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Abstract: This paper discusses the statistical analysis of unknown parameters in competing risk data when covariates are present. The

Cox regression model examines how covariates impact time-to-event data, specifically when lifetimes follow the Akshaya, exponential,

and Rayleigh sub-distributions. The Bayesian method estimates and compares these unknown parameters with estimates obtained

through the maximum likelihood method. Additionally, the reliability measures of the three models and relative risks are calculated.

The applicability of the model is demonstrated through a comprehensive analysis of a real data set involving 329 patients transitioning

from HIV infection to AIDS.
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1 Introduction

In numerous situations in reliability or survival analysis,
the object (a system, a human being, an animal, etc.) may
die/fail due to more than one cause of death/failure. In the
works of literature, this problem is called a competing
risks model. One of the main objectives of the competing
risk models is to evaluate the probability of one cause of
death in the presence of all other risks. Also, it is
interesting to evaluate the reliability measures of the
individual risks as well as those for the object under
study. In competing risks models, we observe the time to
event (failure/censored), an indicator for failure/censored,
and the cause of failure in the failure event case. Different
studies have used competing risk models to analyze data
using parametric and non-parametric setups.

Nonparametric methods do not require distributions
when risks from different causes might occur. Several
authors applied the non-parametric techniques for

competing risk models, such as [1], [2], [3],[4], [5],[6],
[7], and [8].

Parametric setup requires distributions when risks
from different causes might occur. Other studies used
different lifetime distributions such as exponential,
Weibull with known shape parameters, Weibull with
equal but unknown shape parameters, and two-parameter
bathtub distributions; see, for example, [9], [10], [11] and
[12].

Many examples of the competing risk models can be
found in [13], [14], and [15]. Competing risk models
when the risk times follow gamma, exponential, and
Weibull with either equal or known shape parameters and
generalized exponential distribution are discussed in [16],
[17], [18], [19], and [20].

Referring to the competing risk studies, the researchers
may be interested in different effects according to the study
field; for example, in medical science, the researchers may
be focused on the following effects: infection time, age
of infection, social state, sex type, ..., etc. The studies of
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all the previous effects in the competing risks are called
regression competing risks.

In a survival analysis with competing risks, two
different regression modeling strategies are possible:
regression models for time-to-event data and regression
approaches for the competing risks setting (such as
cause-specific hazards regression and sub-distribution
hazards regression); see [21]-[22]. The regression models
that can be applied in the presence of censored
observations were developed to investigate the influence
of covariates on the event times. The Cox’s and
parametric regression models for time-to-event data with
one possible endpoint are the most used. Also according
to Cox’s regression model, the assumption shows that the
hazard ratios are constant over time and that each of the
number of covariates under consideration has a linear
effect on the logarithm of the hazard rate, given the other
covariates; see [23] and [24]. The Weibull distribution is
one of the most important distributions in survival
analysis. Because it has a constant, increasing, or
decreasing hazard rate function, see [25] and [12]. Also,
the Weibull distribution properties are studied by [26] and
[18]. The competing risks model when the cause of
failure follows the Weibull distribution with an unknown
shape and scale parameter is discussed by [20].

This paper aims to introduce a comparison between
three-lifetime distributions with one parameter in survival
analysis. The Cox regression model analyzes the effects
of covariates on time-to-event data, particularly in cases
when lifetimes exhibit the Rayleigh, exponential, and
Akshaya sub-distributions. To estimate these unknown
parameters and compare them with estimates derived
using the maximum likelihood method, the Bayesian
approach is employed.

The outline of the paper is as follows:.
The model assumptions will be described in Section 2. In
Section 3, we will study the likelihood function and get
the maximum likelihood estimates and the two-sided
confidence intervals of the unknown parameters included
in the model. In Section 4, we calculate the risks in the
presence of the covariates using maximum likelihood and
Bayesian methods in the study model. Bayesian analysis
and Markov Chain Monte Carlo (MCMC) techniques
have been considered in Section 5. An analysis of a
simulation example is provided in Section 6 to illustrate
the use of the technique. In Section 7, we conclude with
the reviewed methodologies illustrated with data from
HIV infection to AIDS, SI switch, and death in 329 men
who have sex with men (MSM) in this paper. Section 8
concludes this paper.

2 Model Assumptions

The statistical analysis of the competing risks model deals
only with time to events without covariates discussed by
Sarhan et al. [27] and [24]. The covariates may describe
the infection time, age of infection, social state, sex type,

or other effects. We assume that there are n independent
and identical items put on the life test. Every item is
referred to as one of k;(k ≥ 2), independent causes of
failure. We assume the following notations:

Tji is the failure time of the i-th item destroyed by j-th
cause j ( j = 1,2, ...,k) of failure.

Fj(.) is the cumulative distribution function of the
failure times Tji.

F̄j(.) is the survival function of the random variables
Tji.

f j(.) is the probability density function of the failure
time Tji.

h j(.) is the hazard rate function.
m is the number of covariates.
X is a m× 1 vector of covariates.
λ j is a m× 1 vector of regression coeffcients for each

cause of failure.
δi = j : the indicator variable denoting the cause of

failure of the i-th individual.
Ti is min

1≤ j≤k
{Tji}; j = 1,2, ...,k and i = 1,2, ...,n.

h0 j is the baseline hazard rate function.
S0 j is the baseline survival function j = 1,2, ...,k.
Following Cox’s regression model, the hazard rate

function for the risk j at time t for an individual with
covariates X (not including a constant) and covariates
coefficients λ j is

h j(t;φ j |X) = h0 j(t;ϑ j)e
λ
′
j X , (1)

and the survival function is given by

S j(t;φ j |X) = [S0 j(t;ϑ j)]
e

λ
′
j X

. (2)

Each of the above functions depends on a vector of
unknown parameters, φ j, which itself contains two
vectors of parameters: the first is ϑ j which includes the
parameters of the baseline distribution, and the other is λ j

which contains the regression coefficients and λ
′
j is a

transpose vector of regression coefficients λ j for each
cause of failure. That is, φ j has p+m parameters, where
p is the number of baseline distribution parameters and m

is the number of covariates coefficients.
The survival function for the system [individual or

item] at time t, given covariates X , is

S(t;θ |X) =
k

∏
j=1

[S0 j(t;ϑ j)]
e

λ
′
j
X

. (3)

where θ is the vector of (p+m)k parameters. One of the
main goals of this paper is to estimate such parameters.

3 Maximum-likelihood Estimation

In this section, the likelihood function is derived in a
general setup. In competing risks with covariates, the data
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consists of three parts. The individuate time to event T

(censored or failure), an indicator variable δ that takes
either 0 for censoring or a value in j ∈ {1,2, · · · ,k} for
failure due to cause j, and the values of the covariates’
vector X . Since there are N independent and identical
individuals on the life test, the data can be expressed as
data = (T1,δ1,X1),(T2,δ2,X2), · · · , (TN ,δN ,XN).

3.1 The likelihood function

Based on the data mentioned earlier, the likelihood
function is

L(data|θ ) =
N

∏
i=1

[ f (ti;θ |Xi)]
I(δi 6=0)[S(ti;θ |Xi)]

I(δi=0). (4)

From the relations between the survival, hazard rate, and
probability density functions, the likelihood function can
be expressed as

L(data|θ ) =
N

∏
i=1

{

[h(ti;θ |Xi)]
I(δi 6=0)

S(ti;θ |Xi)
}

=
N

∏
i=1

{[

k

∏
j=1

[h j(ti;φ j |Xi)]
I(δi= j)

]

S(ti;θ |Xi)

}

,(5)

whereabouts I(B) is an identifying indicator function
defined as

I(B) =

{

1 if B is true,
0 if otherwise.

(6)

Substituting from (1) and (2) into (5), the likelihood
function becomes

L(data|θ ) =
N

∏
i=1

{

k

∏
j=1

[h0 j(ti;ϑ j)e
λ
′
j Xi ]I(δi= j)

k

∏
j=1

[S0 j(ti;ϑ j)]
e

λ
′
j
Xi

}

=
N

∏
i=1

k

∏
j=1

{

[

h0 j(ti;ϑ j)e
λ
′
j Xi

]I(δi= j)
[

S0 j(ti;ϑ j)
]e

λ
′
j
Xi

}

.(7)

Taking the natural logarithm for (7), the log-likelihood
function is

L (data|θ ) =
N

∑
i=1

k

∑
j=1

{

I(δi = j)
[

lnh0 j(ti;ϑ j)+λ
′
jXi

]

+

e
λ
′
j Xi lnS0 j(tiϑ j)

}

.

(8)

3.2 The Akshaya distribution case

We assume that Tji follows an Akshaya distribution with
an unknown parameter θ j, represented as Akshaya(θ j), for
i = 1,2, . . . ,N and j = 1,2, . . . ,k. Essentially, this means
that the survival function Tji is given by:

S0 j(t)=

[

1+
θ 3

j t3 +3θ 2
j (θ j +1)t2 +3θ j(θ

2
j +2θ j +2)t

θ 3
j +3θ 2

j +6θ j +6

]

e−θ jt ,

(9)
and the hazard rate function is expressed as

h0 j(t) =
θ 4

j (1+ t)3

θ 3
j t3 +3θ 2

j (θ j +1)t2 +3θ j(θ 2
j +2θ j +2)t +(θ 3

j +3θ 2
j +6θ j +6)

,

(10)

where θ j represents the shape parameter. The probability
density function (PDF) and hazard rate function plots for
the Akshaya model have been included in Figure 1 to
provide a clearer visual representation of their behavior
and facilitate model comparison. Substituting from Eqs.
(9) and (10) into Eq. (8), then the log likelihood function
is

ℓ=
n

∑
i=1

k

∑
j=1











I(δi = j)

(

4 nθ j +3ln(1+ ti)+ λ̀ jXi

− n(A1)

)

+eλ̀ jXi

(

−θ jti − ln
(

θ 3
j +3θ 2

j +6θ j +6
)

+ n(A1)

)











.

(11)

where A1 = θ 3
j t3

i + 3θ 2
j (θ j + 1)t2

i + 3θ j(θ
2
j + 2θ j + 2)ti +

(θ 3
j + 3θ 2

j + 6θ j + 6)

∂ℓ

∂θl

=
n

∑
i=1

k

∑
j=1

δl j











I(δi = j)
(

4
θ j
− B1

A1

)

+eλ̀ jXi
(

−ti +
B1
A1

− 3θ 2
j +6θ j+6

θ 3
j +3θ 2

j +6θ j+6

)











, (12)

where B1 = 3θ 2
j t3

i +6θ j(θ j +1)t2
i +3θ 2

j t2
i +3(θ 2

j +2θ j +

2)ti + 6θ j(θ j + 1)ti/+(3θ 2
j + 6θ j + 6)

and

∂ ℓ

∂ λ jl

=
n

∑
i=1

k

∑
j=1

δl j Xi

[

I(δi = j)+ e
λ̀ j Xi (−θ j ti+

ln

(

1+
θ 3

j t3
i +3θ 2

j (θ j +1)t2
i +3θ j(θ

2
j +2θ j +2)ti

θ 3
j +3θ 2

j +6θ j +6

))]

,

(13)

The maximum likelihood point estimate of theta is
obtained by maximizing the log-likelihood function.
Then, by differentiating the log-likelihood function ℓ with
respect to θl and λl , l = 1,2, ...,k. Thus we have the
likelihood equation for θl and λl, l = 1,2, ...,k
respectively, as

where δl j, l, j = 1,2, ...,k is the Kronecker delta
function.

To obtain the maximum likelihood estimates for the
parameters, we set Eqs. (12) and (13) equal to zero and
solve it with respect to θ j and λ jl, j = 1,2, ...,k.

An exact solution is not easy to obtain. So, we should
use a numerical technique to find an approximate
solution. The obtained solutions act as the maximum
likelihood point estimators of the unknown parameters.
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Fig. 1: Density, hazard curves for Akshaya distribution

Also, we propose to use the asymptotic normality of
Φ = (θ1,θ2, ...,θk,λ j1, ...,λ jm), j = 1,2, ...,k.

To obtain the information matrix, we need the second
partial derivatives of ℓ with respect to θl and

λ jl , l = 1,2, ...,k, which are ∂ 2ℓ
∂Φl∂Φm

, where

l,r = 1,2, ...,k.

3.3 The Rayleigh distribution case

We assume that it Tji follows the Rayleigh distribution
with unknown parameters, σ j, say Rayleigh(σ j) , for
i = 1,2, ...,N and j = 1,2, ...,k. That is, Tji has the
survival rate function is given by

S0 j(t) = e
− t2

2σ j , (14)

and the hazard rate function is

h0 j(t) =
t

σ j

, (15)

where σ j is the shape parameter. The PDF and hazard
rate function plots for the Rayleigh model have been
included in Figure 2 to provide a clearer visual
representation of their behavior and facilitate model
comparison.
Substituting from Eqs. (14) and (15) into Eq. (8), then

the log-likelihood function is

ℓ=
n

∑
i=1

k

∑
j=1

[

I(δi = j)
(

ln ti − lnσ j + λ̀ jXi

)

− t2
i

2σ j
eλ̀ jXi

]

.

(16)
The maximum likelihood point estimate of σ is

obtained by maximizing the log-likelihood function.
Then, by differentiating the log-likelihood function ℓ with
respect to σl and λl , l = 1,2, ...,k. Thus we have the
likelihood equation for σl and λl, l = 1,2, ...,k
respectively, as

∂ℓ

∂σl

=
n

∑
i=1

k

∑
j=1

δl j

[

I(δi = j)

(−1

σ j

)

+
t2
i

2σ2
j

eλ̀ jXi

]

, (17)

and

∂ℓ

∂λ jl

=
n

∑
i=1

k

∑
j=1

δl j Xi

[

I(δi = j)− t2
i

2σ j

eλ̀ jXi

]

, (18)

whereabouts δl j, l, j = 1,2, ...,k is the Kronecker delta
function.

To get the maximum likelihood point estimates for the
parameters, we set Eqs. (17) and (18) equal to zero and
solve it with respect to σ j and λ jl , j = 1,2, ...,k.

An exact solution is not easy to obtain. So, we should
use a numerical technique to find an approximate
solution. The obtained solutions act as the maximum
likelihood point estimators of the unknown parameters.
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Fig. 2: Density, hazard curves for Rayleigh distribution

Also, we propose to use the asymptotic normality of
Φ = (σ1,σ2, ...,σk,λ j1, ...,λ jm), j = 1,2, ...,k.

To calculate the information matrix, we require the
second partial derivatives of ℓ concerning σl and λ jl for
l = 1,2, . . . ,k. These derivatives are represented as

∂ 2ℓ
∂Φl∂Φm

, where l,r = 1,2, . . . ,k.

3.4 The exponential distribution case

We assume that Tji follow an exponential distribution with
unknown parameters, α j , say E(α j) , for i = 1,2, ...,N and
j = 1,2, ...,k . That is, Tji has the survival rate function is

S0 j(t) = e−α jt , α j > 0, t > 0, (19)

and the hazard rate function is

h0 j(t) = α j, (20)

where α j is the shape parameter. The PDF and hazard
rate function plots for the exponential model have been
included in Figure 3 to provide a clearer visual
representation of their behavior and facilitate model
comparison.

Substituting from Eqs. (19) and (20) into Eq. (8), then
the log-likelihood function is

ℓ=
n

∑
i=1

k

∑
j=1

[

I(δi = j)
(

lnα j + λ̀ jXi

)

−αi ti eλ̀ jXi

]

, (21)

The maximum likelihood estimate of α is obtained
by maximizing the log-likelihood function. Then, by
differentiating the log-likelihood function ℓ with respect
to αl and λl , l = 1,2, ...,k. Thus we have the likelihood
equation for αl and λl , l = 1,2, ...,k respectively, as

∂ℓ

∂αl

=
n

∑
i=1

k

∑
j=1

δl j

[

I(δi = j)

(

1

α j

)

− ti eλ̀ jXi

]

, (22)

and

∂ℓ

∂λ jl

=
n

∑
i=1

k

∑
j=1

δl j Xi

[

I(δi = j)−αi ti eλ̀ jXi

]

, (23)

whereabouts δl j, l, j = 1,2, ...,k is the Kronecker delta
function.

To get the maximum likelihood point estimates for the
parameters, we set Eqs. (22) and (23) equal to zero and
solve it with respect to α j and λ jl , j = 1,2, ...,k.

An exact solution is not easy to obtain. So, we should
use a numerical technique to find an approximate
solution. The obtained solutions act as the maximum
likelihood point estimators of the unknown parameters.
Also, we propose to use the asymptotic normality of
Φ = (α1,α2, ...,αk,λ j1, ...,λ jm), j = 1,2, ...,k.

To obtain the information matrix, we need the second
partial derivatives of ℓ with respect to αl and

λ jl , l = 1,2, ...,k, which are ∂ 2ℓ
∂Φl ∂Φm

, where

l,r = 1,2, ...,k.
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Fig. 3: Density, hazard curves for exponential distribution

3.5 Confidence intervals

In this section, we discuss approximate confidence
intervals for the parameters. The asymptotic standard
error for an estimator is obtained from the inverse of the
Fisher information matrix.

The asymptotic confidence intervals for the vector of
the unknown parameters
Φ = (θ1,θ2, ...,θk,λ j1, ...,λ jm), j = 1,2, ..,k, are
discussed. Even though the maximum likelihood
estimators for the parameters do not have analytical forms
and their exact distributions cannot be determined, the
asymptotic distribution of the maximum likelihood
estimator can still be used to calculate confidence
intervals for
Φ = (θ1,θ2, . . . ,θk,λ j1, . . . ,λ jm), j = 1,2, . . . ,k, as
shown below

(

Φ̂ −Φ
)

→
(

N(2+m)k(0,V (Φ̂))
)

, (24)

where
Φ̂ = (θ̂1, θ̂2, ..., θ̂k, λ̂ j1, ..., λ̂ jm), j = 1,2, ..,k are the
point estimates by the maximum likelihood method,
N(2+m)k denotes (2 + m)k-multidimensional normal

distribution and V (Φ̂) is the variance-covariance matrix
that can be obtained as the inverse of the information
matrix of Φ̂ . The components of the information matrix

are the second partial derivatives of ℓ. That is
I(Φ̂) = Ii j(Φ̂), i, j = 1,2, ...,k,

Ii j(Φ̂) =−
[

∂ 2ℓ(Φ)

∂Φi∂Φ j

]

Φ=Φ̂

, i, j = 1,2, ...,k, (25)

Then the 100(1−γ)% confidence interval for γ is given
by

Φ̂ ±Zγ/2

√
V , (26)

where Zγ/2 is the percentile of the standard normal

distribution with right-tail probability γ/2 and V is the
variance-covariance matrix of the maximum likelihood
estimates.

4 The Relative Risks

Relative risk [28] is one of the important characteristics in
the competing risk models. It determines the probability
of death due to a specific risk in the presence of all other
risks. The cumulative incidence function for risk j gives
the probability of failure due to a risk j at time t in the
presence of all other risks. That is,

FC j
(t;θ |X) =

∫ t

0
h j(u;φ j|X)S(u;θ |X)du , j = 1,2, . . . ,k.

(27)
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Case 1: For the Akshaya model discussed in this paper,

FC j
(t;θ |X) =

∫ t

0

θ 4
j (1+ u)3

A2
×

.
k

∏
l=1

([

1+
C1

θ 3
j + 3θ 2

j + 6θ j + 6

]

e−θ ju

)e
λ
′
l

x

du,

where j = 1,2, · · · ,k, and A2 = θ 3
j u3 + 3θ 2

j (θ j + 1)u2 +

3θ j(θ
2
j + 2θ j + 2)u+(θ 3

j + 3θ 2
j + 6θ j + 6), C1 = θ 3

j u3 +

3θ 2
j (θ j + 1)u2 + 3θ j(θ

2
j + 2θ j + 2)u. The relative risk of

causing j is the limit of the incidence function when time
goes to infinity. That is,

FC j
(t;θ |X) =

∫ t

0
h j(u;φ j|X)S(u;θ |X)du , j = 1,2, . . . ,k.

(28)
For the Akshaya model,

π j (t;θ |X) =

∫ ∞

0

θ 4
j (1+ t)3

A1

.
k

∏
l=1

([

1+
C2

θ 3
j + 3θ 2

j + 6θ j + 6

]

e−θ jt

)e
λ
′
l

x

dt,(29)

where C2 = θ 3
j t3 + 3θ 2

j (θ j + 1)t2 + 3θ j(θ
2
j + 2θ j + 2)t.

The integral in (29) has no analytic solution.

Case 2: For the Rayleigh model discussed in this paper,

FC j
(t;θ |X)=

∫ t

0

u

σ j

e
λ
′
j x

k

∏
l=1

(

e
− u2

2σl

)e
λ
′
l

x

dt, j = 1,2, · · · ,k.

(30)
The relative risk of cause j is the limit of the incidence
function when time goes to infinity. That is,

π j(θ |X)=
∫ ∞

0

u

σ j

e
λ
′
j x

k

∏
l=1

(

e
− u2

2σl

)e
λ
′
l

x

cdt, j = 1,2, · · · ,k.

(31)
The integral in (31) has no analytic solution in the general
case.

Case 3: For the exponential model discussed in this
paper,

FC j
(t;θ |X)=

∫ t

0
α je

λ
′
j x

k

∏
l=1

(

e−αlu
)e

λ
′
l

x

dt, j = 1,2, · · · ,k,

(32)
the relative risk of cause j is the limit of the incidence
function when time goes to infinity. That is,

π j(θ |X) =

∫ ∞

0
α je

λ
′
j x

k

∏
l=1

(

e−αlu
)e

λ
′
l

x

dt, j = 1,2, · · · ,k,

(33)
the integral in (33) has no analytic solution in the general
case.

Using the invariant property of the maximum
likelihood method, we can get the maximum likelihood
estimate for FC j

(t;θ |X) at a given time t or π j(θ |X) or
both. We should use a numerical integral technique to
estimate. FC j

(t;θ |X). For Bayesian estimation, we use
the random draws obtained from the joint distribution
along with the formulae above to get random draws from
the posterior distribution FC j

(t;θ |X) at a given time, t or

π j(x), then use it to perform any Bayesian analysis we
wish.

5 Bayesian Estimation

The Bayesian approach treats parameters as random
variables and expresses uncertainties about these
parameters using a joint prior distribution, established
before any failure data is collected. The ability of this
method to integrate prior knowledge into the analysis is
particularly advantageous for the regression competing
risk model, as a major challenge with this model is the
limited data availability.

5.1 The Akshaya distribution case

In this subsection, we present the posterior densities of the
unknown parameters Φ = (θ1,θ2, ...,θk,λ j1, ...,λ jm),

j = 1,2, ..,k,and then obtain the corresponding Bayes
estimators of these parameters.

Assume that θ j and λ jl, j = 1,2, ..,k; l = 1,2, ..,m are
independent. Also θ j has gamma prior densities g(θ j)
with different known and nonnegative hyperparameters
a j and b j. Also g(λ jl), l = 1,2, ..,m have the normal prior

densities, g(λ jl), with means µ jl and variances σ2
jl .

Therefore, the joint prior density function of
Φ = (θ1,θ2, ...,θk,λ j1, ...,λ jm), j = 1,2, ..,k, up to a
constant, is

g(Φ) =
k

∏
j=1

m

∏
l=1

g(θ j) g(λ jl)

=
k

∏
j=1

m

∏
l=1

b
a j

j

σ jl

√
2πΓ (a j)

θ
a j−1

j e
−
(

b jθ j+
1

2σ2
jl

(λ jl−µ jl)
2

)

.

(34)

From the likelihood function in Eq. (3.4) and the joint
prior density Eq. (5.1) the joint posterior density function
of Φ , up to a constant, can be obtained as
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g(Φ | data) ∝
k

∏
j=1

m

∏
l=1

[

b
a j

j

σ jl

√
2πΓ (a j)

θ
a j−1

j

× e
−
(

b j θ j+
1

2σ2
jl

(λ jl−µ jl)
2

)





×
n

∏
i=1

k

∏
j=1



















[

θ 4
j (1+ti)

3

A1
eλ̀ jXi

]I(δi= j)

[

1+
θ 3

j +3θ 2
j +6θ j+6

e−θ jti

]e
λ̀ jXi



















, (35)

where D3 = θ 3
j t3

i + 3θ 2
j (θ j + 1)t2

i + 3θ j(θ
2
j + 2θ j + 2)ti.

Under the quadratic loss function, the Bayesian
estimate of any function of the vector of unknown
parameters Φ , say ν(Φ), is the posterior mean of that
function. That is,

ν̂ = EΦ |.(ν(Φ)) =

∞
∫

0

ν(Φ) g(Φ | .) d Φ. (36)

The integral in Eq. (36) and the normalization
constant in Eq. (35) do not have analytical solutions.
Consequently, numerical methods are needed to perform a
Bayesian analysis of the underlying model. Out of several
available methods, we will use the Markov Chain Monte
Carlo (MCMC) simulation technique for the analysis. The
MCMC algorithm allows us to generate random samples
from the posterior distribution, as described in Eq. (35),
without needing to compute the normalization constant.
These random samples can then be used to analyze the
model parameters and characteristics as desired.

5.2 The Rayleigh distribution case

In this subsection, we present the posterior densities of the
unknown parameters

Φ = (σ1,σ2, ...,σk,λ j1, ...,λ jm,λ j1, ...,λ jm), j =
1,2, ..,k, and then obtain the corresponding Bayes
estimators of these parameters.

Assume that σ j and λ jl , j = 1,2, ..,k; l = 1,2, ..,m are
independent. Also σ j has gamma prior densities g(σ j)
with different known and nonnegative hyperparameters
a j and b j. Also g(λ jl), l = 1,2, ..,m have the normal prior

densities, g(λ jl), with means µ jl and variances δ 2
jl .

Therefore, the joint prior density function of
Φ = (σ1,σ2, ...,σk,λ j1, ...,λ jm), j = 1,2, ..,k, up to a
constant is

g(Φ) =
k

∏
j=1

m

∏
l=1

g(σ j) g(λ jl)

=
k

∏
j=1

m

∏
l=1

b
a j

j

δ jl

√
2πΓ (a j)

σ
a j−1

j e
−
(

b j σ j+
1

2δ 2
jl

(λ jl−µ jl)
2

)

.

(37)

From the likelihood function Eq. (37) and the joint
prior density, the joint posterior density function of Φ , up
to a constant, can be obtained as

g(Φ | data) ∝
k

∏
j=1

m

∏
l=1

[

b
a j
j

σ jl

√
2πΓ (a j)

θ
a j−1

j e
−
(

b j θ j+
1

2σ2
(λ jl−µ jl )

2
)
]

×
n

∏
i=1

k

∏
j=1



















[

ti

σ j

e
λ̀ j Xi

]I(δi= j)


e
−

t2
i

2σ j





e
λ̀ j Xi



















. (38)

With the quadratic loss function, the Bayesian
estimate for any function of the unknown parameter
vectorΦ , denoted as ν(Φ) is the posterior mean of that
function. That is,

ν̂ = EΦ |.(ν(Φ)) =

∞
∫

0

ν(Φ) g(Φ | .) d Φ. (39)

The integral in Eq. (39) and the normalization
constant in Eq. (38) do not have analytical solutions. As a
result, numerical methods are necessary for performing a
Bayesian analysis of the underlying model. Among the
various methods available, we will use the Markov Chain
Monte Carlo (MCMC) simulation technique for this
analysis. The MCMC algorithm enables us to generate
random samples from the posterior distribution, as
specified in Eq. (38), without needing to compute the
normalization constant. These random samples can then
be utilized to conduct any analysis of the model
parameters and characteristics that we desire.

5.3 The Exponential distribution case

In this subsection, we present the posterior densities of
the unknown parameters
Φ = (α1,α2, ...,αk,λ j1, ...,λ jm), j = 1,2, ..,k, and then
obtain the corresponding Bayes estimators of these
parameters.

Assume that α j and λ jl , j = 1,2, ..,k; l = 1,2, ..,m are
independent. Also α j has gamma prior densities g(α j)
with different known and nonnegative hyperparameters
a j and b j. Also g(λ jl), l = 1,2, ..,m have the normal prior

densities, g(λ jl), with means µ jl and variances σ2
jl .

Therefore, the joint prior density function of
Φ = (α1,α2, ...,αk,λ j1, ...,λ jm), j = 1,2, ..,k, up to a
constant is
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g(Φ) =
k

∏
j=1

m

∏
l=1

g(α j) g(λ jl)

=
k

∏
j=1

m

∏
l=1

ba
j

σ jl

√
2πΓ (a j)

α
a j−1

j e
−
(

b j α j+
1

2σ2
jl

(λ jl−µ jl)
2

)

.

(40)

From the likelihood function Eq. (40) and the joint
prior density, the joint posterior density function of Φ , up
to a constant, can be obtained as

g(Φ | data) ∝
k

∏
j=1

m

∏
l=1

[

b
a j

j

σ jl

√
2πΓ (a j)

α
a j−1

j

× e
−
(

b j α j+
1

2σ2 (λ jl−µ jl)
2
)]

×
n

∏
i=1

k

∏
j=1

{

[

ti eλ̀ jXi

]I(δi= j)
[

e−α jti
]e

λ̀ j Xi
}

. (41)

With the quadratic loss function, the Bayesian estimate
for any function of the vector of unknown parametersΦ ,
represented as ν(Φ) is the posterior mean of that function.
In other words,

ν̂ = EΦ |.(ν(Φ)) =

∞
∫

0

ν(Φ) g(Φ | .) d Φ. (42)

The integral in Eq. (42) and the normalization
constant in Eq. (41) lack analytical solutions. Therefore,
numerical methods must be applied for Bayesian analysis
of the model. Out of several possible methods, we will
use the Markov Chain Monte Carlo (MCMC) simulation
technique for this purpose. The MCMC algorithm allows
us to obtain random samples from the posterior
distribution, as specified by the density in Eq. (41),
without needing to compute the normalization constant.
These random samples can then be utilized for any
desired model parameters and characteristics analysis.

5.4 Markov chain Monte Carlo method

The Markov Chain Monte Carlo (MCMC) technique is
one of the most effective methods in modern Bayesian
statistics. The MCMC is an algorithm that summarizes
the posterior distribution without requiring the calculation
of the normalization constant. It has become one of the
primary computational tools in Bayesian statistical
inference due to its extensive use [29]. The
Metropolis-Hastings sampler is a variation of the MCMC
method. A key concept in MCMC is finding an

appropriate distribution function, referred to as the
”proposal,” which meets two criteria: 1) it is easy to
simulate from, and 2) it closely resembles the posterior
distribution of interest. Once such a proposal is identified,
random samples are drawn from it, and the
acceptance-rejection rule is applied to obtain random
samples from the target posterior distribution.

The Metropolis-Hastings algorithm is used to generate
random samples from the posterior distribution g(Φ | .):

(1)Start with initial guess Φ(0).
(2)Determine the number of trials for generating random

samples, denoted as M.
(3)Repeat the following steps for i = 1, . . . ,M:

(i)Set Φ = Φ(i−1).
(ii)Generate a candidate Φ∗ from a proposal distribution

P(Φ∗ | Φ) and Φ∗ from a proposal distribution P(Φ∗ |
Φ).

(iii)Evaluate the acceptance probabilities

ηΦ = min

[

1,
g(Φ∗ | .) P(Φ∗ | Φ)

g(Φ∗ | .) P(Φ∗ | Φ)

]

.

(iv)Generate a u1from a Uniform (0,1) distribution,

If u1 < ηΦ , accept the proposal and set; else, Φ(i) =
Φ∗, else set Φ(i) = Φ(i−1).

Under some regularity conditions on the proposal
density, P(Φ∗ | Φ), the sequence of the simulated draws
{

Φ(i)
}M

i=1
and

{

Φ(i)
}M

i=1
will converge to random draws

that follow the posterior density g(Φ | .).

6 Simulation

In this segment, simulation experiments are carried out to
assess the effectiveness of the suggested techniques. The
evaluation will involve a comparison of point estimation
and interval estimation for parameters of exponential and
Akshaya regression competing risk models performance
from three distinct viewpoints:

–Mean square error (MSE) is calculated as the average
of the squared differences between Φ̂i and Φ , where i

represents the iteration number of simulation cycles.
It serves as a measure to assess the extent of data
variation. A smaller MSE value indicates a prediction
model that provides a more accurate description of the
experimental data.

–Bias is determined by the average difference between
Φ̂i and Φ . This is a metric for assessing the level of
data variation. When the bias is close to zero, it
suggests that the prediction model provides a more
accurate description of the experimental data and
employs unbiased estimators.

–Regarding the length of confidence intervals (LCI),
when all other variables remain constant, the average
width estimated within the confidence interval at a
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100(1 − γ)% confidence level is influenced by both
the sample size and the chosen confidence level γ .

Following the specification of the sample size (n) and
parameters (α1,λ1,λ2 and α2) of exponential and
Akshaya regression competing risk models, the
simulation process is carried out. Here in Table 3,
(α1 = 0.75and3,λ1 = 1.2,λ2 = 1.3 and α2 = 0.6 and 2) &
while in Table 4, (α1 = 0.75and3,λ1 = 0.5,λ2 = 0.3 and
α2 = 0.6 and 2) have been taken. The results for various
sample sizes and termination times have been supplied as
30, 50, 100, and 200. Tables 3 and 4 contain the bias and
MSE as well as average lengths of confidence intervals
(ALCIs) with a 95% confidence level. The ALCIs for
MLE are designated as ALACI, and the ALCIs for
Bayesian are designated as ALCCI. When it comes to
Bayesian inference, we take into account the informative
Gamma prior. The hyperparameters are taken by
hyper-parameter elicitation techniques as follows:

a j =

[

1
I ∑I

i=1 Φ̂ i
j

]2

1
I−1 ∑I

i=1

[

Φ̂ i
j − 1

I ∑I
i=1 Φ̂ i

j

]2
, j = 1,2,3,

b j =
1
I ∑I

i=1 Φ̂ i
j

1
I−1 ∑I

i=1

[

Φ̂ i
j − 1

I ∑I
i=1 Φ̂ i

j

]2
,

where I is the number of iterations.
Every simulation’s outcome is derived from 5000

replications. Based on the findings presented in Tables 1
and 2, several key observations stand out. First, it is
evident that the bias and mean squared error (MSE)
associated with maximum likelihood estimators (MLEs)
and Bayesian estimation consistently diminish as the
sample size increases. This phenomenon suggests that the
estimators approach asymptotic unbiasedness, meaning
that as the sample size grows significantly, these
estimators converge toward the true parameter value.
Furthermore, when examining the 95% ALCIs, it is clear
that they contract as the sample size expands. All these
findings collectively underscore the robustness and
consistency of the proposed estimator. Using average
weights, we note that the Bias, MSE, and ALCI decrease
when the value of α1 decreases and the value of α2

increases. The outcomes from MLE and Bayesian
estimation are both quite pleasing. Even though Bayesian
estimation primarily uses an informative gamma prior,
point estimation by Bayesian remains the more efficient
approach. In the case of interval estimations, two methods
are available, which can be chosen based on specific
requirements. If a shorter estimation interval is desired,
the highest posterior density (HPD) interval is the
preferable option.

7 Application

In this section, the previous methods of statistical
inference are applied to a real-life data set. In the study

involving 329 men who have sex with men (MSM), we
focus on the progression from HIV infection to AIDS, SI
switch, and eventual death, paying particular attention to
the cause of failure and the time of death for the patients.
The data was collected from a specific period up until the
introduction of combination anti-retroviral therapy in
1996. This data describes the competing risks model with
two causes of failure. For further information on this data,
see [30], [31], and [32].

This data set was used as an example for competing
risk analysis in [33] and [34]. The data can be considered
competing risk data with two different risks. Some
participants in the study neither experienced an infection
switch nor died, and these cases are treated as censored
observations. The Aidssi2 data set expands on the original
Aidssi data set in three ways: first, it accounts for events
occurring after the initial one; second, it includes the
entry times of individuals who joined the study after
contracting HIV; and third, it adds the age at HIV
infection as an additional covariate. The numbers in this
set differ slightly from the original AIDS data set. Some
participants were diagnosed with AIDS only upon death,
while others had their last follow-up at the time of their
AIDS diagnosis. To avoid recording two transitions at the
same time, the time to AIDS was reduced by 0.025 years
for these cases. This data set was also used as an example
in multi-state analyses in [34]. In this study, we focus on
two covariates from the real data: age at HIV infection
and CCR5 genotype, which is categorized as ”WW”
(wild-type allele on both chromosomes) or ”WM”
(mutant allele on one chromosome). All calculations are
applied by using the R language.

Table 2 presents a comparative analysis of MLE and
Bayesian estimation methods for Exponential, Akshaya,
and Rayleigh models. The table shows parameter
estimates (α1,α2,λ1,λ2), their StEr, and the model
selection criteria Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Hannan-Quinn
Criterion (HQIC), and Consistent Akaike Information
Criterion (CAIC).

For the exponential model, both MLE and Bayesian
approaches provide similar estimates for the parameters
α1,α2,λ1, and λ2, with Bayesian estimates showing
slightly lower standard errors compared to MLE. The
model selection criteria (AIC, BIC, HQIC, and CAIC)
show relatively low values, indicating a good fit for this
model. In the Akshaya model, the Bayesian approach
produces parameter estimates and standard errors
relatively close to the MLE results. However, the standard
errors in the Bayesian case appear larger for most
parameters. Notably, the estimates for α1 and α2 differ
slightly between the two approaches. The model selection
criteria indicate moderate values compared to the
exponential model. For the Rayleigh model, both MLE
and Bayesian estimates differ more prominently,
particularly for α1 and α2. The standard errors in the
Bayesian approach are generally larger than those in
MLE. The Rayleigh model’s AIC, BIC, HQIC, and CAIC
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values are higher compared to the exponential and
Akshaya models, suggesting a relatively poorer fit.

Overall, the exponential model appears to outperform
the other two models regarding model selection criteria,
with lower AIC, BIC, HQIC, and CAIC values.
Additionally, Bayesian estimates across all models exhibit
slightly higher robustness, as seen through smaller
standard errors compared to MLE in some cases.
However, the differences between MLE and Bayesian
estimates suggest the need for careful consideration of
prior assumptions and model selection.

Likelihood profile plots are a valuable tool for
checking the properties of MLE and understanding the
behavior of the likelihood function. They can help you
assess the stability and confidence intervals of the MLE
for a specific parameter of interest. Figure 4 discusses the
likelihood profile of competing risk parameters of
exponential regression by MLE. We note the profile
likelihood is a symmetric, unimodal shape with a single
peak, then it is typically indicative of a well-behaved
MLE.

MCMC plots are graphical representations of the
output generated by MCMC algorithms, which are used
for Bayesian inference and parameter estimation of
competing risk parameters of exponential regression.
MCMC is a powerful technique for sampling from
complex probability distributions, especially when you
want to estimate posterior distributions in Bayesian
statistics. Here are some common types of MCMC plots
that were used in Figures 5,6,7:

–A plot of trace shows the values of a parameter or
variable at each iteration of the MCMC chain. It is a
simple line plot where the x-axis represents the
iteration number and the y-axis represents the
parameter’s value. A good trace plot should exhibit
”mixing,” where the chain explores the parameter
space without getting stuck in a single region. Lack of
mixing could indicate convergence problems.

–Density plots, also known as kernel density plots or
histogram plots, provide an estimate of the probability
density function of the values of the sampled
parameters. They can help you visualize the shape of
the posterior distribution.

–Convergence diagnostics plots often include
diagnostic statistics like the Geweke score, effective
sample size, or divergent transitions (for Hamiltonian
Monte Carlo methods like Stan). These diagnostics
provide information about the convergence and the
quality of the MCMC sampling.

Table 1: Risk analysis for MLE and Bayesian

Exponential Akshaya Rayleigh

MLE Bayesian MLE Bayesian MLE Bayesian

π1 0.5826 0.6620 0.5633 0.6811 0.41803 0.33485

π2 0.4174 0.3380 0.4366 0.3188 0.58197 0.66515

Figures 5,6,7 refers to the MCMM plots of competing
exponential regression risk parameters having
convergence, and this result is well done with exponential
regression competing risk parameters.

Table 1 presents the computation of relative risks and
survival rates for different methods at different time
points. In Figure 8, you can observe the trace and
posterior density plots for the π j draws and random draw
plots for π j with symmetric normal distribution. We then
utilized these random draws to generate samples for
sub-survivors and overall survivors, which were
subsequently used to derive Bayesian estimators and 95%
credible intervals for these metrics at various time points,
as depicted in Figure 9.

can achieve which is not appropriate for the system.
Overview of the analysis of survival competing risk:

–Researchers need to determine if their research
objective is to address etiological questions to
estimate incidence or to predict prognosis.

–The Fine-Gray subdistribution hazard model should be
used to estimate incidence or predict prognosis in the
presence of competing risks.

–To address etiological questions, use the cause-specific
hazards model.

–In certain situations, estimating both types of
regression models for each competing risk is
important to fully understand how covariates
influence the incidence and rate of occurrence of each
outcome.

8 Conclusions

In this paper, we introduced a competing risk model with
the effect of covariates and applied the Cox regression
model to estimate the coefficient of the covariates.
Lifetimes follow three different distributions with one
parameter. The likelihood function is used to obtain the
point estimates of the unknown parameters of the
underlying models and obtain asymptotic confidence
intervals in the presence of censoring data. The Markov
chain Monte Carlo technique by the Metropolis-Hastings
algorithm is applied to do the Bayesian analysis of the
parameters. The MCMC gets random draws from the
joint posterior distribution function. In addition, credible
intervals of all parameters are obtained, as are important
reliability measures such as relative risks in the general
case. In Bayes analysis, a gamma-predicted distribution is
used for the unknown parameters of the Weibull
distribution with known hyperparameters. In addition, the
prior normal distribution of the unknown coefficient
parameters with known means and variances is
considered. A real data set is used in the application of the
underlying model. The results are also listed in a detailed
discussion.
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Table 2: MLE and Bayesian

Exponential Akshaya Rayleigh

MLE Bayesian MLE Bayesian MLE Bayesian

estimates StEr estimates StEr estimates StEr estimates StEr estimates StEr estimates StEr

α1 0.0463 0.0025 0.0472 0.0013 0.2928 0.0358 0.3025 0.0286 12.4016 4.6308 13.1544 2.2906

α2 0.0332 0.0080 0.0241 0.0055 0.2567 0.0264 0.1704 0.0175 10.5107 2.0422 9.3333 0.7359

λ1 0.0162 0.0092 0.0168 0.0084 0.0155 0.0082 0.0133 0.0065 0.0278 0.0001 0.0300 0.0101

λ2 0.2807 0.0382 0.4965 0.0166 0.1912 0.1739 0.8671 0.1672 0.0636 0.0387 -0.0058 0.1004

AIC -2431.981 -2235.296 -2226.788

BIC -2416.797 -2220.112 -2211.604

HQIC -2425.923 -2229.239 -2220.731

CAIC -2431.857 -2235.173 -2226.665

Table 3: MLE and Bayesian for exponential regression competing risks with bias, MSE, and LCI: λ1 = 1.2,λ2 = 1.3

α1 0.75 3

λ1 = 1.2,λ2 = 1.3 MLE Bayesian MLE Bayesian

α2 n Bias MSE LACI Bias MSE LCCI Bias MSE LACI Bias MSE LCCI

0.6

30

α1 0.1757 0.4433 2.5187 -0.0936 0.0534 0.7626 0.4267 3.2357 6.8561 -0.2304 0.3543 1.9593

α2 0.0220 0.0213 0.5660 -0.0272 0.0189 0.4638 0.1068 1.8472 5.6070 -0.0731 0.0458 0.7180

λ1 -1.2351 2.4998 3.8713 -0.7331 0.6250 0.9389 -1.1743 1.9536 2.9742 -0.8413 0.7396 0.6350

λ2 -1.3337 2.0471 2.0316 -0.7124 0.6091 1.0804 -1.4080 3.6052 3.9643 -0.5816 0.5439 1.5528

50

α1 0.0810 0.1666 1.5690 -0.0908 0.0361 0.6260 0.2656 1.5439 4.7605 -0.2241 0.2468 1.6904

α2 0.0099 0.0189 0.5371 -0.0087 0.0155 0.3419 0.0621 0.0555 0.9240 -0.0612 0.0345 0.6079

λ1 -1.2118 2.3298 3.6401 -0.7241 0.6203 1.0559 -0.9211 1.8191 2.3259 -0.7281 0.7083 0.5328

λ2 -1.2893 1.8293 1.6028 -0.6819 0.5727 0.8105 -1.3123 2.5754 3.6228 -0.5064 0.5073 1.3998

100

α1 0.0397 0.0844 1.1286 -0.0291 0.0245 0.4770 0.1454 0.7459 3.3389 -0.1384 0.1135 1.0802

α2 0.0050 0.0076 0.3411 -0.0070 0.0069 0.2449 0.0107 0.0357 0.7395 -0.0592 0.0194 0.4044

λ1 -1.1841 1.8344 2.5783 -0.6824 0.6073 0.7436 -0.9020 1.6822 1.9294 -0.4981 0.6916 0.4207

λ2 -1.1298 1.7460 0.9673 -0.6081 0.4944 0.4694 -0.9331 2.1491 2.4078 -0.4805 0.4711 0.8410

200

α1 0.0214 0.0318 0.6938 -0.0170 0.0137 0.3608 0.0647 0.3527 2.3154 -0.1259 0.0644 0.7702

α2 0.0026 0.0042 0.2546 -0.0026 0.0041 0.1707 -0.0050 0.0176 0.5209 -0.0478 0.0118 0.3007

λ1 -1.0212 1.6348 1.5951 -0.4931 0.5890 0.5052 -0.8200 1.5520 1.3137 -0.3502 0.4603 0.2507

λ2 -0.9299 1.7231 0.7430 -0.6024 0.4060 0.3660 -0.8286 1.8130 1.5624 -0.3091 0.3858 0.6442

2

30

α1 0.2543 1.0025 3.7990 -0.1008 0.0773 0.9095 0.4668 3.2415 6.8197 -0.2285 0.3546 2.0668

α2 0.1285 0.3560 2.2857 -0.1073 0.1101 1.0560 0.2387 0.1666 1.5982 -0.2082 0.1142 1.0345

λ1 -1.2093 3.5264 5.6357 -0.6091 0.4945 1.2193 -1.2312 2.1236 3.0578 -0.8503 0.7585 0.6138

λ2 -1.2998 1.9949 2.1683 -0.8434 0.7546 0.7079 -1.3176 1.9076 1.6241 -0.8447 0.7554 0.7163

50

α1 0.1433 0.3619 2.2916 -0.0983 0.0567 0.8292 0.2387 1.3427 4.4472 -0.1963 0.1599 1.3482

α2 0.0572 0.1945 1.7150 -0.0483 0.0808 0.8243 0.0118 0.1012 1.2471 -0.0109 0.0606 0.6140

λ1 -1.1935 2.6797 4.3940 -0.5646 0.4155 1.1910 -1.2289 1.8497 2.2848 -0.7941 0.6901 0.4181

λ2 -1.2093 1.8439 1.6220 -0.7940 0.6906 0.5207 -1.3017 1.7829 1.1673 -0.7966 0.6948 0.4426

100

α1 0.1141 0.2406 1.8709 -0.0910 0.0347 0.5989 0.0719 0.5533 2.9037 -0.0621 0.1240 1.0822

α2 0.0102 0.1001 1.2400 -0.0102 0.0420 0.5202 -0.0108 0.0615 0.9721 -0.0091 0.0538 0.4973

λ1 -0.9261 2.2974 3.2989 -0.4786 0.4067 0.5523 -1.1887 1.5881 1.6410 -0.6767 0.6678 0.3968

λ2 -1.1275 1.7068 1.1097 -0.6037 0.6084 0.3107 -1.2842 1.6974 0.8608 -0.6044 0.5981 0.3094

200

α1 0.0436 0.0804 1.0989 -0.0308 0.0176 0.3977 0.0573 0.3869 2.4290 -0.0517 0.0799 0.8515

α2 0.0101 0.0640 0.9859 -0.0101 0.0271 0.3709 -0.0010 0.0471 0.8510 -0.0008 0.0353 0.4123

λ1 -0.9022 1.8115 2.2505 -0.3875 0.3789 0.5316 -1.1901 1.5428 1.3944 -0.2993 0.5994 0.3269

λ2 -0.9312 1.2767 0.8392 -0.5108 0.4232 0.2117 -1.2894 1.6978 0.7364 -0.3506 0.5110 0.2925
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Fig. 5: MCMC plots for Exponential model parameters
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c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


936 E. M. Almetwally et al. : Regression Competing Risks Model...

0 2000 6000 10000

1
0

2
0

Iteration

α 1

0 2000 6000 10000

1
3
.0

1
4
.5

Iterations

m
e
a
n
(α

1
)

α1

F
re

q
u
e
n
c
y

10 15 20

0
.0

0
0
.1

0

0 2000 6000 10000

8
1
0

1
2

Iteration

α 2

0 2000 6000 10000

9
.2

9
.8

1
0
.6

Iterations

m
e
a
n
(α

2
)

α2

F
re

q
u
e
n
c
y

7 8 9 10 11 12

0
.0

0
.3

0 2000 6000 10000

−
0
.0

1
0
.0

3

Iteration

λ 1

0 2000 6000 10000

0
.0

2
8

0
.0

3
8

Iterations

m
e
a
n
(λ

1
)

λ1

F
re

q
u
e
n
c
y

−0.01 0.01 0.03 0.05

0
2
0

4
0

0 2000 6000 10000

−
0
.2

0
.1

Iteration

λ 2

0 2000 6000 10000

0
.0

0
0
.1

5

Iterations

m
e
a
n
(λ

2
)

λ2

F
re

q
u
e
n
c
y

−0.2 −0.1 0.0 0.1 0.2

0
2

4

Fig. 7: MCMC plots for Rayleigh model parameters

c© 2025 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 4, 921-944 (2025) / www.naturalspublishing.com/Journals.asp 937

0 2000 4000 6000 8000 10000

0
.4

0
.6

0
.8

Iterations

π
1

0 2000 4000 6000 8000 10000

0
.2

0
.4

0
.6

Iterations

π
2

π1

F
re

q
u

e
n

c
y

0.4 0.5 0.6 0.7 0.8 0.9

0
2

4

π2

F
re

q
u

e
n

c
y

0.1 0.2 0.3 0.4 0.5 0.6

0
2

4

Exponential

0 2000 4000 6000 8000 10000

0
.2

0
.5

Iterations

π
1

0 2000 4000 6000 8000 10000

0
.3

0
.6

Iterations

π
2

π1

F
re

q
u

e
n

c
y

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

4

π2

F
re

q
u

e
n

c
y

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
2

4

Rayleigh

Fig. 8: MCMC plots for risk model estimate

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


938 E. M. Almetwally et al. : Regression Competing Risks Model...

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bayes estimate of S1(t)

time

S
1
(t)

Point estimate
Lower limit
Upper limit

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bayes estimate of S2(t)

time

S
2
(t)

Point estimate
Lower limit
Upper limit

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bayes estimate of S(t)

time

S
(t)

Point estimate
Lower limit
Upper limit

Exponential

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bayes estimate of S1(t)

time

S
1
(t)

Point estimate
Lower limit
Upper limit

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bayes estimate of S2(t)

time

S
2
(t)

Point estimate
Lower limit
Upper limit

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bayes estimate of S(t)

time

S
(t)

Point estimate
Lower limit
Upper limit

Akshaya

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bayes estimate of S1(t)

time

S
1
(t)

Point estimate
Lower limit
Upper limit

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bayes estimate of S2(t)

time

S
2
(t)

Point estimate
Lower limit
Upper limit

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bayes estimate of S(t)

time

S
(t)

Point estimate
Lower limit
Upper limit

Rayleigh

Fig. 9: Survival plots by Bayesian estimation

c© 2025 NSP

Natural Sciences Publishing Cor.



A
p
p
l.

M
ath

.
In

f.
S

ci.
1
9
,

N
o
.

4
,

9
2
1
-9

4
4

(2
0
2
5
)

/
w

w
w

.n
atu

ralsp
u
b
lish

in
g
.co

m
/Jo

u
rn

als.asp
9
3
9

Table 4: MLE and Bayesian for exponential regression competing risks with bias, MSE, and LCI: λ1 = 0.5,λ2 = 0.3

α1 0.75 3

λ1 = 0.5,λ2 = 0.3 MLE Bayesian MLE Bayesian

α2 n Bias MSE LACI Bias MSE LCCI Bias MSE LACI Bias MSE LCCI

0.6

30

α1 0.2307 0.5587 2.7885 -0.0625 0.0541 0.8301 0.2570 1.6198 4.8886 -0.2427 0.2638 1.7715

α2 0.0845 0.0230 0.5938 -0.0721 0.0129 0.4277 0.0132 0.0576 0.9399 -0.0131 0.0246 0.5917

λ1 -0.5858 1.3155 3.8672 -0.2510 0.0884 0.9255 -0.5055 0.6356 2.4178 -0.2981 0.0844 0.6589

λ2 -0.3060 0.3900 2.1351 0.0951 0.0593 0.7905 -0.4500 2.5659 6.0293 0.0190 0.0585 0.7787

50

α1 0.0728 0.1612 1.5485 -0.0599 0.0298 0.5863 0.1230 0.7755 3.4200 -0.1020 0.1287 1.1295

α2 0.0514 0.0203 0.5555 -0.0465 0.0086 0.3198 0.0117 0.0324 0.7052 -0.0054 0.0126 0.3878

λ1 -0.4547 0.9371 3.3516 -0.2101 0.0869 0.9056 -0.4996 0.4511 1.7604 -0.2825 0.0958 0.4294

λ2 -0.3016 0.2994 1.7906 -0.0931 0.0501 0.7325 -0.3024 0.3717 2.0763 -0.0150 0.0468 0.7420

100

α1 0.0461 0.0722 1.0383 -0.0415 0.0163 0.4300 0.0825 0.4268 2.5417 -0.0815 0.0651 0.8162

α2 0.0104 0.0085 0.3595 -0.0461 0.0058 0.2374 -0.0074 0.0169 0.5095 -0.0055 0.0084 0.2856

λ1 -0.4019 0.6099 2.3467 -0.2026 0.0804 0.6697 -0.4901 0.3700 1.4128 -0.2326 0.1146 0.3229

λ2 -0.2931 0.1723 1.0851 -0.0485 0.0339 0.5882 -0.2843 0.2362 1.5462 -0.0137 0.0388 0.6530

200

α1 0.0157 0.0390 0.7719 -0.0106 0.0104 0.3204 0.0015 0.0202 0.5571 -0.0014 0.0171 0.3165

α2 0.0053 0.0045 0.2631 -0.0134 0.0043 0.1778 0.0016 0.0012 0.1348 -0.0015 0.0010 0.1328

λ1 -0.3761 0.4325 1.7792 -0.0913 0.0801 0.5367 -0.4099 0.2559 0.3162 -0.2143 0.1083 0.1111

λ2 -0.2921 0.1218 0.7498 -0.0033 0.0271 0.4560 -0.2530 0.1016 0.3893 -0.0123 0.0269 0.3671

2

30

α1 0.2647 1.0678 3.9296 -0.0833 0.0862 0.9913 0.4928 5.2647 8.7888 -0.2056 0.4562 2.3849

α2 0.1438 0.3611 2.2955 -0.0539 0.0916 1.1740 0.0697 0.3081 2.1597 -0.0384 0.1064 1.2788

λ1 -0.4291 2.5582 6.0616 -0.0962 0.1017 1.0236 -0.4464 1.1452 3.8143 -0.1308 0.0822 0.8105

λ2 -0.3093 0.3853 2.1173 -0.0430 0.0484 0.7847 -0.3440 0.4666 2.3143 -0.0078 0.0479 0.6843

50

α1 0.1333 0.3696 2.3263 -0.0737 0.0543 0.8088 0.4124 3.4732 7.1280 -0.1997 0.2263 1.6522

α2 0.0497 0.1892 1.6947 -0.0412 0.0760 0.9441 0.0376 0.2481 1.9479 -0.0111 0.0658 0.9113

λ1 -0.4153 1.4669 4.2748 -0.0835 0.1017 0.9934 -0.4450 0.8795 3.1041 -0.1209 0.0752 0.5991

λ2 -0.2938 0.2647 1.6563 -0.0384 0.0360 0.6250 -0.2853 0.2928 1.8033 -0.0061 0.0479 0.7122

100

α1 0.0768 0.1486 1.4818 -0.0676 0.0288 0.5967 0.1943 1.2122 4.2503 -0.1570 0.1156 1.1427

α2 0.0253 0.1063 1.2750 -0.0280 0.0427 0.6242 0.0024 0.0966 1.2188 -0.0012 0.0391 0.6189

λ1 -0.4076 0.8650 3.0566 -0.0714 0.0822 0.8273 -0.4151 0.5635 2.1666 -0.1027 0.0692 0.4668

λ2 -0.2894 0.1637 1.1091 -0.0281 0.0273 0.4849 -0.2191 0.1503 1.0060 -0.0058 0.0271 0.4829

200

α1 0.0412 0.0672 1.0040 -0.0407 0.0163 0.4112 0.0635 0.5235 2.8268 -0.0514 0.0591 0.7693

α2 0.0199 0.0550 0.9164 -0.0120 0.0275 0.4403 0.0014 0.0577 0.9421 -0.0011 0.0299 0.4944

λ1 -0.3852 0.5589 2.1028 -0.0622 0.0805 0.5672 -0.3473 0.4026 1.6580 -0.0913 0.0511 0.3662

λ2 -0.2730 0.1372 0.8300 -0.0122 0.0266 0.3679 -0.2094 0.1308 0.8285 -0.0049 0.0253 0.4421
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Table 5: MLE and Bayesian for Akshaya regression competing risks with bias, MSE, and LCI: λ1 = 1.2,λ2 = 1.3

α1 0.75 3

λ1 = 1.2,λ2 = 1.3 MLE Bayesian MLE Bayesian

α2 n Bias MSE LACI Bias MSE LCCI Bias MSE LACI Bias MSE LCCI

2

30

α1 0.9561 1.3254 4.9593 0.0852 0.0688 0.9286 1.5978 5.1813 6.3585 0.5410 0.6301 2.2428

α2 0.5526 0.4913 1.6910 0.2932 0.1400 0.8511 0.2024 0.1839 1.4831 0.0855 0.0796 1.1019

λ1 -2.3659 6.0840 7.5962 -0.2885 0.5582 2.2745 -1.3184 2.4754 3.3676 -0.7023 0.6041 1.0973

λ2 -1.1311 1.6553 2.4043 -0.7231 0.6249 1.0909 -0.8720 1.5953 3.5834 -0.4621 0.4582 1.7016

50

α1 0.6723 0.9657 2.9415 0.0710 0.0504 0.7695 1.4224 3.3458 4.5102 0.5117 0.4400 1.5855

α2 0.4799 0.3807 1.5209 0.2388 0.0886 0.6707 0.0376 0.1242 1.3743 0.0246 0.0446 0.8502

λ1 -1.8450 5.0739 5.6734 -0.2441 0.5511 1.8038 -1.1383 2.2626 3.3110 -0.7048 0.5893 1.0385

λ2 -1.1211 1.4848 1.8730 -0.6834 0.6175 0.7668 -0.6122 0.7393 2.3680 -0.4587 0.4466 1.3951

100

α1 0.5414 0.4093 1.3371 0.0613 0.0412 0.5944 1.3819 2.5157 3.0530 0.5031 0.3595 1.0758

α2 0.4592 0.3178 1.0769 0.2272 0.0819 0.5313 0.0348 0.0607 0.9479 0.0235 0.0244 0.5712

λ1 -1.5346 4.9918 4.7854 -0.2158 0.5387 1.3677 -0.9413 2.2687 2.0430 -0.6843 0.5236 0.6683

λ2 -1.0176 1.4798 1.3259 -0.5917 0.6088 0.6016 -0.5106 0.5890 1.5938 -0.4166 0.4051 0.9945

200

α1 0.5262 0.3826 1.0161 0.0550 0.0345 0.4003 1.3386 2.0874 2.1325 0.4728 0.3269 0.7659

α2 0.4278 0.2615 0.7156 0.2095 0.0820 0.3687 0.0290 0.0299 0.6681 0.0215 0.0157 0.4379

λ1 -1.4462 4.7642 3.4644 -0.2057 0.5063 0.8790 -0.9241 2.1148 1.4665 -0.6491 0.4856 0.5116

λ2 -0.9167 1.4113 0.8822 -0.5196 0.5943 0.4740 -0.5016 0.4534 1.1460 -0.3662 0.3914 0.8495

0.6

30

α1 0.5380 0.3912 1.2509 0.2668 0.0966 0.5686 0.7351 1.3316 3.4941 0.1173 0.1327 1.3577

α2 0.0862 0.0155 0.3533 0.0735 0.0134 0.3630 -0.2495 0.2559 1.7286 -0.0191 0.0382 0.8075

λ1 -1.5665 3.1879 3.3602 -0.7375 0.6624 0.9574 -1.1872 1.7238 2.2023 -0.5940 0.5039 1.0250

λ2 -0.4950 0.6591 2.5238 -0.3599 0.4623 1.9331 -1.1589 6.5545 8.4255 -0.0934 0.7171 2.9575

50

α1 0.5269 0.3590 1.1353 0.2570 0.0883 0.4843 0.6786 0.9262 2.6764 0.1106 0.1040 1.0976

α2 0.0318 0.0068 0.2979 0.0546 0.0051 0.2920 -0.1622 0.2042 1.6540 -0.0140 0.0228 0.6153

λ1 -1.3954 3.0397 2.9884 -0.6837 0.6556 0.7598 -1.0212 1.7139 1.9404 -0.5677 0.4608 1.0052

λ2 -0.1967 0.3295 2.1151 -0.1835 0.3197 1.8127 -1.1295 5.0804 6.0816 -0.0745 0.6629 2.6956

100

α1 0.4562 0.3507 0.7363 0.2302 0.0797 0.3150 0.6483 0.7204 2.1486 0.1027 0.0878 0.7484

α2 0.0306 0.0042 0.2257 0.0305 0.0036 0.2040 -0.1226 0.1104 1.2112 -0.0136 0.0166 0.4514

λ1 -1.1846 2.7782 2.3869 -0.5922 0.6088 0.5322 -1.0218 1.6285 1.4919 -0.4358 0.4179 1.0007

λ2 -0.1831 0.2395 1.4793 -0.1429 0.2352 1.4650 0.2874 4.3503 5.5072 -0.0616 0.6598 2.6105

200

α1 0.4536 0.3038 0.4991 0.2149 0.0610 0.2322 0.6234 0.4956 1.2833 0.0902 0.0810 0.5432

α2 0.0247 0.0037 0.1517 0.0214 0.0035 0.1470 -0.0939 0.0405 0.6976 -0.0126 0.0113 0.3317

λ1 -0.9772 2.2841 1.4944 -0.5030 0.6068 0.2821 -1.0231 1.5878 1.0618 -0.3955 0.3929 0.3816

λ2 -0.1437 0.2251 0.9627 -0.1349 0.2033 0.9119 0.0189 2.5159 4.0111 -0.0528 0.5269 2.2182
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Table 6: MLE and Bayesian for Akshaya regression competing risks with bias, MSE, and LCI: λ1 = 0.5,λ2 = 0.3

α1 0.75 3

λ1 = 0.5,λ2 = 0.3 MLE Bayesian MLE Bayesian

α2 n Bias MSE LACI Bias MSE LCCI Bias MSE LACI Bias MSE LCCI

0.6

30

α1 0.5640 0.4312 1.3194 0.2807 0.1029 0.6026 0.7110 1.1038 3.0336 0.2317 0.1649 1.3216

α2 0.0853 0.0163 0.3730 0.1413 0.0152 0.2558 -0.1481 0.2159 1.7272 -0.0098 0.0407 0.7518

λ1 -0.9725 1.7178 3.4462 -0.1463 0.0962 0.9272 -0.5189 0.6665 2.4719 -0.1218 0.0800 0.8471

λ2 0.5074 0.7223 2.6739 0.0451 0.0719 0.8706 -1.8174 3.7401 6.7198 0.0336 0.0636 0.8419

50

α1 0.5406 0.3567 0.9959 0.2788 0.0979 0.4599 0.6648 0.7832 2.2912 0.1857 0.0859 0.8604

α2 0.0950 0.0075 0.3368 0.1229 0.0068 0.2164 -0.0732 0.1527 1.3741 0.0068 0.0157 0.5075

λ1 -0.9059 1.6790 3.2081 -0.1446 0.0936 0.8292 -0.4525 0.5582 2.0832 -0.1029 0.0620 0.6846

λ2 0.4832 0.6804 2.2978 0.0448 0.0671 0.8283 1.4331 2.2434 4.1708 0.0106 0.0523 0.7476

100

α1 0.5337 0.3132 0.6594 0.2698 0.0963 0.3313 0.6316 0.5696 1.6201 0.1694 0.0710 0.6505

α2 0.0402 0.0047 0.2186 0.0204 0.0042 0.1651 -0.0682 0.0530 0.8446 0.0062 0.0084 0.3303

λ1 -0.8164 1.4434 2.0508 -0.1255 0.0939 0.5632 -0.4054 0.4570 1.5954 -0.0982 0.0617 0.6094

λ2 0.3731 0.6692 1.5616 0.0437 0.0607 0.8049 0.9138 1.8733 3.6947 0.0091 0.0505 0.7058

200

α1 0.5302 0.2954 0.4690 0.2318 0.0910 0.2335 0.6044 0.4353 1.0372 0.1304 0.0611 0.4891

α2 0.0363 0.0028 0.1515 0.0201 0.0024 0.1398 -0.0582 0.0248 0.5279 0.0051 0.0041 0.2530

λ1 -0.8078 1.2999 1.4560 -0.1133 0.0912 0.3550 -0.3916 0.3581 1.0182 -0.0826 0.0608 0.4623

λ2 0.3572 0.6007 1.0999 0.0411 0.0602 0.7844 0.8360 1.0396 3.1124 0.0081 0.0457 0.6251

2

30

α1 1.4422 4.3357 6.1153 0.1481 0.0862 0.9655 1.5326 4.3263 5.5152 0.5811 0.6458 2.0011

α2 0.5447 0.4667 1.6174 0.3927 0.2152 0.9026 0.3004 0.2108 1.3615 0.3277 0.1572 0.8886

λ1 -1.7760 4.0257 5.0148 -0.0208 0.1438 1.2761 -0.7734 1.4735 3.6693 -0.1078 0.1008 0.9757

λ2 -0.1238 0.4093 2.4615 0.0164 0.0592 0.8125 0.1051 0.4640 2.6396 0.0406 0.0684 0.8408

50

α1 0.5307 0.6085 2.2423 0.1460 0.0656 0.7690 1.4430 3.4257 4.5456 0.5506 0.4650 1.5254

α2 0.5106 0.4105 1.5180 0.3300 0.1457 0.7340 0.1691 0.1231 1.2058 0.2581 0.0961 0.6594

λ1 -1.5890 3.3352 4.4515 -0.0100 0.1251 1.2141 -0.7085 1.3229 3.2971 -0.0912 0.0932 0.9358

λ2 -0.1156 0.2718 1.9514 0.0082 0.0522 0.7230 0.1028 0.3235 1.9488 0.0402 0.0634 0.8147

100

α1 0.5031 0.3659 1.3177 0.1446 0.0458 0.5633 1.2135 1.8853 2.5193 0.5418 0.3652 1.0304

α2 0.4716 0.2965 1.0678 0.3248 0.1263 0.5629 0.1166 0.0597 0.8420 0.2336 0.0474 0.5422

λ1 -1.5467 3.0889 3.7987 -0.0091 0.1081 0.9781 -0.6744 0.8587 2.1648 -0.0816 0.0785 0.7803

λ2 -0.1043 0.1409 1.3621 -0.0072 0.0349 0.6300 0.1003 0.2353 1.3723 0.0399 0.0603 0.7686

200

α1 0.4528 0.3383 0.9574 0.1377 0.0414 0.4060 1.1284 1.5898 1.9606 0.5377 0.3272 0.7860

α2 0.4626 0.2497 0.7411 0.3188 0.1158 0.4544 0.1036 0.0417 0.5980 0.2137 0.0406 0.4504

λ1 -1.4686 2.6454 3.5164 -0.0082 0.0938 0.8715 -0.6079 0.7881 1.5807 -0.0723 0.0760 0.5628

λ2 -0.0915 0.0815 0.9578 -0.0061 0.0289 0.5608 0.0928 0.1386 0.9510 0.0372 0.0547 0.7552

c©
2

0
2

5
N

S
P

N
atu

ral
S

cien
ces

P
u

b
lish

in
g

C
o

r.

www.naturalspublishing.com/Journals.asp


942 E. M. Almetwally et al. : Regression Competing Risks Model...

The results for all competing causes and the
cause-specific and sub-distribution hazard functions were
presented. This approach provides a more thorough
understanding not only of the effects of prognostic factors
but also of the absolute risks associated with different
outcomes in the study sample. Decision-makers often find
it challenging to account for all hazards when making
clinical decisions. With the availability of advanced
software, analyzing the cumulative incidence function has
become more popular and commonly reported in recent
years. Biases can arise when the Kaplan-Meier estimator
is used to estimate the cumulative incidence of the event
of interest or when a proportional hazards model is used
to assess the effects of covariates on the cumulative
incidence function for the cause-specific hazard function.
Misclassifying competing events as censoring events can
have practical implications in these analyses. Generally,
the more competing events there are, the greater the
likelihood that they will be incorrectly treated as
censoring events. When the proportion of competing
events exceeds 10%, it is crucial to carefully consider the
scientific goals of the analysis, as well as the appropriate
choice of endpoint and analysis method. In future studies,
we will study the regression of competing risk models
with dependent causes of failures. Also, we will study a
two-stage estimation procedure for a copula-based model
with competing risks data and semi-competing risks data

Data Availability Statement: The data used to
support the findings of this study are included within the
article.

Conflicts of Interest: The authors have no conflicts of
interest to disclose.
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