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Abstract: In the paper, we introduce probabilistic extensions of poly-Frobenius-Genocchi polynomials and modified probabilistic

Genocchi-polynomials. By making use of their generating functions, we derive explicit identities and a symmetric relation. In special

cases, the obtained results reduce to classical one. Additionally, by choosing appropriate random variable, we obtain new identities

including Stirling numbers of the first kind, Frobenius-Euler numbers, Frobenius-Genocchi numbers and Bernoulli numbers of negative

order.
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1 Introduction

Special functions and polynomials appear as solutions to
ordinary and partial differential equations. Their
importance properties are frequently used in
approximation, computation, and numerical analysis. The
various properties and connections of special functions
and polynomials have been studied and investigated by
many authors. For example, in [1], Choi et al. derived
identities for Frobenius-Euler numbers and polynomials
by using the fermionic p-adic q-integral equation on Zp.
In [2], Duran et al. considered a new class of
Frobenius-Genocchi polynomials, called type 2
poly-Frobenius-Genocchi polynomials, through the
polyexponential function. In [3], Khan and Srivastava
also worked on introducing a new class of generalized
Apostol-type Frobenius-Genocchi polynomials and
explored their properties and relations. In [4], Kim and
Kim discussed higher-order Frobenius-Euler polynomials
associated with poly-Bernoulli polynomials, which have
been derived from the polylogarithmic function. In [5],
Kim et al. derived new identities for poly-Genocchi
polynomials. In [6], Wani et al. focused on introducing
Gould–Hopper-based Frobenius-Genocchi polynomials
and developed their properties. Yasar and Ozarslan [7]

derived differential equations for Frobenius-Euler
polynomials using the quasi-monomiality principle. They
also introduced Frobenius-Genocchi polynomials and
obtained some recurrence relations and differential
equations. In [8], Araci and Acikgoz studied Bernstein
polynomials and Frobenius-Euler numbers and
polynomials. They also applied the method of generating
functions and fermionic p-adic integral representation on
Zp, which has been used to derive further classes of
Bernstein polynomials and Frobenius-Euler numbers and
polynomials. In [9], Adell introduced a new
generalization of the Stirling numbers of the second kind
and obtained new interesting identities. In [10], Karagenc
et al. introduced probabilistic Bernstein polynomials and
has derived new and interesting correlations among
various special functions and special number sequences,
such as Euler polynomials, higher-order Bernoulli
polynomials, higher-order Frobenius-Euler polynomials,
Stirling numbers of the second kind, and Bell
polynomials. We now begin with the following notations:

N := {1,2,3, ...},N0 := {0,1,2,3, ...}= N∪{0}. (1)

Z,Q,R+ will respectively, be denoted integers, rational
numbers, and positive real numbers.
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Let Y be chosen as a random variable satisfying the
moment conditions by

E [|Y |n]< ∞ and lim
n→∞

|t|nE [|Y |n]

n!
= 0,(|t|< r;r > 0) (2)

where E means mathematical expectation. From here, one
may write that

E
[

etY
]

=
∞

∑
n=0

E [Y n]n
tn

n!
,
(

|t|< r,r ∈R+
)

(3)

or equivalently,

E [|Y |n]< ∞,
(

|t|< r,r ∈ R+
)

. (4)

{Yj}
k
j=1 is a sequence of mutually independent copies of

the Y with Sk = Y1 +Y2 + ...+Yk, (k ∈ N) with S0 = 0.
(see [9,10]).
Several distributions that will be used in deriving the
results of this paper are given below:

1.Poisson distribution. Y ∼ Poisson(α) with the
parameter with yielding moment generating function
(mgf) as

E
[

etY
]

= eα(et−1)
. (5)

2.Gamma distribution. Let Y ∼ Γ (1,1) be random
variable with mgf as

E
[

etY
]

=
1

1− t
, t < 1. (6)

3.Exponential distribution. Y ∼ E(α) be random
variable with mgf as

E
[

etY
]

=
1

1−αt
, 0 < α. (7)

(see [9,10]).
We now reminder polylogarithms Lik (t), Genocchi
polynomials Gn (x), Frobenius-Genocchi polynomials
GF

n (x|u), Euler polynomials En (x), Frobenius Euler
polynomials Hn (x|u), Bernoulli polynomials βn (x),

Bernoulli polynomials B
(−α)
n (x) of negative order, Stirling

numbers of the first kind S1 (n,k), Stirling numbers of the

second kind

{

n

k

}

, and Bell polynomials φn (x). Also we

recall the probabilistic Stirling numbers of second kind
{

n

k

}

Y

, probabilistic Bernoulli polynomials βY
n (x),

probabilistic Euler polynomials εY
n (x), probabilistic

Frobenius-Euler polynomials HY
n (x|u), modified

probabilistic Bernoulli polynomials BY
n (x) and

probabilistic Lah numbers LY
n (n,k).

Motivated by the above, we introduce probabilistic

poly-Frobenius-Genocchi numbers G
(k,Y )
n (u) associated

with Y , modified probabilistic Frobenius-Genocchi
numbers GY

n (u) associated with Y .

In [2,5], it is well known that the polylogarithms are
defined by

Lik (t) =
∞

∑
n=1

tn

nk
,(|t|< 1,k ∈ Z), (8)

which have the following derivative property:

d

dt
Lik ( f (t)) =

f ′(t)

f (t)
Lik−1 ( f (t)) . (9)

In [13], the Euler polynomials, En (x), are described by

2

et + 1
ext =

∞

∑
n=0

En (x)
tn

n!
,(|t|< π) (10)

where provided that x = 0, we have En (0) := En that
denotes Euler numbers.
In [13], Frobenius-Euler polynomials are defined as

1− u

et − u
ext =

∞

∑
n=0

Hn (x,u)
tn

n!
,(u ∈ C−{1}) (11)

where Hn (x;−1) := Hn (x).
In [2,12], the Genocchi polynomials, Gn (x), are described
by

2t

et + 1
ext =

∞

∑
n=0

Gn (x)
tn

n!
,(|t|< π) (12)

where provided that x = 0, we have Gn (0) := Gn that
means Genocchi numbers.
In [2,3], Frobenius-Genocchi polynomials GF

n (x,u) are
given by

(1− u)t

et − u
ext =

∞

∑
n=0

GF
n (x,u)

tn

n!
,(u ∈ C−{1}), (13)

satisfying GF
n (x,−1) := Gn (x) and

GF
n+1 (x,u)

n+ 1
= Hn (x,u) . (14)

In [14], the each Bernoulli polynomials of degree n,
βn (x), can be found by means of the following generating
function:

t

et − 1
ext =

∞

∑
n=0

βn (x)
tn

n!
,(|t|< 2π) . (15)

Let α be a non-negative integer. Bernoulli polynomials of

negative order, B
(−α)
n (x), are defined as follows:

(

et − 1

t

)α

ext =
∞

∑
n=0

B
(−α)
n (x)

tn

n!
,(see [20]). (16)
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In [8], the Stirling numbers of the first kind, S1 (n,k), are
defined by means of the following generating function:

(log(1+ t))k

k!
=

∞

∑
n=k

S1 (n,k)
tn

n!
. (17)

Throughout of this paper, we will assume as follows: If
1+ t becomes a complex number, the value of log(1+ t)
is then defined by

log(1+ t) = log |1+ t|+ iarg(1+ t), (18)

where

1.log |1+ t| is the real-valued logarithm of the modulus
|1+ t|.

2.arg(1+ t) is the angle of 1+ t, typically restricted to
the principal branch (−π ,π ].

In [9], it is well known that the Stirling numbers of the
second kind are defined as

(et − 1)k

k!
=

∞

∑
n=k

{

n

k

}

tn

n!
. (19)

In [21], Bell polynomials φn (x) is defined thanks to

ex(et−1) =
∞

∑
n=k

φn (x)
tn

n!
, (20)

which aligns with the moment generating function of
Poisson distribution having the mean x.
Adell and Lekuona ([9,11]) gave the probabilistic Stirling
numbers of second kind are defined by

(

E
[

etY
]

− 1
)k

k!
=

∞

∑
n=k

{

n

k

}

Y

tn

n!
. (21)

Kim and Kim ([16]) introduced new families of Bernoulli
and Euler polynomials subject to a random variable Y as
follows, respectively:

t

E [etY ]− 1

(

E
[

etY
])x

=
∞

∑
n=0

βY
n (x)

tn

n!
,(n ≥ 0) (22)

and

2

E [etY ]+ 1

(

E
[

etY
])x

=
∞

∑
n=0

EY
n (x)

tn

n!
(23)

where βY
n (x) and EY

n (x) are called probabilistic Bernoulli
and Euler polynomials. In the case when Y = 1,
βY

n (x)=βn (x) and EY
n (x)=En (x) turn out to be well known

(classical or ordinary) Bernoulli and Euler polynomials.
Also, at the value of x = 0, βY

n (0) = βY
n and EY

n (0) = En

are called the probabilistic Bernoulli and Euler numbers.
In [18], modified probabilistic Bernoulli polynomials are
known as

log(E
[

etY
]

)

E [etY ]− 1

(

E
[

etY
])x

=
∞

∑
n=0

BY
n (x)

tn

n!
. (24)

In [18], probabilistic Frobenius-Euler polynomials are
defined as (u ∈ C−{1})

1− u

E [etY ]− u

(

E
[

etY
])x

=
∞

∑
n=0

HY
n (x;u)

tn

n!
. (25)

In [19], the probabilistic Lah numbers are defined by

1

k!

(

E

[

(

1

1− t

)Y

− 1

])k

=
∞

∑
n=k

LY (n,k)
tn

n!
,(k ∈N0) .

(26)

In the next section, we introduce the generating function
for the probabilistic poly-Frobenius-Genocchi
polynomials. Utilizing this generating function, we derive
explicit identities. Furthermore, by selecting appropriate
random variables, we establish connections between the
aforementioned polynomial and other special functions
and polynomials.

2 Main Results

We are now in a position to state the following theorem,
which serves as the main definition of this paper for
deriving new identities, relations, and properties.

Definition 1.Let Y be a random variable and

k ∈ Z,u ∈ C,u 6= 1. The probabilistic

poly-Frobenius-Genocchi polynomials G
(k,Y )
n (x,u)

associated with Y by

∞

∑
n=0

G
(k,Y )
n (x,u)

tn

n!
=

(1− u)Lik
(

1−E
[

e−tY
])

u−E [e−tY ]
(E[e−tY ])x

.

(27)

For x = 0,G
(k,Y )
n (0,u) := G

(k,Y )
n (u) are called probabilistic

poly-Frobenius-Genocchi numbers.

Definition 2.Let Y be a random variable and k ∈ Z,u ∈
C,u 6= 1. The modifed probabilistic Frobenius-Genocchi

polynomials GY
n (x,u) associated with Y by

∞

∑
n=0

GY
n (x,u)

tn

n!
=

(1− u) log(E
[

etY
]

)

E [etY ]− u
(E[etY ])x

. (28)

For x = 0,GY
n (0,u) := GY

n (u) are called modified

probabilistic Frobenius-Genocchi numbers.

Theorem 1.The probabilistic poly-Frobenius-Genocchi

numbers associated with Y can be expressed as

(−1)nG
(k,Y )
n (u)

n!
=

n

∑
j=1

j

∑
l=1

{

j

l

}

Y

HY
n− j(u)(−1)l−1l!

(n− j)! j!lk
. (29)
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Proof.By (27), we have

∞

∑
n=0

G(k,Y )
n (u)

tn

n!
=

(1−u)Lik
(

1−E[e−tY ]
)

u−E[e−tY ]

=
1−u

u−E[e−tY ]

∞

∑
l=0

(−1)l+1

(l+1)k

(

E[e−tY ]−1
)l+1

(l+1)!
· (l+1)!

=

(

∞

∑
n=0

(−1)n+1HY
n (u)

tn

n!

)

×

(

∞

∑
l=0

(−1)l+1

(l+1)k

∞

∑
n=l

{

n+1

l+1

}

Y

(−1)n+1 tn+1

(n+1)!
(l+1)!

)

.

By comparing the coefficients of tn

n!
on the both sides

of the above, we see that

G(k,Y )
n (u) =

n−1

∑
j=0

j

∑
l=0

(

n

j+1

){

j+1

l +1

}

Y

(−1)n+l

(l+1)k
(l+1)!HY

n−1− j(u)

=
n

∑
j=1

j

∑
l=1

(

n

j

){

j

l

}

Y

(−1)n+l−1

lk
l!HY

n− j(u)

=
n

∑
j=1

j

∑
l=1

n!(−1)n+l−1l!

(n− j)! j!lk

{

j

l

}

Y

HY
n− j(u),

by straight forward manipulation over sum, we get the
desired result.

Theorem 2. Let Y be a random variable, we have

n

∑
l=0

G
(k,Y )
l (u)S1(n, l)(−1)n =

n−1

∑
j=0

j

∑
l=0

n−1− j

∑
m=0

(

n

j

)

(m+1)!(−1) j+l+1

(m+1)k

×S1( j, l)HY
l (u)L

Y (n− j,m+1).

Proof.Since

∞

∑
n=0

G
(k,Y )
n (u)

tn

n!
=

(1− u)Lik
(

1−E
[

e−tY
])

u−E [e−tY ]
,

and replacing t by log(1− t) in (27) in this case, we obtain

∞

∑
l=0

G
(k,Y)
l

(u)
(log(1− t))l

l!
=

∞

∑
l=0

G
(k,Y)
l

(u)
∞

∑
n=l

S1(n, l)(−1)n tn

n!

=
∞

∑
n=0

n

∑
l=0

G
(k,Y)
l

(u)S1(n, l)(−1)n tn

n!
.

Then, by (27), we get

=
1− u

u−E
[

e− log(1−t)Y
] Lik

(

1−E

[

(

1

1− t

)Y
])

=

(

∞

∑
l=0

HY
l (u)(−1)l+1 (log(1− t))l

l!

)

×





∞

∑
m=0

1

(m+ 1)k

(

1−E

[

(

1

1− t

)Y
])m+1





=

(

∞

∑
l=0

HY
l (u)(−1)l+1

∞

∑
n=l

S1(n, l)(−1)n tn

n!

)

×

(

∞

∑
m=0

(m+ 1)!

(m+ 1)k

∞

∑
n=m

LY (n+ 1,m+ 1)
tn+1

(n+ 1)!

)

=

(

∞

∑
n=0

n

∑
l=0

HY
l (u)(−1)n+l+1S1(n, l)

tn

n!

)

×

(

∞

∑
n=0

n

∑
m=0

(m+ 1)!

(m+ 1)k
LY (n+ 1,m+ 1)

tn+1

(n+ 1)!

)

=
∞

∑
n=0

(

n

∑
j=0

j

∑
l=0

n− j

∑
m=0

(

n+ 1

j

)

(m+ 1)!(−1) j+l+1

(m+ 1)k

×S1( j, l)HY
l (u)L

Y (n− j+ 1,m+ 1)
) tn+1

(n+ 1)!
.

Thus by comparing coefficients tn

n!
on both sides of the

above, we arrive at the desired result.

Theorem 3.Let Y be a random variable, we have

G
(1,Y )
n (u) = (−1)nGY

n (u). (30)

Proof.By (27) for k = 1, we see that

∞

∑
n=0

G
(1,Y)
n (u)

tn

n!
=

(1− u)Li1
(

1−E
[

e−tY
])

u−E [e−tY ]

=
(1− u) log

(

E
[

e−tY
])

E [e−tY ]− u

=
∞

∑
n=0

(−1)nGY
n (u)

tn

n!
,

which means the claimed equality.

Theorem 4.Let Y be a random variable. Then we have the
explicit identity:

G
(1,Y)
n (u) =

n−1

∑
j=0

j

∑
l=0

(

n

j+1

){

j+1

l +1

}

Y

(−1)n+l−1l!HY
n−1− j(u).

(31)
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Proof.By (27) for k = 1, we have

∞

∑
n=0

G
(1,Y )
n (u)

tn

n!
=

(1−u)Li1
(

1−E[e−tY ]
)

u−E[e−tY ]

=
∞

∑
l=0

(1−u)
(

1−E[e−tY ]
)l+1

(l +1)
(

u−E[e−tY ]
)

=
∞

∑
l=0

l!
∞

∑
n=l

{

n+1

l +1

}

Y

(−1)n+l+1 tn+1

(n+1)!

×
∞

∑
m=0

(−1)m+1HY
m(u)

tm

m!

=
∞

∑
n=0

(

n

∑
l=0

{

n+1

l +1

}

Y

(−1)n+l+1l!

)

×
tn+1

(n+1)!

∞

∑
m=0

(−1)m+1HY
m(u)

tm

m!

=
∞

∑
n=0

(

n

∑
j=0

j

∑
l=0

(

n+1

j+1

){

j+1

l +1

}

Y

×(−1)n+l l!HY
n− j(u)

) tn+1

(n+1)!
.

By comparing the coefficients of tn

n!
on both sides, we

obtain the desired identity.

Theorem 5. Let Y be a random variable. Then the

following equality holds true:

G
(2,Y )
n (u) = (−1)n−1

n−1

∑
i=0

i

∑
j=0

(

i

j

)(

n

i+ 1

)

×E[Y i− j+1]HY
n−1−i(u)BY

j .

(32)

Proof.By (27) for k = 2, we have

∞

∑
n=0

G
(2,Y )
n (u)

tn

n!
=

(1−u)Li2
(

1−E[e−tY ]
)

u−E[e−tY ]

=−
1−u

u−E[e−tY ]

∫ t

0
E[Ye−xY ]

×

(

logE[e−xY ]

E[e−xY ]−1

)

dx

=−
1−u

u−E[e−tY ]

∫ t

0

(

∞

∑
n=0

(−1)nxnE[Y n+1]

n!

×
∞

∑
m=0

BY
m

(−1)mxm

m!

)

dx

=
∞

∑
n=0

(

n

∑
i=0

i

∑
j=0

(

i

j

)(

n+1

i+1

)

(−1)n

×E[Y i− j+1]HY
n−i(u)B

Y
j

) tn+1

(n+1)!
.

Thus by comparing coefficients tn

n!
on both sides of the

above, we arrive at the desired result.

Theorem 6.Let Y be a random variable, we get

GY
n (u) =

n

∑
l=0

l

∑
k=0

{

n

l

}

Y

GF
k (u)S1(l,k). (33)

Proof.By (28), we have

∞

∑
n=0

GY
n (u)

tn

n!
=

(1−u) log
(

E
[

etY
])

E [etY ]−u

=
(1−u) log

(

E[etY ]
)

elog(E[etY ])−u

=
∞

∑
k=0

GF
k (u)

(

log(E[etY ]−1+1)
)k

k!

=
∞

∑
k=0

GF
k (u)

∞

∑
l=k

S1(l,k)
(E[etY ]−1)l

l!

=
∞

∑
n=0

(

n

∑
l=0

l

∑
k=0

GF
k (u)S1(l,k)

{

n

l

}

Y

)

tn

n!
.

which means the claimed equality.

Theorem 7.Let Y be a random variable, we have

GY
n+1(u) =

n

∑
j=0

n− j

∑
k=0

{

n+1− j

k+1

}

Y

(

n+1

j

)

(−1)kk!HY
j (u). (34)

Proof. Since

∞

∑
n=0

GY
n+1(u)

tn+1

(n+1)!
=

(1−u) log
(

E[etY ]
)

E[etY ]−u

=
∞

∑
k=0

(−1)k(1−u)
(

E[etY ]−1
)k+1

(k+1)(E[etY ]−u)

=
∞

∑
k=0

(−1)kk!
∞

∑
n=k

{

n+1

k+1

}

Y

tn+1

(n+1)!

×
∞

∑
m=0

HY
m(u)

tm

m!

=
∞

∑
n=0

(

n

∑
j=0

n− j

∑
k=0

(−1)kk!HY
j (u)

×

{

n− j+1

k+1

}

Y

(

n+1

j

))

tn+1

(n+1)!
.

Note that GY
0 (u) = 0. Thus, by comparing coefficients

tn+1

(n+1)!
on both sides of the above, we arrive at the desired

result.

Theorem 8.Let Y be a random variable, then we have the

explicit identity

GY
n (u) =

n−1

∑
i=0

i

∑
j=0

n−1− j

∑
k=0

j

∑
m=0

(

n

i

){

n− i

k+ 1

}

Y

{

i

j

}

Y

× (−1)kk!Hm(u)S1( j,m).

(35)
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Proof.By (28) we have

∞

∑
n=0

GY
n (u)

tn

n!
=

(1−u) log
(

E[etY ]
)

elog(E[etY ])−u

=
∞

∑
k=0

(−1)k(1−u)
(

E[etY ]−1
)k+1

(k+1)(E[etY ]−u)

=
∞

∑
k=0

(−1)kk!
∞

∑
m=0

Hm(u)

(

logE[etY ]
)m

m!

×
∞

∑
n=k

{

n+1

k+1

}

Y

tn+1

(n+1)!

=
∞

∑
n=0

(

n

∑
k=0

(−1)kk!

{

n+1

k+1

}

Y

tn+1

(n+1)!

)

×
∞

∑
m=0

Hm(u)

(

log(E[etY ])
)m

m!

=
∞

∑
n=0

(

n

∑
k=0

(−1)kk!

{

n+1

k+1

}

Y

tn+1

(n+1)!

)

×
∞

∑
m=0

Hm(u)
∞

∑
j=m

S1( j,m)
(E[etY ]−1) j

j!

=
∞

∑
n=0

(

n

∑
k=0

(−1)kk!

{

n+1

k+1

}

Y

tn+1

(n+1)!

)

×
∞

∑
j=0

(

j

∑
m=0

Hm(u)S1( j,m)

)

∞

∑
l= j

{

l

j

}

Y

t l

l!

=
∞

∑
n=0

(

n

∑
k=0

(−1)kk!

{

n+1

k+1

}

Y

tn+1

(n+1)!

)

×
∞

∑
l=0

(

l

∑
j=0

j

∑
m=0

Hm(u)S1( j,m)

{

l

j

}

Y

)

t l

l!

=
∞

∑
n=0

(

n

∑
i=0

n−i

∑
k=0

i

∑
j=0

j

∑
m=0

(−1)kk!

(

n+1

i

){

n− i+1

k+1

}

Y

×

{

i

j

}

Y

Hm(u)S1( j,m)

)

tn+1

(n+1)!
.

Thus, by comparing coefficients tn

n!
on both sides of the

above, we arrive at the desired result.

Theorem 9.Let Y ∼ Γ (1,1), we get

G
(k,Y )
n (u) =

n−1

∑
m=0

m

∑
l=0

n−1−m

∑
j=0

(

n− 1−m

j

)

(−1)n−m− j+ln!

m!( j+ 1)k

× S1(m, l)Hl(u).

(36)

Proof.By (6) and (27), we get

∞

∑
n=0

G
(k,Y)
n (u)

tn

n!
=

(1−u)Lik
(

1−E[e−tY ]
)

u−E[e−tY ]

=
1−u

u− 1
1+t

Lik

(

1−
1

1+ t

)

=
1−u

u−elog 1
1+t

∞

∑
j=0

(

t

1+ t

) j+1
1

( j+1)k

=
∞

∑
l=0

(−1)l+1Hl(u)
(log(1+ t))l

l!

∞

∑
j=0

t j+1

( j+1)k

×
∞

∑
n=0

(

n+ j

j

)

(−1)ntn

=
∞

∑
l=0

(−1)l+1Hl(u)
∞

∑
n=l

S1(n, l)
tn

n!

×
∞

∑
j=0

t j+1

( j+1)k

∞

∑
n= j

(

n

j

)

(−1)n− jtn− j

=

(

∞

∑
n=0

n

∑
l=0

(−1)l+1Hl(u)S1(n, l)
tn

n!

)

×

(

∞

∑
n=0

n

∑
j=0

(

n

j

)

(−1)n− j

( j+1)k
tn+1

)

=
∞

∑
n=0

n

∑
m=0

m

∑
l=0

n−m

∑
j=0

(

n−m

j

)

(n+1)!(−1)n−m− j+l+1

( j+1)km!

×Hl(u)S1(m, l)
tn+1

(n+1)!
.

By comparing coefficients tn on both sides of the above,
we arrive at the desired result.

Theorem 10.Let Y ∼ Γ (1,1), we get

GY
n (u) =

n

∑
k=0

S1(n,k)G
F
k (u)(−1)n+k

. (37)

Proof.Since,

∞

∑
n=0

GY
n (u)

tn

n!
=

(1− u) log(E[etY ])

E[etY ]− u

=
(1− u) log( 1

1−t
)

1
1−t

− u

=
(1− u)(− log(1− t))

e−log(1−t)− u

=
∞

∑
k=0

GF
k (u)(−1)k (log(1− t))k

k!

=
∞

∑
k=0

GF
k (u)(−1)k

∞

∑
n=k

S1(n,k)(−1)n tn

n!

=
∞

∑
n=0

(

n

∑
k=0

GF
k (u)(−1)n+kS1(n,k)

)

tn

n!
.
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Thus, by comparing coefficients tn

n!
on both sides of the

above, we arrive at the desired result.

Theorem 11.Let Y ∼ E(α), we get

G(k,Y )
n (u) =

n−1

∑
m=0

m

∑
l=0

n−1−m

∑
j=0

(

n−1−m

j

)

αn(−1)n−1−m− j+l(n+1)!

m!( j+1)k
S1(m, l)Hl(u).

(38)

Proof.We omit the proof because it is same as the proof of
Theorem 9.

Theorem 12.Let Y ∼ E(α), we get

GY
n (u) =

n

∑
k=0

αnS1(n,k)G
F
k (u)(−1)n+k

. (39)

Proof.We omit the proof because it is same as the proof of
Theorem 10.

Theorem 13.Let Y ∼ Poisson(α), we get

GY
n (u) =

∞

∑
k=0

GF
k (u)α

k

{

n

k

}

. (40)

Proof.By (5) and (28) we have

∞

∑
n=0

GF
n (u)

tn

n!
=

(1− u) log(E[etY ])

E[etY ]− u

=
(1− u)α(et − 1)

eα(et−1)− u

=
∞

∑
k=0

GF
k (u)α

k (e
t − 1)k

k!

=
∞

∑
k=0

GF
k (u)α

k
∞

∑
n=k

{

n

k

}

tn

n!

=
∞

∑
k=0

(

∞

∑
k=0

GF
k (u)α

k

{

n

k

}

)

tn

n!
.

Thus, by comparing coefficients tn

n!
on both sides of the

above, we arrive at the desired result.

Theorem 14.Let Y ∼ Poisson(α), we get

GY
n (u) =

n−1

∑
j=0

j

∑
k=0

(

n− 1

j

){

j

k

}

B
(−1)
n−1− jHk(u)α

k+1
. (41)

Proof.By (5) and (28) we have

∞

∑
n=0

GY
n (u)

tn

n!
=

(1− u) log(E[etY ])

E[etY ]− u

= α
et − 1

t
t

1− u

eα(et−1)− u

=
∞

∑
n=0

B
(−1)
n

tn+1

n!

∞

∑
k=0

Hk(u)α
k+1 (e

t − 1)k

k!

=
∞

∑
n=0

B
(−1)
n

tn+1

n!

∞

∑
k=0

Hk(u)α
k+1

∞

∑
m=k

{

m

k

}

tm

m!

=
∞

∑
n=0

B
(−1)
n

tn+1

n!

∞

∑
m=0

m

∑
k=0

{

m

k

}

Hk(u)α
k+1 tm

m!

=
∞

∑
n=0

n

∑
j=0

j

∑
k=0

(

n

j

){

j

k

}

B
(−1)
n− j Hk(u)α

k+1

× (n+ 1)
tn+1

(n+ 1)!
,

which means the claimed equality.

3 Conclusion

In the paper, we have explored extensions of probabilistic
poly-Frobenius-Genocchi polynomials, and introduced
probabilistic poly-Frobenius Genocchi polynomials
associated with Y . We have also derived explicit formulas,
established various related identities, and obtained a
symmetric relation for these polynomials. Furthermore,
we have investigated explicit expressions for the modified
probabilistic Genocchi polynomials associated with Y ,
which differ slightly from the probabilistic
Frobenius-Genocchi polynomials associated with Y . As
special cases, we consider applications in case that Y is
poisson, gamma, and exponential distributions.
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