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Abstract: In this study, the optical bandgap PBG is a fundamental property of photonic crystals PhC, significantly
controlling their ability to guide and transmit electromagnetic waves within specific frequency ranges. This bandgap arises
as a result of the periodic arrangement of the photonic crystal structure, resulting in optical gaps similar to the electronic
gaps in semiconductors. The width of the optical bandgap is a critical factor determining the efficiency and utility of
photonic crystals in various applications such as routers, filters, and sensors. Several physical and engineering factors, such
as material properties, lattice structure, and crystal dimensions, significantly influence the size and behavior of the optical
bandgap. Studying the influence of these factors is essential for improving the performance of photonic crystals and
adapting them to various applications in fields such as optical communications, imaging, and optical transmission
technologies. This research aims to analyze the effect of these factors on the optical bandgap width, contributing to a better
understanding of the mechanisms that control the performance of these materials in practical applications.

Keywords: Photonic Crystal (PhC), Photonic Band Gap (PBG), Refractive Index (RI), Plane Wave Expansion PWE,
Finite-Difference Time-Domain (FDTD), Transverse Electric (TE), Transverse Magnetic (TM).

1 Introduction practical application of triangular-shaped integrated
photonic circuits has been widely explored, particularly
Photonic crystals (PhCs) are artificially engineered becaqse Qf their large band gap. For transverse. electric (TE)
materials that share similarities with naturally occurring ~Polarization, Fhe largest band gap occurs cor}negted
structures. Their concept is inspired by semiconductor §tructures, Whlle for transverse magnetic (TM) po.larlzatlon,
materials, which are distinguished by their periodic it appears in non-connected structures. This makes
arrangement. As a result, photonic crystals are considered  triangular photonic structures a promising platform for
periodic insulating structures capable of directing, photonic integrated circuits and ultra-compact optical
controlling, and manipulating light at optical wavelengths ~ Sensors [8]. It is well known that introducing defects into
[1]. PhCs represent a promising research direction in the. P?T%Odic lattice of PhCs disrupts their dielegtric
optoelectronics. These periodic dielectric structures feature — periodicity. These defects can be created by removing,
a lattice parameter comparable to the wavelength of shifting, or altering the. matepal comp0s1thn of air holes or
propagating electromagnetic waves. One of their most columns in the photonic lattice. Such modlﬁcatlons.enable
significant properties is the ability to confine and control =~ PIeCISC control over the photonic band gap, allowing .for
light, making them highly versatile for a wide range of guided modes at §p601ﬁc frquenmes. Generally, a wider
applications [2][3]. A photonic crystal consists of a periodic ~ band gap results in stronger light control, enhancing the
network of dielectric materials with varying refractive stability and performance of photonic crystal devices
index (RI)[4][5]. This periodicity results in unique optical [O1010J[11][12].
properties, particularly the formation of a photonic band T4 optimize PhC performance, it is essential to study the
gap (PBG). The PBG enables the crystal to effectively trap,  gycors influencing band gap design. The properties of
direct, and conﬁn.e 11ght. Thgnks to this characteristic, PhCs photonic crystal sensors are typically simulated using the
have garnered significant interest from researchers and  piane Wave Expansion (PWE) method and the Finite-

industries due to their high sensitivity, precision, pifference Time-Domain (FDTD) algorithm [13][14]
selectivity, and real-time monitoring capabilities [6][7]. The
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Recent research has examined the effects of migrating and
rotating various mill-shaped defect structures on the TM
band gap. The findings indicate that defect migration
distances significantly impact the band gap in two-
dimensional PhCs. Additionally, adjustments such as
rotation, translation, and displacement can further expand
the band gap, offering improved control over optical
properties [15][16].

In our work, we proposed a design for a two-dimensional
photonic crystal with a triangular and square structure. We
based this design on a comparative study of three materials
with different refractive indices: silicon (Si), germanium
(Ge), and gallium arsenide (GaAS). We reviewed a set of
geometric and physical criteria related to the central rod of
the design (displacement in one or more dimensions, size
change, change in the refractive index of the material), and
concluded that it directly affects the length of the photonic
band gap (PBG), which facilitates light control, resulting in
modular and efficient devices.

2 Parameter and Simulation

The two figures below illustrate the types of designs found
in two-dimensional 2D photonic crystals (PhC) Fig.1 rods
in air (Discrete structure) and Fig.2. Holes in slab
(Connected structure), with the geometric properties of
each being show, period a=0.4 and radius r =0.24xa. This
triangular structure is a 2D lattice of dimensions 21x21.
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Fig. 1: Discrete structure (rods in air) of photonic crystal
PhC in the 2D triangular.

Fig. 2: Connected structure (holes in slab) of photonic
crystal PhC in the 2D triangular.

Fig.3 and Fig.4 show the regular and periodic distribution
of the refractive index RI of the two different compositions,
knowing that the refractive index RI of air is n air = 1 and
the refractive index RI of silicon is n Si = 3.42 in both
cases.
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Fig. 3: Distribution of refractive index RI in the discrete
structure.
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Fig. 4: Distribution of refractive index RI in a Connected
structure.
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Fig. 5 shows the photonic band gap PBG length observed at
TE polarization around an average frequency related to a
wide natural photonic bandgap (a/A) of 0.3185, occupying
natural frequencies between 0.252 (a/A) and 0.385 (a/MA).
The frequency range is between 1.03896 um and 1.5783
um, high lighting the important optical properties of our
studied design.
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Fig. 5: Dispersion curves and Photonic Band Gap (PBG)
for TE polarizations.

3 Numerical Methods

Numerical methods are tools that facilitate optimal access
to and efficient analysis of mathematical and differential
data and equations. Among these methods are those used to
plot and analyze photon frequency bands, such as the plane
wave broadening (PWE) method and the FDTD method,
which are integrated into Rsoft software.

The plane-wave expansion (PWE) method is an effective
numerical technique for analyzing photonic crystals (PhCs).
It is specifically used to determine photonic band structures
(PBG) by solving Maxwell's equations in regular periodic
dielectric structures [17][18].

The finite-difference time-domain (FDTD) numerical
method is integrated into the widely used rsoft software to
solve Maxwell's equations and complex electromagnetic
problems. It is particularly used to simulate the interaction
of light with nanostructures, such as photonic crystals
(PhCs), plasmonic  materials, and metamaterials
[19][20][21].

4 Results and Discussion

Through our research, which presents a comparative study
of three different materials silicon n Si=3.42, gallium
arsenide n GaAS=3.3, and germanium n Ge=4 in both
triangular and square configurations, aiming to compile and
document the parameters affecting the bandgap width, our
results revealed a significant effect of the central rod
design, especially with regard to the introduction of a new
material. Additionally, we examined the front and back
radius of curvature, as shown in Fig.6, clearly

demonstrating that the radius plays a crucial role and
directly affects the photonic band gap width (PBG). The
(front radius/back radius) value of 0.9 x r was the highest
for all the materials analyzed. Among all the measurements
examined, we obtained a wavelength of 736.85 nm for
triangular germanium.
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Fig. 6: The variation of the band gap width TE as a
function of the front and back radius (Front Radius/Back
Radius).

If the photonic band gap (PBG) refers to an optical
phenomenon such as interference, the focal point in the
design can play a role in influencing the transmission or
bandwidth. Therefore, changing the position of the center
can change the bandwidth. By modifying or moving the
center point, the interference angles and convergence points
can also be affected, creating a tangible shift in the BIP
structure. In Fig.7, we adjusted the position of the main
column along the (X, -X, z, and -z) directions to study its
effect on the band gap width. Initially, the band width was
fairly stable before it began to decline, until it became
geometrically unattainable. The highest value was recorded
in the triangular figure at a displacement of (-z) axis =0.1
nm. The length of the photonic band gap was 591.96 nm.
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Fig. 7: The variation of the width band gap TE as a
function of the Rods Position along the axis (X, -X, z, -z).

In this part of the research Fig.8, we varied the position of
the main column along four different directions (xz, x-z, -x-
z, and -xz) to evaluate its effect on the forbidden spectrum
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width. Initially, the bandwidth remained relatively constant,
peaking at different positions. For the triangular design, the
displacement in both directions (-x and -z) axis reached its
maximum value at 0.13 nm. The photonic bandwidth
reached 593.51 nm, before gradually decreasing until it was
no longer geometrically feasible.
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Fig. 8: The variation of the band gap width TE as a
function of the position of the tig along the axis (x and z, x
and -z, -x and -z, -x and z).

Table 1: Comparison of the proposed design with different
similar PhC designs in terms of photonic band gap length.

References Width Band Gap (nm)
[22] 241

[23] 608

[15] 586.6

[24] 625.6

[25] 324.7

[26] 464

In this work 736.85

In Table 1 above, we compare the proposed design, in
which we achieve a photonic bandgap (PBG) width of
736.85 nm, with several similar designs from previous
studies in terms of band gap length.

5 Conclusion

In our research and through our results, we concluded that
it is necessary to carefully select the key parameters to
achieve an optimal design. The optimal bandgap length
value was TE = 736.85 for a (front/back) radius ratio (Ge)
of 0.9. Additionally, TE = 591.96 was obtained for a
position along the (-z) axis = 0.1 pm, and TE = 593.51 for
positions along the (-x) axis = 0.13 um and the (-z) axis =
0.13 pm. We would like to note that the results for this
design without introducing any defects reached TE =
559.58, hence the difference. Various data collected for a
range of triangular 2D photonic crystal designs indicate a
bandgap of approximately 1.55 pm for silicon in air. To
achieve good results, careful parameter tuning and careful
selection of crystal components are required. The topology
of the photonic crystal, including its type and shape, must
also be carefully chosen.
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