
Root M S dE RMSE):

The RMSE measures the square root of the average
squared differences:

12
RMSE = \/Z Z(the,i - pred,i)z
i=1

RMSE — \/(10000 +(10000)2 (10000) +(10000)2-+(10000)2

RMSE = /1000000000 — /200000000 ~ 14142.14

Key Observations

—-MAE: On average, the predictions deviated from the
actual prices by $10,000.

—-RMSE: The root mean squared error indicates a
slightly higher variability in errors, approximately
$14,142, emphasizing the impact of larger errors on
performance.

Regression

-The MAE and RMSE values are relatively low,
indicating that the model is accurately predicting
house prices, and that errors are within a manageable
range relative to the price of the houses.

—For big homes in top locations, the system is highly
accurate in the resulting input-output correlation.

The resulting performance clearly indicates the
accuracy of the fuzzy inference system and helps for
further optimization to improve performance with less
erTor.
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Final Conclusion for the Case Study

This case study focused on genetic programming in fuzzy
inference systems for house price prediction. These
results confirm that fuzzy logic is potentially a useful
method for constructing models where the relationship
between the input parameters and the response to be
modeled is complex, and the decision-making process is
transparent and human-interpretable.

In the case of a regression problem, the fuzzy
inference system uses input attributes such as location
score, house size, and the number of bedrooms. These
inputs were fuzzified into terms such as “Excellent
Location”, “Large Size”, and “Many Bedrooms”, so that
house prices could be estimated in an interpretable way.

Evaluation metrics showed:

—-A Mean Absolute Error (MAE) of $10,000,
indicating that the system’s predictions deviate by an
average of $10,000 from the actual prices.

-A Root Mean Squared Error (RMSE) of
$14,142.14, which highlights slight variability in
larger errors but remains acceptable given the typical
price range.

The heuristic-based regression system showed clear
adherence to domain knowledge whereby higher location
scores and larger house sizes would lead to a higher
predicted price. This is consistent with real-world market
expectations and further adds to the transparency of the
model.

Final Assessment

Both problems found fuzzy inference systems with
robustness, interpretability, and practical utility. The
system successfully modeled house price estimation,
providing clear and actionable insights into market trends.
In a regression scenario, additional features such as
distance to amenities, market trends, etc., would lead to a
reduction in variability in predictions.

This study proves the effectiveness of fuzzy inference
systems applied to real-world problems in a transparent
way. With keywords and visualizations that are simplified
from natural language approaches to build better
human-readable summaries of complex relationships,
these systems can serve as input to human-level
understanding. Further research could be aimed at
improving the sensitivity and accuracy of the models
without losing interpretability. This case study will serve
to establish the need for implementing fuzzy logic in
various other fields, wherein the decision-making process
needs to be made crystal clear.

6 Future Directions in FIS for Explainable Al

A wide range of future directions are emerging in the Al
field that can help make FIS even more explainable.

Further improvements can be made in FIS by adapting it
to novel Al paradigms, improving the algorithm
adaptability, and ensuring compliance with sustainable
Al

6.1 Hybrid Models: Combining FIS with Neural
Networks (Neuro-Fuzzy Systems)

A highly promising research direction for FIS is the
fusion with neural networks, which forms neuro-fuzzy
systems. These systems bring out the interpretability of
FIS with the learning abilities of neural networks. It
enhances the FIS to deal with high-dimensional and
large-scale datasets by learning membership functions
and optimizing fuzzy rules using neural networks. For
example, it is often desired that in the domain of medical
diagnosis, the neuro-fuzzy system is able to generalize to
new symptoms or new diagnostic criteria via training on
new data, while also maintaining its explainability
through fuzzy rules. This hybridization effectively
connects the realms of interpretative capabilities and
prediction performance, making it ideal for use in
environments that require rapid adaptation to novel
scenarios or complex information architectures. In
addition, the application of explainability techniques
(e.g., rule extraction from deep learning models) allows
neuro-fuzzy systems to retain transparency while
benefiting from the decision-focused tools provided by
neural networks [?].

6.2 Dynamic Rule Learning for Adaptive
Explainability

Traditional FIS operates by using rules that are static and
may not adjust well to a dynamic system. Dynamic rule
learning can enhance the adaptability of FIS by allowing
the system to update or generate new rules in response to
changes in input data or underlying conditions. This is
particularly meaningful in areas like autonomous systems
and more generally in the area of financial modeling,
where the environment in which these models will run
will evolve. Dynamic rule learning refers to algorithms
that observe the mapping between the inputs and the
outputs and add or modify rules in the rule base such that
the fuzzy inference system (FIS) remains relevant and
interpretable. Now we are already seeing examples of FIS
used for autonomous navigation by updating rules of
thumb for avoiding obstacles through real-time sensor
data while keeping interpretability even under unexpected
or unprecedented conditions. This adaptability also
reflects the tenets of constant learning found in
contemporary Al models.
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6.3 Incorporating Green Al Techniques in FIS

Al systems have unique energy efficiency and
sustainability challenges due to rising computational
demands. FIS, which has less computational demand than
deep learning-based models, can also be enhanced more
with Green Al techniques. The approaches include
reducing the complexity of membership functions,
minimizing the number of rules, and driving towards
energy-efficient hardware for case embeds. A Green FIS
for smart grid management, for instance, can facilitate
energy distribution with the least computational resources
required, which facilitates both the explainability and
sustainability aspects. Moreover, integrating simple and
lightweight FIS architectures on resource-constrained
edge devices, e.g., IoT systems, can improve energy
efficiency without sacrificing low-layer interpretability of
decision-making processes. Green Al research of FIS will
need to be a balancing act between computational
efficiency and preserving fuzzy rules that are not only
comprehensive and robust but transparent.

6.4 Incorporating Green Al Techniques in FIS

FIS can be enhanced with Green Al techniques to reduce
computational complexity and energy consumption,
making it more sustainable.

7 Summary and Conclusion

Recap of FIS’s Role in AI Explainability Moreover, as a
foundational technique of Explainable Al (XAI),Fuzzy
Inference Systems (FIS) provide a balance between
data-driven decisions and the rationale behind them by
mirroring a human-like approach to representation and
reasoning over uncertainty in knowledge. “Because are
able to use terms of language, and transparent rules, they
model complex systems something they become
invaluable in areas where clarity and accountability is
priority. FIS gives a rule-based structure that stakeholders
can understand and trust as opposed to a traditional
black-box model. Real-world applications: prediction
(house pricing) Domain knowledge was used to create the
fuzzy rules for the problem, making it interpretable.
Moreover, Visualisation of membership functions and
rule surfaces provided insight into the inner workings of
the system such that the inputs could be traced to the
outputs. Navigating through the challenges such as
computational complexity and scalability FIS still holds
as a powerful and versatile approximation method for
explainable Al systems. Fuzzy Inference System plays an
important role in Explainable AI. Start mastering the
theory of Fuzzy logic control systems as it allows for a
more intuitive modelling of nonlinear systems and
functions, as seen by the fuzzification process that allows

users to tailor usages to complex real-world problems.
Despite these measures, the challenges of computational
complexity and scalability persist, yet with the
developments of neuro-fuzzy systems, dynamic rule
learning and Green Al techniques, the sophistication and
utility of FIS is expected to increase. Notably, FIS
combines elements of interpretability with mathematical
rigor, making it a critical component for trustworthiness
and accountability in Al systems. Its significance in the
evolving landscape of artificial intelligence is underlined
by its role in fostering explainable, adaptable, sustainable
Al solutions.
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