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Abstract: In this manuscript, we extend the notion of Kolmogorov numbers of bounded linear operators to a class of unbounded

operators, namely; relatively bounded operators with respect to a densely defined closed linear operator T. We get many interesting

results about T -Kolmogorov numbers, for example; we show that a T -bounded operator is relatively T -compact if and only if its

sequence of T -Kolmogorov numbers converges to zero. Moreover we prove that a T -bounded operator is of finite rank at most n if and

only if its nth T -Kolmogorov number vanishes.
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1 Introduction

In 1964, the concept of Kolmogorov numbers for
bounded linear operators between Banach spaces was
introduced by I. A. Novosel’skij based on A. N.
Kolmogorov’s notion of diameters (see [1], p. 193). These
numbers are one of the important examples of s-numbers,
which was invented by E. Schmidt in 1907. The sequence
of Kolmogorov numbers dn has many interesting
properties. For example, a bounded linear operator is
compact if and only if its sequence of Kolmogorov
numbers tends to zero. For a brief discussion of the
algebraic and analytic properties of dn, and other
characteristics of bounded linear operators; please, see
[1]. In this work, we extend the notion of Kolmogorov
numbers to a class of unbounded operators, namely; the
class of relatively bounded operators with respect to a
densely defined closed linear operator. Parallel to the
above mentioned fact, we prove that a relatively bounded
operator is relatively compact if and only if its sequence
of T -Kolmogorov numbers converges to zero. In [2], the
compactness of operators was classified according to rate
of convergence to zero of its Kolmogorov numbers. We
apply these results to relative compactness.

2 Notations, basic definitions and

propositions

Let us agree henceforth that X and Y are two Banach
spaces, where B(X ,Y ) denote the space of all bounded
linear operators from X into Y , and let dim(F) denote the
dimension of a given subspace F of Y .

Definition 1[3] An unbounded operator T : X → Y with

domain D(T ) ⊂ X is a pair (D(T ),T ) , where D(T ) is a

linear subspace of X , and T is a linear map from D(T ) to

Y .

Definition 2[3] Let T be an operator from X to Y . A

sequence {xn} ⊂ D(T ) is called T -convergent to x ∈ X

(and write xn
T
−→ x ) if both {xn} and {Txn} are Cauchy

sequences (and xn → x).

Definition 3[3,4,5] A linear operator T from X to Y is

said to be closed if xn
T
−→ x implies x ∈ D(T ), and Tx =

limTxn.

We denote the class of all closed densely defined linear
operators from X into Y by C (X ,Y ).

Definition 4[3,6] Let X and Y be Banach spaces and T ∈
C (X ,Y ). Set

‖x‖T := ‖x‖+ ‖Tx‖ , x ∈ D(T ). (1)
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Then, ‖·‖T defines a norm on D(T ) which is called the

graph norm (or simply T-norm ).

Further, it is easy to show that (D(T ),‖·‖T ) is a Banach
space, the completeness of D(T ) is a direct consequence
of the closedness of T .

Definition 5[7] A sequence {xn} ⊂ D(T ) is said to be T -

bounded if there exists a constant c > 0 such that

‖xn‖T ≤ c for every n ∈ N.

Definition 6[8] Let T be an operator from X into Y . A

T -Cauchy sequence in D(T ) is a Cauchy sequence with

respect to the T -norm.

Definition 7[3,6,9] Let T be densely defined closed linear

operator with domain D(T )⊂ X . A linear operator A is

called relatively bounded with respect to T or simply T -

bounded, if D(T )⊂ D(A), and

‖Ax‖ ≤ a‖x‖+ b‖Tx‖, x ∈ D(T ), (2)

where a,b are non-negative constants.

The greatest lower bound b0 of all possible constants b

in (2) is called the relative bound of A with respect to T or
simply the T -bound of A.

Remark.[7,10]

1.An unbounded operator A is said to be T -bounded, or
relatively bounded if and only if it is bounded with
respect to the graph norm.

2.The set of all T -bounded operators forms a vector
space.

A notion analogous to relative boundedness is that of
relative compactness.

Definition 8[3,6,9] Let T be a closed operator from X to

Y , the linear operator A where D(T ) ⊂ D(A) ⊂ X is said

to be relativity compact with respect to T , or simply; T -

compact, if for any sequence {xn} in D(T ) with both {xn}
and {T xn} are bounded, the sequence {Axn} contains a

convergent sub-sequence.

Remark.[11] A T -bounded operator A is T -compact if and
only if it translates any T -bounded set into a relatively
compact set.

Remark.[10] The set LT
c (X ,Y ) of all T -compact operators

from X to Y forms a vector space.

Remark.[3] If an operator A is T -compact, then it is T -
bounded.

For further details about the relatively bounded and
relatively compact operators, we refer the reader to [3,10,
12,13].

Definition 9[4] Let K be a subset of a normed space X,

for a given ε > 0, a set M ⊂ X is said to be an ε- net for

K if for every point x ∈ K there is a point xε ∈ M such that

‖x− xε‖< ε .

Lemma 10[4] A subset K of a Banach space X is

relatively compact (its closure is compact ) if and only if

for every ε > 0, K has a finite ε-net.

2.1 The n-th Kolmogrov diameter of a bounded

subset of a normed space

Definition 11[2] Let K be a bounded subset of a Banach

space X with the closed unit ball UX . For n ∈ N, the n-th

diameter δn(K), is defined as the infimum of all positive

numbers c such that there is a linear subspace F with

dimension at most n such that K ⊆ cUX +F; that is,

δn (K) := inf{c > 0 : K ⊆ cUX +F, dimF ≤ n} .

These diameters were first introduced by A. N.
Kolmogorov.

Remark.[14,15]

1. δ0(K)≥ δ1(K)≥ δ2(K)≥ ·· · .

2.A bounded subset K of a normed space X is
precompact (has a finite ε-net for every ε > 0) if and
only if

lim
n→∞

δn (K) = 0.

3.A bounded subset K of a normed space X lies in a
linear subspace of dimension at most n if and only if

δn (K) = 0.

2.2 The s-numbers of bounded linear operators

Definition 12[1] A map s, which assigns to every

operator T ∈ B(X ,Y ) a unique sequence (sn (T ))
∞
n=0 of

real numbers, is called s-function, if the following

conditions are satisfied:

1.‖T‖ = s0(T ) ≥ s1(T ) ≥ ·· · ≥ 0 for all T ∈ B(X ,Y )
(monotonicity);

2.sm+n(T1 + T2) ≤ sm(T1) + sn(T2) for all

T1, T2 ∈ B(X ,Y ) and m,n ∈ N (additivity);

3.sn (RST)≤‖R‖·sn (S)·‖T‖ for all T ∈B(X0,X),S∈
B(X ,Y ), and R ∈ B(Y,Y0) (multiplicativity);

4.sn (λ T ) = |λ | · sn(T ) for all T ∈ B(X ,Y ),λ ∈ R;

5.if rank(T ) < n, then sn(T ) = 0 for all T ∈ B(X ,Y )
(rank(T ) is the dimension of range(T )) (rank

property);

6.sr(In) =

{

1, for r < n,

0, for r ≥ n,

where In is the identity operator of the Euclidean space

ℓ2
n =: {x ∈ ℓ2 : xi = 0 if i > n} to itself (property of

norming);

7.if dimX ≥ n, then sn (IX) = 1 (norm-determining

property).

We call sn (T ), the n-th s-number of the operator T.

There are many examples of s-numbers of operators
acting between Banach spaces, namely, the
approximation numbers, the Kolmogorov numbers, the
Gelfand numbers, the Tichomirov numbers, the Weyl
numbers, the Chang numbers, and the Hilbert numbers,
they are defined as follows:
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1.The n-th approximation number, denoted by αn(T ), is
defined as

αn(T ) = inf{‖T −A‖ : A ∈ B(X ,Y ), rank(A)≤ n} .

These numbers measure the closeness by which a
bounded linear map may be approximated by similar
maps but with finite-dimensional range.

2.The n-th Kolmogorov number, denoted by dn (T ) , is
defined as

dn (T ) = δn (T (UX)) .

Roughly speaking, the Kolmogorov numbers dn(T )
deal with that part of the set T (UX) which lies outside
a certain finite dimensional subspace.

3.The n-th Gelfand number, denoted by cn(T ), is defined
as

cn(T ) = an(JY T ),

4.The n-th Tichomirov number, denoted by d⋆
n(T ), is

defined as
d⋆

n(T ) = dn (JY T ) ,

where JY is a metric injection from the space Y into a
higher space ℓ∞ (Ω) for adequate index set Ω (a metric
injection is a one to one operator with closed range and
with norm equal one).

5.The n-th Weyl number, denoted by xn (T ) , is defined
as

xn (T ) = inf
{

αn (TA) :
∥

∥A : ℓ2 → X
∥

∥≤ 1
}

.

6.The n-th Chang number, denoted by yn (T ) , is defined
as

yn (T ) = inf
{

αn (ST ) :
∥

∥S : Y → ℓ2
∥

∥≤ 1
}

.

7.The n-th Hilbert number, denoted by hn (T ) , is defined
by

hn (T ) = sup{αn (STA) :
∥

∥S : Y → ℓ2
∥

∥≤ 1and
∥

∥A : ℓ2 → X
∥

∥≤ 1}.

For more informations about those numbers, we refer the
reader to [1,2,16].

In the following, we list some basic proprieties of
Kolmogorov numbers.

Proposition 1.[15] For two mappings S, T ∈B(X ,Y ), we

always have

1.dm+n(S+T )≤ dm(S)+ dn(T ).

2.|dm(S)− dm(T )| ≤ ‖S−T‖.

3.dn (T ) = 0 if and only if T ∈ An(X .Y ), where An is a

finite dimensional space of dimension at most n.

4.dm+n(ST )≤ dm(S) ·dn(T ).

Remark.Proposition (1) is also valid for the approximation
numbers.

3 Main Results

Let us introduce the closed relative unit ball of a Banach
space X , by

UT
X = {x ∈ D(T ) : ‖x‖T ≤ 1} .

Definition 13Let X and Y be two Banach spaces, and let

T ∈ C (X ,Y ). Set

|||x|||T := max
x∈D(T )

{‖x‖ ,‖T x‖} .

|||x|||T defines a norm on D(T ) which is equivalent to the

norm ‖x‖T , and so (D(T ) ,‖.‖T ) becomes a Banach

space.

By D
T
X , we denote the relative T -unit ball which is the

unit ball related to the norm |||x|||T , i.e.,

D
T
X := {x : |||x|||T ≤ 1 , x ∈ D(T )} .

Lemma 14Let X and Y be two Banach spaces, and let T ∈
C (X ,Y ). The unit balls UX , UY , UT

X and D
T
X , are related

as follows:

1.DT
X =UX ∩T−1UY .

2.UT
X ⊆D

T
X .

3.
⋃

0≤λ≤1

(

λUx ∩ (1−λ )T−1UY

)

⊆UT
X .

It is well known that a bounded linear operator A is
compact if and only if it translates the unit ball UX of its
domain X into a relatively compact subset A(UX) in the
co-domain Y . In the following proposition, by
reformulating definition (8), we show that a relatively
bounded operator A with respect to T is relatively
compact if and only if it translates the relative T -unit ball
D

T
X of its domain X into a relatively compact subset

A
(

D
T
X

)

in the co-domain Y .

Proposition 2.A T -bounded operator A is a T -compact if

and only if A
(

D
T
X

)

is relatively compact.

Proof.Let A be a T -bounded operator which translates the
relative T -unit ball DT

X of its domain X into a relatively

compact subset A
(

D
T
X

)

, and suppose that {xn} is a
T -bounded sequence in X , if there exist two positive
numbers c1 and c2 such that ‖xn‖ ≤ c1 and ‖T xn‖ ≤ c2. In
this case,

{yn}=

{

xn

max{c1,c2}

}

is a relatively T -bounded in D
T
X . From the compactness of

A
(

D
T
X

)

, then there exists a sequence {nk} of integers such

that
{

A(ynk
)
}

is a convergent sub-sequence in A
(

D
T
X

)

, and

so is
{

A(xnk
)
}

. This is the relatively compactness in the
sense of definition (8). On the other hand, by taking {xn}
in D

T
X , hence the relative compactness of the operator A

in sense of definition (8) implies that A
(

D
T
X

)

is relatively
compact.
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Definition 15To each T -bounded operator A, we can

assign a non-negative number |||A|||T defined by

|||A|||T = sup
x∈D(T )

x6=0

‖Ax‖

|||x|||T
= sup

x∈D(T )
x6=0

‖Ax‖

max{‖x‖ ,‖T x‖}

= inf
x∈D(T )

{c > 0 : ‖Ax‖ ≤ c|||x|||T} .

Proposition 3.The set of all relatively compact operators

is closed in the set of the relatively bounded operators.

Proof.Suppose that {An} is a sequence of T - compact
operators from X into Y with An → A , where A is a T -
bounded operator. Then we want to show that the limit
operator A ∈ LT

c (X ,Y ). It is sufficient from proposition (2)
to show that A

(

D
T
X

)

is a relatively compact set. To do
this, fix ε > 0. Since An → A, so there exists n such that

|||An −A|||T <
ε

4
. (3)

By assumption An is T -compact, and so An

(

DT
X

)

is
compact. Therefore, there are a finite number of vectors

yk ∈ An

(

DT
X

)

(k = 1, · · · ,m) such that

An

(

D
T
X

)

⊆
m
⋃

k=1

(ε

4
An

(

D
T
X

)

+ yk

)

. (4)

If we let y ∈ A
(

D
T
X

)

, then y = Ax for some x ∈D
T
X . By (4)

Anx ∈
m
⋃

k=1

(ε

4
An

(

D
T
X

)

+ yk

)

.

From (3) and since |||x|||T ≤ 1, we get

|||yk − y|||T ≤ |||yk −Anx|||T + |||Anx−Ax|||T

≤
ε

4
+

ε

4
|||x|||T <

ε

2
.

So that y ∈
(

ε
2
A
(

D
T
X

)

+ yk

)

. Since y ∈ A
(

D
T
X

)

was
arbitrary, then this shows that

A
(

D
T
X

)

⊆
m
⋃

k=1

(ε

2
An

(

D
T
X

)

+ yk

)

.

Therefore,

A
(

DT
X

)

⊆
m
⋃

k=1

(ε

2
A
(

DT
X

)

+ yk

)

⊆
m
⋃

k=1

(

εAn

(

D
T
X

)

+ yk

)

.

Since ε was arbitrary, then A
(

D
T
X

)

has an ε-net. Hence,
from Lemma (10), the proof is done.

Theorem 16.Let A1,A2, . . . ,An be a sequence of

T -compact operators, then the summation ∑n
i=1 Ai is

T -compact.

Proof.Let {xn} be a sequence in D
T
X . Since Ai

(

D
T
X

)

is
relatively compact, for all i = 1, . . . ,n, there exists a
sub-sequence of indices nk such that Aixnk

is convergent
for i = 1, . . . ,n and so, ∑m

i=1 {Aixn} has a convergent
sub-sequence.

Theorem 17.The product of a relatively compact operator

with a relatively bounded operator is relatively compact.

Proof.More precisely, let S be a T -bounded operator from
X0 to X , and let A ∈ LT

c (X ,Y ), where X0,X , and Y are
Banach spaces, then we want to prove that the
composition AS is relatively compact with respect to T .
Given {zn} ⊂ UX0

,‖zn‖T ≤ 1, Since S is a T -bounded
operator, from Remark (2), we have ‖Szn‖T ≤ ‖zn‖T , then
the sequence {Szn} is T - bounded, Therefore, it follows
from Remark (2) that {ASzn} is a relatively compact set.
Hence, AS is T - compact.

Lemma 18Let S be a T -bounded operator from X0 to X ,

and A ∈ LT
c (X ,Y ). If R ∈ B (Y,Y0), where X0,X ,Y, and Y0

are Banach spaces; that is,

X0
S

−→ X
A
−→
T

Y
R

−→ Y0,

then RAS ∈ LT
c (X0,Y0).

Proof.Given {xn} ⊂UX . Since A is a T -compact operator,
then from Remark (2), there is a sub-sequence {Axnk

} of
{Axn} which converges. Hence, from Remark (2), we have

‖RAxnk
‖T ≤ c‖Axnk

‖T .

Therefore, from the continuity of R, the sequence
{

RAxnk

}

converges. Thus, RA ∈ LT
c (X ,Y0), and from Theorem (17),

we finish the proof.

Now, we introduce a definition for the n-th
T -Kolmogorov number for the T -bounded operator A.

Definition 19Let A be an arbitrary T -bounded operator.

The infimum of all positive numbers c such that there is a

linear subspace F of Y with dimension at most n for which

A
(

D
T
X

)

⊆ cUY +F

is called the n-th T-Kolmogorov number for T -bounded

operator A, and we will denote it by dT
n (A) . That is;

dT
n (A) = δn

(

A
(

D
T
X

))

= inf
c

{

c > 0 : A
(

D
T
X

)

⊆ cUY +F, dimF ≤ n
}

.

Accordingly, we can give a definition for the
T -Tichomirov numbers for T -bounded operators.

Definition 20Let A be an arbitrary T -bounded operator

from a normed space X into a normed space Y. Let J be a

canonical embedding of the Banach space Y into a super

universal space ℓ∞ (I) for a suitable subset I. Then,

dJT
n (JA) = δn

(

JA(DJT
X )

)

.
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Remark.One can prove that the number dJT
n (JA) is

independent of the choice of the embedding J.

In the following proposition, we give an equivelant
definition for the n -th T -Kolmogorov numbers of a
relatively bounded operator A with respect to a densely
closed operator T .

Proposition 4.Let X and Y be two normed spaces, with

unit balls UX and UY respectively, and let A be a linear

operator relatively bounded with respect to a densely

defined operator T from X to Y such that

D(T ) ⊂ D(A) ⊂ X, the n-th T-Kolmogorov number for A

could be written as

dT
n (A) = inf

F⊂Y
dimF≤n

sup
x∈DT

X

inf
f∈F

|||A(x)− f |||T .

Proof.From definition 19 then, for any positive ε and for
any finite dimensional subspace F ⊂Y with dimF ≤ n, we
have

A
(

D
T
X

)

*
(

δn

(

A
(

D
T
X

))

− ε
)

UY +F.

Otherwise; if

A
(

D
T
X

)

⊆
(

δn

(

A
(

D
T
X

))

− ε
)

UY +F0

for some F0, then δn

(

A
(

D
T
X

))

≤ δn

(

A
(

D
T
X

))

− ε, and
this gives a contradiction. Thus, for any finite dimensional
subspace F ⊂ Y with dimF ≤ n, there exists x0 ∈ D

T
X

such that

δn

(

A
(

D
T
X

))

− ε < inf
f∈F

|||A(x0)− f |||T .

Consequently, for any finite dimensional subspace F ⊂ Y

with dimF ≤ n, we get

δn

(

A
(

D
T
X

))

− ε ≤ sup
x∈DT

X

inf
f∈F

|||Ax− f |||T .

Since ε is arbitrary, then

δn

(

A
(

D
T
X

))

≤ inf
dimF≤n

sup
x∈DT

X

inf
f∈F

|||Ax− f |||T . (5)

Now, for every η > 0, there exists F0 ⊂ Y such that
dimF0 ≤ n, and

A
(

D
T
X

)

⊆
(

δn

(

A
(

D
T
X

))

+η
)

UY +F0.

Hence, for every x ∈D
T
X ,

Ax =
(

δn

(

A
(

D
T
X

))

+η
)

u+ f , f ∈ F0,u ∈UY .

Therefore,

Ax− f =
(

δn

(

A
(

D
T
X

))

+η
)

u.

Henceforth,

sup
x∈DT

X

inf
f∈F0

|||Ax− f |||T ≤ δn

(

A
(

D
T
X

))

+η . (6)

From (5) and (6), we get for every η positive, there
exists F0 such that dimF0 ≤ n, and

δn

(

A
(

D
T
X

))

≤ sup
x∈DT

X

inf
f∈F0

|||Ax− f |||T ≤ δn

(

A
(

D
T
X

))

+η .

Remark.Let A be an arbitrary T -bounded operator, from a
normed space X into a normed space Y . As an easy
consequence of the definition of the n-th T Kolmogorov
number, we obtain that

1.dT
0 (A) = supx∈DT

X
‖Ax‖= |||A|||T .

2.|||A|||T = dT
0 (A)≥ dT

1 (A)≥ dT
2 (A)≥ ·· · ≥ 0.

3.dT
n (λ A) = |λ |dT

n (A) for all λ ∈ R.

Proposition 5.Let A1 and A2 be two T -bounded operators.

Then, for every n1,n2 ∈N, we have

dT
n1+n2

(A1 +A2)≤ dT
n1
(A1)+ dT

n2
(A2) .

Proof.For an arbitrary positive number ε, there exist two
finite dimensional sub-spaces F1,F2 ⊆ Y such that
dimF1 ≤ n1, and dimF2 ≤ n2 with

dT
ni
(Ai) = inf

dimFi≤ni

sup
x∈DT

X

inf
f∈Fi

|||A(x)− fi|||T , i = 1,2. (7)

Therefore,

dT
n1+n2

(A1 +A2) = inf
dimF≤n1+n2

sup
x∈DT

X

inf
∈F

|||(A1 +A2) (x)− f |||T

≤ inf
dimF1≤n1
dimF2≤n2

sup
x∈DT

X

inf
f1∈F1
f2∈F2

(|||A1 (x)− f1|||T + |||A2 (x)− f2|||T )

≤ inf
dimF1≤n1

sup
x∈DT

X

inf
f1∈F1

|||A1 (x)− f1|||T

+ inf
dimF2≤n2

sup
x∈DT

X

inf
f2∈F2

|||A2 (x)− f2|||T

= dT
n1
(A1)+ dT

n2
(A2)+ ε ( from (7)).

The arbitrariness of ε > 0 completes the proof.

Theorem 21.A T -bounded operator A is T -compact if and

only if dT
n (A) tends to zero as n goes to infinity.

Proof.Let A ∈ LT
c (X ,Y ). Then, from proposition (2),

A
(

D
T
X

)

is a relatively compact set in Y . Therefore, for
every ε > 0, there exists a finite number of elements
y1,y2, · · · ,ym ∈Y such that

A
(

D
T
X

)

⊆
m
⋃

i=1

{yi + εUY} .

Hence,

A
(

D
T
X

)

⊆ G+ εUY ,

where G is the linear sub-space of Y with dimG ≤ m

spanned by the elements yi (i = 1, · · · ,m). On the other
hand,

dT
n (A) = δn

(

A
(

D
T
X

))

< ε for every n ≥ m.

Therefore,

lim
n→∞

dT
n (A) = 0.
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Conversely, if
lim
n→∞

dT
n (A) = 0

for the T -bounded operator A, then for every ε > 0, there
exists k ∈ N such that

dT
m (A)< ε for every m ≥ k.

By the definition of the n-th T -Kolmogorov number, there
exists a subspace F of Y with dimF ≤ k such that

A
(

D
T
X

)

⊆ εUY +F.

Since UY ∩F = {y ∈ F : ‖y‖ ≤ 1} is a bounded subset in a
finite dimensional subspace, then it is relatively compact.
So, it has a finite ε-net (say) {z1,z2, · · · ,zm} such that

(

dT
0 (A)+ ε

)

(UY ∩F)⊆
m
⋃

i=1

{zi + εUY} .

Hence, for every x ∈D
T
X , we can represent Ax in the form

Ax = εy+ z, where y ∈UY and z ∈ F.

Thus,

‖z‖ ≤ ‖Ax‖+ ε‖y‖≤ |||Ax|||T + ε = dT
0 (A)+ ε.

Consequently,
Ax = εy+ z ∈ εUY +

(

dT
0 (A)+ ε

)

(UY ∩F)⊆
⋃m

i=1 {zi + 2εUY} .

That is;

A
(

D
T
X

)

⊆
m
⋃

i=1

{zi + 2εUY} .

Thus, A
(

D
T
X

)

has a finite 2ε-net for every ε > 0.
Therefore, it is relatively compact.

Proposition 6.The n-th T -Kolmogorov number for

T -bounded operator A vanishes if and only if A is a finite

rank operator with rank(A)≤ n. That is;

dT
n (A) = 0 if and only if rank(A) = dim(range(A))≤ n.

(8)

Proof.We consider a T -bounded operator A acting
between two normed spaces X and Y. Let dT

n (A) = 0.
Suppose contrarily that the dimension of the range of the
A is larger than n. Then, there exist xi (i = 1, · · · ,n+ 1)
elements in D(T ) where Axi’s are linearly independent
elements in range(A). By Hahan Banach theorem, we can
determine n+ 1 linear functionals gk with 〈Axi,gk〉 = δik.

Since any determinant is a continuous function for all its
arguments, and since the determinant

det(δik) = det(gk (Axi)) = 1,

then there exists a positive number η such that

det{αik} 6= 0 for |δik −αik|< η ,(i,k = 1, · · · ,n+ 1).

Set

γ =
η

maxk ‖gk‖
, k = 1, · · · ,n+ 1.

Since Axi (i = 1, · · · ,n+ 1) are linearly independent, then
xi’s are linearly independent. Without loss of generality,
we can take ‖xi‖ ≤ 1 and ‖T xi‖ ≤ 1 (by dividing each xi

by |||xi|||T = max(‖xi‖ ,‖Txi‖) , if necessary). Therefore,

xi ∈D
T
X for every i = 1 · · · ,n+ 1. Since by hypothesis

inf
{

c > 0 : A
(

D
T
X

)

⊆ cUY +F,dimF ≤ n
}

= 0,

then there exists a finite dimensional subspace F of Y with
dimF ≤ n such that Axi ∈ γUY +F. Hence, for every i =
1, · · · ,n+ 1, we get

Axi = γyi + zi, xi ∈D
T
X , yi ∈UY , and zi ∈ F.

Consequently,
‖Axi − zi‖ ≤ γ.

Since the elements z1,z2, · · · ,zn+1 are linearly dependent
in F , we have det{〈zi,gk〉}= 0. On the other hand,

|gk (Axi)− gk (zi)| ≤ ‖gk‖‖Axi − zi‖

= ‖gk‖
η

max‖gk‖
≤ η .

We have the assertion

det{〈zi,gk〉}= det{〈A(xi),gk〉−η〈yi,gk〉} 6= 0.

This contradiction shows that the assumption
dim(range(A))> n is false and this completes the proof.

Conclusion In this work we give an extension of the
concept of Kolmogorov numbers to a class of unbounded
operators, namely relatively bounded operators with
respect to a densely defined closed linear operator. We
prove that a relatively bounded operator is relatively
compact if and only if its sequence of relative
Kolmogorov numbers converges to zero. Moreover, the
n-th relative Kolmogorov number of an operator vanishes
if and only if it is of finite rank (with rank at most n).
These results about relative Kolmogorov numbers for
relatively bounded operators are similar to the known
results concerning Kolmogorov numbers for bounded
linear operators.
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