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Abstract: The aim of the study was to derive insights on the transmission dynamics and make realistic predictions of avian influenza

as influenced by human and domestic birds, accounting for the effects of environmental factors and contribute to mitigation strategies

against avian influenza. Steady-state solutions were examined to determine the equilibrium conditions of the system. The basic

reproduction number was computed using the next-generation matrix method to characterize the outcomes of the disease transmission

dynamics. The least squares and Latin Hypercube Sampling-Partial Rank Correlation Coefficient methods were used to carry out

sensitivity analysis of the model to efficiently estimate and identify influential parameters on the model outputs. Numerical simulations

were performed to demonstrate the dynamical trends of avian influenza under various scenarios. The research findings revealed that

the spread of avian influenza is directly influenced by human interaction with a contaminated environment, the level of infectiousness

of birds, and the shedding of the virus by infected birds, all of which are directly proportional to the overall spread of avian influenza

disease. The stability conditions established in terms of the basic reproduction number played a critical role in determining the dynamics

and severity of influenza outbreaks
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1 Introduction

Avian influenza (AI) is a viral infection that mainly
affects birds but can infect humans and other animals [1].
It is caused by influenza viruses of type A, which are
categorized into two sub-types, namely hemagglutinin
(H) and neuraminidase (N). Avian influenza viruses are
classified into two groups based on pathogenicity:
low-pathogenic avian influenza (LPAI), which causes
mild illness, and highly pathogenic avian influenza
(HPAI), which results in severe disease and high mortality
rates in domestic birds and humans [2]. Among avian
influenza strains, the H5N1 and H7N9 strains are
particularly dangerous due to their high mortality rates in
birds and their ability to cause severe illness and death in
infected humans [2]. Migratory wild birds, such as
waterfowl and shorebirds, are natural reservoirs of AI

viruses and are usually released into the environment.
These viruses can spread to domestic birds either through
direct contact with infected wild birds or via
environments contaminated by migrating wild birds [3].
Humans become infected through close contact with
infected birds or their secretions, as well as contaminated
environments [3,5]. Typical symptoms of avian influenza
in domestic birds include coughing, sneezing, swelling,
decreased egg production, and sudden death [4]. Infected
humans with HPAI exhibit symptoms such as fever,
cough, sore throat, and muscle aches. In severe cases,
breathing difficulties and pneumonia can develop in
infected individuals. The severity of symptoms depends
on the virus strain and the individual’s health [6,8].

The disease severely affects various countries,
including Tanzania, leading to economic and social
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challenges, as many families rely on domestic bird
farming for their livelihoods [7]. The outbreak of avian
influenza in various parts of the country poses a
significant challenge to affected farmers, leading to high
mortality and decreased production. The recurrence of
avian influenza, therefore, impacts both the financial
well-being of farming communities and the general
availability of essential nutrition [7]. In essence, avian
influenza creates a a significant economic burden on
society, such as opportunity losses, health-related
expenses, and unemployment. Meanwhile, the costs
associated with the implementation of control measures,
such as vaccination, treatment, and educational
campaigns, are also high. Furthermore, culling of entire
flocks during outbreaks of avian influenza can be an
emotionally distressing experience (mental health) for
families who have devoted substantial time and energy to
the care of these birds.

Various researchers from different countries have
developed numerous mathematical models to estimate
parameters and analyze the transmission dynamics of
avian influenza ([27], [36], [37]). Hobbelen et al. [29]
estimated the farm–specific time windows for the
introduction of highly pathogenic avian influenza into
poultry flocks using deterministic and stochastic
modeling approaches. Sara et al. [31] carried out
parameter estimation and sensitivity analysis of influenza
A transmission dynamics. Bonney et al. [30] estimated
epidemiological parameters using diagnostic testing data
from low pathogenicity avian influenza-infected turkeys,
where a stochastic model approach was used. The results
indicated that transmission parameters play the most
significant role on the spread of the disease. These studies
further, revealed that multiple factors impact the
dynamics of avian influenza in various countries, along
with efficiency of strategies for controlling and managing
the disease. These studies have revealed multiple factors
that can impact the dynamics of avian influenza in various
countries, along with strategies for controlling and
managing the disease. Although mathematical models
have been extensively used to study avian influenza, the
role of domestic birds in understanding disease dynamics
has received less attention in the literature. The aim of the
study was to derive insights on the transmission dynamics
and make realistic predictions of avian influenza as
influenced by human and domestic birds, accounting for
the effects of environmental factors and contribute to
mitigation strategies against AI.

This paper is structured as follows; Section 2
introduces the materials and methods used, Section 3
examines the results and discussions.

2 Materials and Methods

In this section, a system of nonlinear differential equations
was introduced and solved using the ODE45 method. In
addition, least-squares, LHS and PRCC techniques were

employed for parameter estimation and global sensitivity
analysis.

2.1 Model Formulation

Fig. 1 shows the routes of transmission of avian influenza
between humans and domestic bird populations. The
human population is divided into three groups, namely:
susceptible population (Sh), infectious population (Ih) and
recovered population (Rh). The susceptible human
population is replenished at a recruitment rate (Λ1), which
includes new individuals entering through births and
migration. Furthermore, individuals who recover from the
infection but gradually lose immunity at a rate (ψ) return
to the susceptible class. However, this population is
reduced by the natural deaths rate (µ1) and by the force of
infection (λ1), which represents the rate at which
susceptible individuals become infected and move to
another states. The force of infection is defined by

λ1 = γ1Id + γ2B. (1)

Where γ1 represents the rate at which susceptible humans
are infected through direct contact with infected domestic
birds, while γ2 refers to the rate of transmission from
environments contaminated by infected humans (Ih) and
infected domestic birds (Id). The infected population (Ih)
increases due to the force of infection (λ1) but decreases
due to the natural death rate (µ1), the disease-induced
death rate (ε), and the recovery rate (α). The recovered
population (Rh) increases as a result of the recovery rate
(α). However, it decreases due to the natural death rate
(µ1) and the rate of immunity loss (ψ).

The domestic bird population is divided into two
groups: susceptible to infection (Sd) class and infected
(Id) class. There is no recovered group in the model
because highly pathogenic avian influenza (HPAI)
outbreaks are so severe that they result in the total loss of
the domestic bird population [18]. The susceptible group
increases at a recruitment rate (Λ2) but is reduced by
natural deaths (µ2) and force of infection (λ2) as defined
by

λ2 = β1B+β2Id . (2)

Where β1 represents the rate at which susceptible
domestic birds become infected through exposure to the
environment contaminated by infected humans (Ih) and
infected domestic birds (Id), while β2 refers to the
transmission rate through direct contact with infected
birds. The infected class (Id) declines rapidly as a result
of the disease-induced rate (τ). The environment (B)
becomes contaminated with avian influenza viruses
mainly due to migratory wild birds, such as waterfowl
and shorebirds, which act as natural carriers, primarily
spreading low-pathogenic avian influenza (LPAI) strains
[3]. When these birds are infected with highly pathogenic
avian influenza (HPAI), they release the virus through
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bodily fluids, increasing environmental contamination
with the more strains [32]. Infected humans and domestic
birds also release the virus into the environment through
their secretions, at rates (δ1) and (δ2), respectively.
Moreover, avian influenza viruses naturally decrease in
the environment at a decay rate (σ ).

The model is formulated by considering the following
assumptions: direct interaction between susceptible
domestic birds and infected wild birds is not considered,
as the focus is on the transmission dynamics of avian
influenza through environments contaminated by
migratory wild birds, which serve as natural reservoirs of
the virus and release it into the environment [3]; direct
human-to-human transmission of avian influenza is
disregarded due to its rare occurrence [24]; the exposed
classes are disregarded in the analysis due to the short
incubation period [25].
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Fig. 1: Compartmental flow diagram for the transmission

dynamics of avian influenza

The transmission dynamics of avian influenza are
presented by a non-linear system of ordinary differential
equations.
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











Ṡh = Λ1 +ψRh − (µ1 +λ1)Sh,

İh = λ1Sh − (µ1 + ε +α)Ih,

Ṙh = αIh − (ψ + µ1)Rh,

Ṡd = Λ2 − (µ2 +λ2)Sd ,

İd = λ2Sd − (µ2 + τ)Id,

Ḃ = δ2Id + δ1Ih −σB.

(3)

Using initial conditions; Sh(0)> 0; Ih(0)≥ 0; Rh(0)≥
0; Sd(0)> 0; Id(0)≥ 0; and B ≥ 0.

2.2 Model analysis

2.2.1 Invariant region

Consider the total human population;
Nh(t) = Sh(t)+ Ih(t)+Rh(t)

dNh

dt
= Λ1 − µ1Nh − εIh (4)

Solving the equation (4), subject to the initial conditions,
we get

Nh(t)≤
Λ1

µ1

+

(

Nh(0)−
Λ1

µ1

)

e−µ1t (5)

As t → ∞ in equation (5), Nh(t)→
Λ1

µ1

, thus

0 < Nh(t)≤
Λ1

µ1

. (6)

The same procedures used for the domestic bird

population, 0 < Nd(t) ≤
Λ2

µ2

. If Nd(t) ≤
Λ2

µ2

and

Nh(t) ≤
Λ1

µ1

it indicates that Ih(t) ≤
Λ1

µ1

and Id(t) ≤
Λ2

µ2

.

Maintaining generality, it shows that B ≤
δ1Λ1

σ µ1

+
δ2Λ2

σ µ2

.

The closed set Γ given as Γ = {(Sh, Ih,Rh,Sd , Id ,B) ∈

R
6
+ : Nh ≤

Λ1

µ1

,Nd ≤
Λ2

µ2

,B ≤
δ1Λ1

σ µ1

+
δ2Λ2

σ µ2

}. Γ is a

feasible region of the model (3) that is considered as
epidemiological and mathematically well-posed.

2.2.2 Positivity of the model solution

We demonstrate that the solution of the model remains
non-negative for all t ≥ 0.

Theorem 2.1. Given that; Sh(0) > 0, Ih(0) > 0, Rh(0) >
0, Sd(0) > 0, Id(0) > 0, B(0) > 0 the solution set {Sh(t),
Ih(t), Rh(t), Sd(t), Id(t), B(t)} for the model equation (3)
remains non-negative for all t ≥ 0.

Proof.
dSh

dt
= Λ1 +ψ1Rh − (µ1 +λ1)Sh

dSh

dt
≥−(µ1 +λ1)Sh (7)

Through integration and application of initial conditions,
equation (7) becomes;

Sh ≥ Sh(0)e
−
∫ t

0(µ1+λ1)ds
> 0,

Applying the same procedures to the remaining equations
in model (3), it can be proven that the model solutions are
positive for all t ≥ 0

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


902 S. P. Soka et al.: Parameter Estimation and Sensitivity of Avian Influenza Model

2.2.3 Disease free equilibrium (E0) and basic
reproduction number (R0)

When avian influenza is absent in populations, a free
disease steady state denoted by E0 is given by E0 =
(

Λ1

µ1

,0,0,
Λ2

µ2

,0,0

)

.

In epidemiological setting, the spread of avian influenza
in the population is determined by the basic reproduction
number R0. The basic reproduction number refers to the
number of secondary infectious cases that arise when a
single primary infected individual is introduced into a
population of susceptible individuals [9,26]. The value of
R0 is calculated using the next-generation matrix method,
dxi

dt
= F (xi)−V (xi) where, F (xi) represents the arrival

of newly infected individuals into the compartment i and
V (xi) denotes the individuals who exit or leave the
compartment i by all other means, i = {1,2,3}.

F = ∂Fi(E
0)

∂x j
and V = ∂Vi(E

0)
∂x j

F=



















0
γ1Λ1

µ1

γ2Λ1

µ1

0
β2Λ2

µ2

β1Λ2
µ2

0 0 0



















and V =





µ1 + ε +α 0 0
0 µ2 + τ 0

−δ1 −δ2 σ





The largest non-negative eigenvalue from FV−1 matrix
denoted as ρ(FV−1) = R0.
From model (3), we obtain

FV−1 =





r11 r12 r13

r21 r22 r23

0 0 0



 (8)

where,

r11 = r13

(

δ1

µ1 + ε +α

)

,

r12 = r13

(

γ1σ

γ2(µ2 + τ)
+

δ2

µ1 + ε +α

)

,

r13 =
γ2Λ1

µ1σ
,

r21 = r23

(

δ1

µ1 + ε +α

)

,

r22 =
r23

µ2 + τ

(

β2σ

β1

+ δ2

)

,

r23 =
β1Λ2

µ2σ
.

From equation (8), the polynomial characteristic is
obtained as shown in equation (9).

λ 3 − (r22 + r11)λ 2 − (−r11r22 + r12r21)λ = 0 (9)

solving equation (9), the spectral radius is;

R0 =
r11 + r22 +

√

(r11 − r22)2 + 4r12r21

2
(10)

The quantities r11, r22, r12, and r21 in equation (10)
represent the contributions to the basic reproduction
number (R0) from both within and between
compartments. Specifically, quantities r11 and r22 denote
the sub-basic reproduction number within a single group,
signifying the direct or indirect infection of susceptible
individuals by infected members of the same group. On
the other hand, quantities r12 and r21 represent the
interactions between the two groups, showing how
individuals from one group can infect individuals in the
other group, either directly or indirectly.

2.2.4 Local stability of the disease free equilibrium

Theorem 2.2. The disease free equilibrium for the avian
influenza model system (3) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1.

Proof. The proof follows the approach used in Ruoja et
al. [35], and van den Driessche and Watmough [14]. From
Theorem 2 of van den Driessche and Watmough [14] , we
have that V and F in section 2.2.3 are non-singular
M-matrix and non-negative, respectively. However matrix
V − F has Z pattern which implies that (V − F)V−1

=I − FV−1 is a Z pattern sign matrix. Additionally by
Lemma 5 of van den Driessche and Watmough [14], we
have that both V − F and I − FV−1 are non-singular
M-matrix implying that ρ(FV−1) < 1. This implies that,
the disease free equilibrium for the avian influenza model
system (3) is locally asymptotically stable.

2.2.5 Global stability of the disease free equilibrium

Theorem 2.3. The disease free equilibrium (E0) is
globally asymptotically stable when R0 < 1 and unstable
otherwise.

Proof. We examine the global stability of disease free
equilibrium of model (3) by utilizing the method given by
Castillo-Chavez et al [16]. The model system (3) is
written in the form of;

{

dYm
dt

=C1(Ym −YDFE)+C2Yn
dYn
dt

=C3Yn

where,
Ym indicates non-transmitting avian influenza
compartments; Yn indicates transmitting avian influenza
compartments; and YDFE denotes disease-free
equilibrium. If matrix C1 has real negative eigenvalues
and C3 is a Metzler matrix (i.e., the off-diagonal entries
are positive), then the avian influenza free equilibrium is
globally asymptotically stable.
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From model system (3):
Ym = (Sh,Rh,Sd)

T and Yn = (Ih, Id ,B)
T

(Ym −Y(DFE)) =







Sh −
Λ1
µ1

Rh

Sd −
Λ2
µ2







C2 =











0
γ1Λ1

µ1

γ2Λ1

µ1

α 0 0

0
β2Λ2

µ2

β1Λ2

µ2











We investigate whether matrix C1 for non-transmitting
classes has real negative eigenvalues and C3 is a Metzler
matrix.

C1 =





−µ1 ψ 0
0 −(ψ + µ1) 0
0 0 −µ2





C3=



















−(µ1 + ε +α)
γ1Λ1

µ1

γ2Λ1

µ1

0 −

(

(µ2 + τ)−
β2Λ2

µ2

)

β1Λ2

µ2

δ1 δ2 −σ



















The eigenvalues of matrix C1 are λ1 = −µ1,
λ2 =−(ψ + µ1), λ3 =−µ2

It can be observed that the eigenvalues of matrix C1

are negative, and C3 is a Metzler matrix. This indicates
that the disease-free equilibrium of the model system (3)
is globally asymptotically stable.

2.2.6 Disease endemic equilibrium (E∗)

Endemic equilibrium is a situation in epidemiology where
the disease exists within the population. By setting LHS
of the model system (3) to zero, and writing equations I∗h ,
I∗d and B∗ in terms of λ ∗

1 and λ ∗
2 , observed that

{

λ ∗
1 = γ1I∗d + γ2B∗

λ ∗
2 = β1B∗+β2I∗d

(11)

Eliminating B∗ from equation (11) and make
simplifications, it shows that

λ ∗
2 =

(

β1(µ2 + τ)

(β1γ1 −β2γ2)S
∗
d +(µ2 + τ)γ2

)

λ ∗
1 (12)

Thus;































I∗h =

(

S∗h
µ1 + ε +α

)

λ ∗
1

I∗d =

(

S∗d
µ2 + τ

)

λ ∗
2

B∗ =
δ2

σ

(

S∗d
µ2 + τ

)

λ ∗
2 +

δ1

σ

(

S∗h
µ1 + ε +α

)

λ ∗
1

2.2.7 Stability of Endemic Equilibrium (E∗)

The local stability of the disease-free equilibrium (DFE)
is maintained if R0 < 1 and becomes unstable when
R0 > 1. Consequently, by revising this condition, the
endemic equilibrium (EE) is locally stable if R0 > 1 and
unstable when R0 < 1 [10]. The global stability of
endemic equilibrium in epidemiology refers to the study
of the behavior of an infectious disease within the
population.

Theorem 2.4. If R0 > 1, then the endemic equilibrium
point (E∗) of the avian influenza model system (3) is
globally asymptotically stable in Γ .

Proof. Lyapunov function for the avian influenza model
system 3 is constructed using Nyerere et al. [10], Trazias
et al. [33] and Bada et al. [13] approach. We employed the
Lyapunov function of the form;

L = Σn
i=1Gi

(

xi − x∗i − x∗i ln

(

xi

x∗i

))

where;
Gi is positive constant, xi is the variable in the

compartment i, for i = { 1,2,3,4,5,6} and x∗i refers to the
compartment variable at the equilibrium point.
The Lyapunov function using model system (3) is defined
as

L = G1

(

Sh − S∗h − S∗h ln

(

Sh

S∗h

))

+ G2

(

Ih − I∗h − I∗h ln

(

Ih

I∗h

))

+ G3

(

Rh −R∗
h −R∗

h ln

(

Rh

R∗
h

))

+ G4

(

Sd − S∗d − S∗d ln

(

Sd

S∗d

))

+ G5

(

Id − I∗d − I∗d ln

(

Id

I∗d

))

+ G6

(

B−B∗−B∗ ln

(

B

B∗

))

assuming that; G1 = G2 = G3 = G4 = G5 = G6 = 1. The
time derivative of Lyapunov L becomes

dL

dt
=

(

1−
S∗h
Sh

)

[Λ1 +ψRh − (µ1 + γ1Id + γ2B)Sh]

+

(

1−
I∗h
Ih

)

[(γ1Id + γ2B)Sh − (µ1 + ε +α)Ih]

+

(

1−
R∗

h

Rh

)

[αIh − (ψ + µ1)Rh]

+

(

1−
S∗d
Sd

)

[Λ2 − (µ2 +β1B+β2Id)Sd ]

+

(

1−
I∗d
Id

)

[(β1B+β2Id)Sd − (µ2 + τ)Id ]

+

(

1−
B∗

B

)

[δ2Id + δ1Ih −σB] (13)
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By considering the model system (3) at E∗, we have



































































Λ1 =
(

µ1 + γ1I∗d + γ2B∗
)

S∗h −ψR∗
h,

µ1 + ε +α =
(γ1I∗d + γ2B∗)S∗h)

I∗h

µ1 +ψ =
αI∗h
R∗

h

,

Λ2 = (µ2 +β2I∗d +β1B∗)S∗d ,

µ2 + τ =
(β2I∗d +β1B∗)S∗d

I∗D
,

σ =
δ2I∗d + δ1I∗h

B∗
.

(14)

Substitute Equation (14) to (13) and simplify, we obtain;

dL

dt
= γ1I∗d S∗h

(

2−
S∗h
Sh

+
Id

I∗d
−

IH

I∗h
−

Id

I∗d

Sh

S∗h

I∗h
Ih

)

+ γ2B∗S∗h

(

2−
S∗H
Sh

+
Id

I∗d
−

Ih

I∗h
−

Id

I∗d

Sh

S∗h

I∗h
Ih

)

+ β1B∗S∗d

(

2−
S∗d
Sd

+
B

B∗
−

Id

I∗d
−

B

B∗

Sd

S∗d

I∗d
Id

)

+ β2I∗d S∗d

(

2−
S∗d
Sd

−
Sd

S∗d

)

+ µ1S∗h

(

2−
S∗h
Sh

−
Sh

S∗h

)

+ µ2S∗d

(

2−
S∗d
Sd

−
Sd

S∗d

)

+ δ1I∗H

(

1−
B

B∗
+

Ih

I∗h
−

B∗

B

Ih

I∗h

)

+ δ2I∗d

(

1−
B

B∗
+

Id

I∗d
−

B∗

B

Id

I∗d

)

+ αI∗h

(

1−
Rh

R∗
h

+
Ih

I∗h
−

R∗
h

Rh

Ih

I∗h

)

+ ψRh

(

1−
S∗h
Sh

−
R∗

h

Rh

+
R∗

h

Rh

S∗h
Sh

)

The relation as utilized by [34] is used,
1− x+ lnx ≤ 0 ⇒ 1− x ≤− lnx, forx ∈ R,x > 0
(

1−
B

B∗
+

Ih

I∗h
−

B∗

B

Ih

I∗h

)

≤ 0,

(

1−
B

B∗
+

Ih

I∗h
−

B∗

B

Ih

I∗h

)

=

(

1−
B

B∗

)

+

(

1−
B∗

B

Ih

I∗h

)

+

(

Ih

I∗h
− 1

)

≤ 0

=− lna − ln

(

b

a

)

+ lnb =−

(

lna+ ln
b

a
− lnb

)

=− ln

(

ab

ab

)

= 0

Thus,
dL

dt
≤ 0, using LaSalle’s extension of

Lyapunov’s method, the limit set of each solution lies
within the largest invariant set, where Sh = S∗h, Ih = I∗h ,
Rh = R∗

h, Sd = S∗d , B = B∗ which is the singleton E∗ [17].

Hence the endemic equilibrium point of the model system
(3) is globally asymptotically stable on Γ when R0 > 1.

2.3 Parameter estimation and model fitting

In this section, we employ the least-squares technique to
estimate the parameters. The method is well-suited for
general parameter estimation. The objective function is to
minimize the sum of square residuals expressed as:
(minΣn

i=1[xi − f (yi,θ )]
2); where θ are the parameter

values to be estimated from existing literatures; n

represent the total number of data points; f (yi,θ )
represents the solutions of a nonlinear model function and
xi refers to the artificial generated data obtained by adding
Gaussian noise to the model result ( f (yi,θ )). We utilize
the capabilities offered by MATLAB’s built-in function
”fminsearch,” which employs the Nelder-Mead simplex
algorithm to derive local minimizers for the residual sum
of squares [28]. The estimated values of the parameters
were employed, and the corresponding outcomes are
shown in Figs. 2-4. Figs. 2 and 3 demonstrate that as the
estimated data more closely aligns with the observed data,
the model’s accuracy and validity increase. This indicates
that it can be used to make reliable predictions about the
future trend of the disease.

Fig. 4 indicates that the residuals for all outcomes
follow a normal distribution, confirming the stability and
reliability of the model fit and parameter values for future
use.

2.4 Global sensitivity analysis

In this part, the Latin Hypercube Sampling (LHS)
technique and Partial Rank Correlated Coefficient
(PRCC) are employed to carry out a global sensitivity
analysis of parameters in relation to infected state
variables. The LHS technique is employed to generate
combinations of 1,000 uniformly distributed samples for
the model parameter values [11]. Furthermore, we
calculated the Partial Rank Correlation Coefficients
between the model parameters and the infected state
variables to evaluate if the uncertainties of the parameters
make a substantial impact. The PRCC value provides a
measure of the impact that a parameter has on the state
variable. A PRCC value closer to 1 or -1 suggests a
higher degree of influence for a parameter, whereas
values within the range of 0.2 to -0.2 show a weaker level
of influence [34]. The sign and direction of the PRCC
reveal the nature of the influence that a parameter has on
the state variable. Positive values show a positive
influence; that means whenever the parameter values
increase, the outcome increases, and vice versa. On the
other hand, negative values indicate a negative influence;
this indicates that as parameter values increase, the output
decreases. Fig. 5 shows that the environment to human
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Fig. 2: Model fitting of susceptible, infected and recovered humans population.
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Fig. 3: Model fitting of susceptible and infected domestic birds population.
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Table 1: Model baseline and estimated values day−1

Symbol Baseline Source Estimation (Mean (µ), std (σ ))

Λ1 300 [20] 295.964713 (297.982357, 2.853379 )

γ1 0.00008 [12] 0.000086 (0.000083, 4×10−6)

α 0.9 [21] 0.907719 (0.903860, 5.458×10−3)

β1 0.00004 assumed 0.000036 (0.000038, 3×10−6)

µ1 0.0000391 [19] 0.000042 (0.000041, 2×10−6 )

ε 0.000001 [20] 0.000004 (0.000002, 1×10−6 )

β2 0.00002 [22] 0.000027 (0.000042, 5×10−6)

ψ 0.5 assumed 0.500806 (0.500403, 5.7×10−4)

σ 0.875 [23] 0.854378 (0.864689, 0.014582)

δ2 0.008 assumed 0.007448 0.007724, 3.9×10−4

Λ2 1000 [19] 1063.641926 (1031.820963, 45.001637)

δ1 0.0006 assumed 0.000549 (0,000574, 3.6 ×10−5)

µ2 0.01 [22] 0.010252 (0,010126, 1.78×10−4)

τ 0.05 [22] 0.052461 (0.051230, 1.74×10−3)

γ2 0.0008 assumed 0.000860 (0.000830, 4.2×10−5)

transmission rate (γ2), bird to bird transmission rate (β2),
infected human to environment transmission rate (δ1),
environment to domestic bird transmission rate (β1), and
infected bird to human transmission rate (γ1) have
positive PRCC values, which means they are accountable
for increasing avian influenza in humans whenever they
increase and decreasing avian influenza in humans
whenever they decrease Conversely, the natural death rate
(µ1), the human-induced death rate (ε), birds disease
induced death rate (τ) and avian influenza virus decay
rate (σ ) both have negative PRCC values, implying that
these parameter values are inversely related to the PRCC
values. This means that decreasing the values of these
parameters would lead to a increase of the disease in the
population. The outcomes from Fig. 6 illustrate that the
bird-to-bird transmission rate (β2) spreads the avian
influenza disease throughout the outbreak, while γ2, δ1,
β1, and γ1 contribute to the disease spreading within the
first 60 days. To prevent the spread of the avian influenza
outbreak, authorities should implement a vaccination
program and other control measures such as culling
infected domestic birds, promoting proper hygiene
practices, and conducting educational campaigns on the
disease’s impact. From Fig. 7, we observed that the
bird-to-bird transmission rate (β2), recruitment rate (Λ2),
environment to domestic bird transmission rate (β1),
humans to environment transmission rate (δ1), and
domestic to environment transmission rate (δ2) have
positive PRCC values, indicating that an increase in these
parameter values leads to a greater spread of avian
influenza, and vice versa, while induced death rate (τ),
natural death rate (µ2), avian influenza virus decay rate
(σ ), and human recovery rate (α) all have negative PRCC
values, which suggests that these parameter values are
inversely related to the PRCC values. This implies that an
increase in these parameter values results in a decrease in

the spread of avian influenza. The result from Fig. 8
indicates that β2 widely spreads the disease throughout
the avian influenza outbreak while γ2, δ1, and β1 transmit
the disease within the first 68 days. We observe that to
reduce the number of domestic bird infection cases during
the outbreak, the parameter β2 should be lowered
throughout the entire duration, and parameters such as γ2,
δ1, and β1 should be decreased within the first 68 days.
Fig. 9 shows that the human-to-environment transmission
rate (δ1), domestic-to-domestic rate (β2),
domestic-to-environment rate (δ2), and
environment-to-domestic rate (β1) all have positive
PRCC. This indicates that the parameter values are
directly proportional to the PRCC values. Meanwhile, the
virus decay rate (σ ), induced death rate (τ), and recovery
rate (α) all have negative PRCC values. This shows that
these parameter values are inversely related to the PRCC
values. The result from Fig. 10 indicates that δ1, δ2, and
β2 are crucial factors driving the spread of avian influenza
throughout the entire disease outbreak. Furthermore, the
environment-to-human rate (γ2), the infected
bird-to-human rate (γ1), and the environment-to-domestic
rate (β1) emerge as significant contributors to the spread
of the avian influenza within the first 58 days of the
outbreak. On the other hand, as the virus decay rate (σ )
and recovery rate (α) increase, the avian influenza disease
decreases.

3 Results and Discussion

In this section, we numerically solved the model system 3
using the ODE45 method implemented in the MATLAB
software. The model parameters and their values are
shown in Table 1, accompanied by the initial values of the
model. Fig. 11 (a) shows that the number of susceptible
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Fig. 4: The results of the model’s residuals.
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Fig. 6: Partial rank correlation coefficient for infected humans versus time
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Fig. 8: Partial rank correlation coefficient for infected domestic birds versus time.

humans decreases with time due to the infectiousness of
avian influenza. After 12 days, it increases gradually due
to immunity loss from the recovering population, until the
70th day, when the whole population
stabilizes. Additionally, 11 (b) demonstrates that domestic
birds decline abruptly due to the rapid spread of the avian
influenza virus. After 50 days, the whole population

stabilizes. In Fig. 11 (c), the concentration of avian
influenza viruses in the environment rises due to the
secretion of viruses from infected domestic birds and
humans, reaching a maximum level. Subsequently, the
viral concentration decreases to stabilize at a steady state
level.
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Fig. 10: Partial rank correlation coefficient for contaminated environment versus time

3.1 Conclusion and recommendations

In this paper, we developed and analyzed a mathematical
model to examine the dynamics of avian influenza in both
human and domestic bird populations. The model system
of non-linear differential equations was formulated. The
basic reproduction number was computed through the
next-generation matrix method. The equilibrium points of
model (3) were computed and revealed that, the avian
influenza-free equilibrium is globally asymptotically
stable when R0 < 1, while the avian influenza endemic
equilibrium is globally asymptotically stable when
R0 > 1. Moreover, the LHS and PRCC techniques were
employed to detect which parameters have a high
influence on the spread of avian influenza. The findings
showed that an increase in bird-to-bird transmission rate
(β2), shedding rates of infected humans (δ1) and infected
domestic birds (δ2), environment-to-human rate (γ2), and
environment-to-domestic bird rate (β1) cause a high
influence on the spread of avian influenza. Meanwhile,
the human-induced death rate (ε), the disease-induced

rate (τ), and the decay rate of viruses (σ ) have high
negative values, meaning that when they increase, the
disease tends to decrease. Based on the observations of
avian influenza transmission, we recommend a
comprehensive set of measures be implemented.
Vaccination programs should be put in place for both
human and domestic bird populations. This is crucial in
reducing the risk of co-infection with avian influenza
viruses. Furthermore, to ensure the continued
effectiveness of these vaccines, it is advised to regularly
update them in response to the prevailing strains of the
virus. This should take into account the mutation
characteristics of the influenza strain, as the virus is
known to mutate rapidly. Apart from that, the government
should take steps to ensure that proper hygiene practices
are followed across the relevant sectors. This includes
promoting regular handwashing, thorough cleaning, and
disinfection of equipment and facilities, as well as
restricting access to outsiders who may inadvertently
introduce the virus. Maintaining a high standard of
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Fig. 11: The transmission dynamics of the avian influenza virus for all compartments.

sanitation and limiting potential points of entry for the
disease will be crucial in mitigating its spread. Also,
timely culling or isolation of infected domestic birds is
necessary to prevent further transmission. Prompt action
in identifying and containing infected populations will
help prevent the virus from spreading further and reduce
the risk of spillover into human communities. The
implementation of these measures in a coordinated and
comprehensive manner will be essential in addressing the
avian influenza outbreak and safeguarding the health and
well-being of both human and domestic bird populations.
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