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Abstract: Time series is an important class of temporal data objects and it can be easily obtained from scientific and financial 

applications. The nature time series data includes: large in data size, high dimensionality and necessary to update continuously. 

The increasing use of time series data has initiated a great deal of research and developing attempts in the field of data mining. 

Classification of time series data has a wide range of applications and has attracted researches from a wide range of discipline. In 

this paper the classical discriminant analysis is modified using the principal component analysis (PCA) to overcome the large 

dimensionality. The PCA modification can reduce the size of the data and improve the efficiency and accuracy. The new method is 

investigated using a simulation study to classify the linear AR(2) model and the bilinear BL(1,0,1,1) model. The results of our 

investigation show that the designed algorithm has a significant rate of correct classification especially if it is compared with the 

other methods. The PCA modification method is also applied to a real set of time series data and gave a superior rate of correct 

classification.   
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1 Introduction 

Classification of time series has attracted much interest from the data mining community. The high 

dimensionality, high feature correlation, and typically high levels of noise found in time series provide an 

interesting research problem, (see Keogh and Kasetty (2002), Ye and Keogh (2009) and Zhang, Cheng, Li, 

Bian, and Tao (2012)). A time series often produces a pattern or features that may form a basic for 

discriminating between different classes. The problem of time series classification arises in many real-

world fields. For example, in medicine, to distinguish the difference of ECG (electrocardiograms) signal 

between a normal person and a patient. In geophysical applications time series classifications methods 

have been used to discriminate between the earthquakes and nuclear explosions. In signal processing, 

detecting a radar signal, the time series classification has been used for discriminating between a pattern 

generated by a signal plus noise and a pattern generated by noise alone.  

There are several classification methods used in time series classification such as classification 

trees, nearest neighbors, discriminant analysis, iterative classification, etc. (see Fu (2011) and Keogh and 

Kasetty (2002)). 

The general problem of time series classification is to classify (or allocate) an observed time series 

{X(t), t = 1, 2, …, N} to one of k populations (or categories) 
1 2 k
, , ...,    with small rate of error. 

2 Discriminant Analysis  

Discriminant analysis (DA) is a multivariate statistical technique, one of the data mining 

techniques concerned with separating distinct sets of objects (or observations) and with allocating new 
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objects to one of the pre-defined groups based on the knowledge of the multi-attributes. When the 

distribution within each group is multivariate normal, a parametric method can be used to develop a 

discriminate function using a generalized squared distance measure. The classification criterion is derived 

based on either the individual within-group covariance matrices or the pooled covariance matrix that also 

takes into account the prior probabilities of the classes. Non-parametric discriminant methods are based on 

non-parametric group-specific probability densities. Either a kernel or the k-nearest-neighbor method can 

be used to generate a non-parametric density estimate in each group and to produce a classification 

criterion. 

The performance of a discriminant criterion could be evaluated by estimating the probability of 

miss-classification or the probability of correctly-classification, which known as “Accuracy”, of new 

observations in the validation data. Accuracy can be calculated by the following formula: 

 

Accuracy =
Thenumber of correctly classified observations

Thetotal number of observations
. 

 

 
3 Separation and Classification for Two Populations 

We assume that there are only two (k = 2) populations, 
1 and 

2  of interest to which the observed 

time series X [X(1) X(2) ... X(N)]  can belong. Let us define if (x)  as the probability density of X  

being in class
i

 , i = 1, 2. Calculation of the overall total probability of error depends on the prior 

probability pi of an observation belonging to the i
th
 class, i= 1, 2 where ( 1 2p p 1  ). Then the overall 

probability of classification error is minimized, (see Johnson and Wichern (2007)) by allocating or 

classifying x  into 
1

  if 

1 2

2 1

f (x) p
.

f (x) p
              (1) 

 

4 Classification with Two Multivariate Normal Populations 

Assuming that X  is stationary normally distributed in each class and that the means and 

covariance matrices are 
11 2

, , R  and
2R respectively, so that the joint densities of 

X [X(1) X(2) X(N)] for 1 and 2  are given by  
 
 

1
i i i

N
1 2(x ) R (x )1 22

i if (x) (2 ) R e , i 1, 2.



  

                   (2) 

By substituting (2), with 
1 2R R ,  into (1) and taking the natural logarithm we obtain the following 

quadratic classifier 

1

Q

2

1 1 1 1 1 1

1 2 1 1 2 2 1 1 1

2

1 1

2 2 2

2

f (x)
d (x) ln

f (x)

R1 1 1
ln x (R R )x ( R R )x R

2 R 2 2

p1
R ln( )

2 p

    





            

   

        (3) 
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The decision rule becomes allocate x into 
1

  if 
Q

d (x) 0  and into 
2

  otherwise. A difficulty in this 

case is that the classifier )x(dQ  
is a quadratic function of x and therefore its distribution is intractable 

under either 
1

  or 
2

  and so the theoretical error rates, in this case, is a very difficult to obtain. Moreover 

the computation required for )x(dQ  is excessive and R1 and R2 may not known, even if they are, their 

inversion may pass computational problems especially for long series. 

In many applications the populations are differ only in means and are common in covariance 

matrix R, say. Using a common covariance matrix assumption the two populations have the same 

covariance matrix R1 = R2 = R and differ only by their means, then (3) is simplified to the new classifier 

given by 

1 1 1
L 1 2 1 2 1 2

2

p1
d (x) ( ) R x ( ) R ( ) ln( ),

2 p

          

              

(4) 

and )x(dL  is clearly a linear function of x , we classify x  into 
1

  or 
2

  according to whether 

Ld (x) 0  or Ld (x) 0 . The linear version of the discriminate analysis (LDA) thus has drawn a hyper-

plane in the space R
N
 where N is the dimension of x , this hyper-plane being the decision border between 

class 
1

  and class
2

 . 

One should note that what we just did is nothing more than using the log-likelihood criterion with 

jointly normally distributed random variables. For the case p1= p2, )x(dL is a normal random variable with 

means 2
ND

2

1
 under 1  and  - 2

ND
2

1

 
under 2  and variance 2

ND  under both hypotheses, where  

2 1
N 1 2 1 2

D ( ) R ( )
           (5) 

is the generalized Mahalanobis distance between the mean vectors 
1

 and
2

 , for more details see Johnson 

and Wichern (2007). The error probability to either 1  or to 2 is )D
2

1
( N  and the probability of correct 

classification to either class is )D
2

1
( N .  

The above discriminant function contains some unknown values of the means
1

 , 
2

  and the covariance 

matrix R. Note that, since X [X(1) X(2) X(N)]  is stationary, then the covariance matrix R is given by 

  R Cov(X) E X E(X) X E(X)

(0) (1) (N 1)

(1) (0) (N 2)

(N 1) (N 2) (0)

    
  

    
 

   
 
 
 
     

 

 

where (k) Cov(X(t), X(t k)) E[(X(t) )(X(t k) )]         . 

Let 
1

(11) (12) (1n )

x , x , ..., x  and 
2

( 21) ( 22) ( 2 n )

x , x , ..., x  be two independent samples of dimension N×1 from the 

populations 
1  and 

2 respectively. Then  

in
(i) (ij)

i
i j 1

1
ˆ x x (t) , i 1,2

n


        (6) 
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and 

ˆ ˆ ˆ(0) (1) (N 1)

ˆ ˆ ˆ(1) (0) (N 2)
R̂ S

ˆ ˆ ˆ(N 1) (N 2) (0)

    
 

   
  
 
 
     

  

where 

  

in2 N k
(i) (i)(ij) (ij)

i 1 j 1 t 11 2

1
ˆ(k) (x (t) x )(x (t k) x )

(n n )N



  

    


  

in2
(ij) (i) (ij) (i)

i 1 j 1

1
R̂ S (x x )(x x )

n
 

              (7) 

 Then, the linear discriminant function (4) can be proceeded as  

(1) (2) (1) (2) (1) (2)1 1 1
L

2

p1ˆ ˆ ˆd (x) (x x ) R x (x x ) R (x x ) ln
2 p

   
        

 

        (8) 

and 
(1) (2) (1) (2)2 1

N
ˆ ˆD (x x ) R (x x )

      (9) 

 

 

5 PCA Modification  

As we mentioned above the computations of either the linear or quadratic discriminant function 

given by equation (3) and (4) are rather cumbersome matrix calculations specially if the time series is long 

(N-the dimension of x is large), therefore the construction of the PCA coefficients, (see Al-Kandar and 

Jolliffe (2001) and Vines (2000)), simplifying greatly the classifier since they are uncorrelated and 

reducing the matrix multiplication in simple sums (instead of double). 

 
5.1 Linear discriminant function 

Now, suppose the data 1(11) (12) (1n )
x , x ,..., x  and 2(21) (22) (2n )

x , x ,..., x  represent two independent 

samples of dimension N×1 from the populations 
1  and 

2  respectively. These data yield the sample 

mean vectors (1)
x , (2)

x  and the sample covariance matrix R̂ S  defined by (6) and (7) respectively. Let

11
ˆ ˆ( , e ) ,

22
ˆ ˆ( , e ) ,  NN

ˆ ˆ..., ( , e )  be the Eigen value and Eigen vector pairs of the sample covariance 

matrix R̂ , the i
th
 sample principal component is given by 

 

i i i1 1 iN N
ˆ ˆ ˆ ˆY e X e X e X      ,      i=1, 2, …, N                       (10) 

 

where 1 2 N
ˆ ˆ ˆ, , ...,  

 

are the roots of the equation 
N

ˆR̂ I 0   and X is any observed time series of the 

two samples. Also 

i iSample var iance Ŷ ˆ( )    ,    i=1, 2, …, N 

     

i j
ˆ ˆSample cov ariance Y Y( , ) 0  ,        i ≠ j. 

In addition, 
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1 2 N

ˆ ˆ ˆTotal time series var iance         

Let 1 2 2
ˆ ˆ ˆP [e e e ] , then by virtue of the orthonormality of the eigen vectors, the principal components 

(10) can be written in matrix form as 

Y P X X PY                      (11) 

Clearly we have PP P P I    
which implies that 1

P P
   and R P P  

 
1 1

PRP R P P
        

where   is the diagonal matrix of the Eigen values 

1

2

N

0 0

0 0

0 0

 
 


  
 
 

 

 

Thus, 

11

22

X

Y
X

P ( ) in ,
( )

P ( ) in .

 
  

                                     

(12) 

Substituting in the linear discriminant function (4) we obtain 

1 1
L 1 2 1 2 1

1

2
2

2 2N N
1j 2j 1j 2j 1

j
j j 2j 1 j 1

Y YY Y Y

Y

Y Y Y Y

1
d ( ) ( ( ) ( )) P (P P )(P ) ( (Y) (Y)) P (P P )P( ( )

2

p
( )) ln( )

p

( ) ( ) ( ) ( ) p1
Y ln( )

2 p

 

 

             

 

   
  

 
 

   (13) 

Note that: 

,
2

))Y()Y((
]/)Y(d[E

N

1j j

2
j2j1

1L 
 


                   (14) 

,
2

))Y()Y((
]/)Y(d[E

N

1j j

2
j2j1

2L 
 


                  (15) 

and, 

                                        

     (16) 

     

  

 

 

 

5.2 Quadratic discriminant function 

Let 11 12 1N11 12 1N
ˆ ˆ ˆˆ ˆ ˆ( ,e ),( ,e ), ...,( ,e )    and 21 22 2N21 22 2N

ˆ ˆ ˆˆ ˆ ˆ( ,e ),( ,e ), ...,( ,e )   are the Eigen values 

and Eigen vector pairs of the sample covariance matrices  

i i i

i

i i i

ˆ ˆ ˆ(0) (1) ... (N 1)

... ... ... ...
R̂ i 1,2

... ... ... ...

ˆ ˆ ˆ(N 1) (N 2) ... (0)

    
 
  
 
 
        

 

2N
1j 2j

L

j 1 j

( (Y) (Y))
Var[d (Y)]



 




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respectively, where  

i1 i2 iN i ij ijij
ˆ ˆ ˆ ˆˆ ˆ ˆ... 0 and R e e , i 1,2 ; j 1,2, ...,N,           

Let  

i1 i2 iNi
ˆ ˆ ˆP [ e e ... e ]  then 

1

i i i i i i
P P P P I P P ,

       i=1, 2. 

With these choices, we have 

i1

1 1i2
i i i i i i i i i i i i

iN

ˆ 0 ... 0

ˆ0 ... 0ˆ ˆ ˆ ˆ ˆ ˆR P P P R P R P P , i 1,2
... ... ... ...

ˆ0 ... 0

 

 
 
 

         
 
 
 




  



 

and 

In 1


:
  1 1 1 11

Y YˆY P X X P Y ( ) P (x) ,cov( ) .           

In 2
 : 2 2 2 22

Y YˆY P X X P Y ( ) P (x) ,cov( ) .            

Substituting in the quadratic discriminant function (3) and assuming 
21

p p  so that

 

0)
p

p
(ln

2

1  , we 

obtain: 

1 11 1 1

Q 1 1 1 2 2 2

2 2 2

1 1 1 1

1 1 1 2 2 2 1 1 1 2 2 21 2 1 1 2 2

p p1 1
d (y ) ln x (P P P P ) x

2 p p 2

1 1
( p p p p ) x p p p p

2 2

 

   


       



                     

(17) 

In 
1 : 

2N
1 1 1 i

1 1 1 1 1 1 1 1 1
1ii 1

N
1 1 1 1i i

1 1 1 1 1 1 1 1 11 1 1
1ii 1

y
x P P x y P P P P y y y ,

y
(y)P P x P P P P y y ,

  



  



          



           







 
2N

1 1 1 1i
1 1 1 1 1 1 1 1 1 11 1 1 1 1

1ii 1

(y)P P (y) P P P P .
  




                


    (18) 

 

Similarly, in 2 : 

2N
1 1 i

2 2 2 2 2

i 1 2i

N
1 1 1 2i i

2 2 2 2 2 2 2 2 22 2 2
i 1 2i

2N
1 1 1 2i

2 2 2 2 2 2 2 2 22 2 2 2 2 2
i 1 2i

1
2 2 2 2

y
P P P y y y ,

y
(y)P P x P P P P y y ,

(y)P P (y) P P P P .

x P P x y P
 



  



  



     



           




                



     





    (19) 

Then, 
N

1i 2 2N N N
2i 1 1i 2i 1i 2i

Q i iN
1i 2i 1i 2i 1i 2ii 1 j 1 i 1

2i
i 1

1 1 1 1 1 1
d (y) ln ( )y ( )y ( )

2 2 2 2



  



 
 

           
       

 
 


  



  (20) 
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The summations and products in (13) and (20) are reduced to only k components instead of N (<< N) if the 

first k principal components for the estimated covariance matrix R̂  contribute at least 90% of the total 

variation. Thus k is chosen so that 

k N

i i
i 1 i 1

ˆ ˆ 0.9
 

     

 

6 Applications 

In this section the new PCA-modified discriminant analysis method is applied to both simulated 

and real datasets. This new method is also compared with the other known time series classification 

methods. 

 

 
6.1 Simulated series examples 

Two sets of independent normally distributed with mean zero and variance one white noises {a1(t)} 

and {a2(t)} are generated by using the statistical packages MINITAB14, using these { a1(t)} and { a2(t)}, 40 

time series of {x(t); t = 1, 2, …, 128} from Autoregressive model AR(2) and 30 time series of {y(t); t = 1, 

2, …, 128} from Bilinear Autoregressive model BL(1,0,1,1) are generated with length 128 (dimension = N 

= 128) as follows: 

 

X(t) = 4.5 + 0.2 X(t-1) – 0.9 X (t-2)+a1(t), 

and, 

Y(t)= 1.5 + 0.6 Y(t-1) + 0.4 Y(t-1) a2(t-1)+a2(t). 

 

The coefficients in the two models {X(t)} and {Y(t)} are chosen so that the two series are  overlapping and 

satisfy the stationarity conditions. Figure 1. shows a plot of a series from the AR model and a series from 

the BL model. The overlapping between the two series is clear; moreover the means of the two series, 

theoretical and sampling are close to each other. 

 
 

 

Figure 1.  
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Now, we are going to discriminate between the above 70 generated time series  described above as 

two different populations (groups) in which 40 time series belong  to one population and the others 30 time 

series belong to another population by using different known methods and our PCA modified method. 

 

 

(A) Discriminant Analysis (DA) method  

Using the statistical package Minintab14, and by applying the “multivariate discriminant analysis”, 

the discrimination cannot be done and we got an error. 

Be care, we can discriminate between the two groups only for series with fewer dimensions, for 

example, it can be done by taking N ≤ 66 in linear case and N ≤ 26 in quadratic case, these values of 

N according to our several trails in our practical work.    

(B)  Mahalanobis distance using R 2.15.2 

Applying the Mahalanobis distance measure by using “R 2.15.2 Package” by writing the suitable 

code, the classification cannot be done and we have got the error message "system is 

computationally singular".  Also, according to our several trails in our practical work, we can 

classify between the two groups only for series with fewer dimensions, which can be done by taking 

N ≤ 30. 

 

(C) PCA modification method 

Now, we are going to apply our PCA- modification method that described in section 5. To solve the 

problem of classification between the two groups that failed in the previous methods, our 

modification concerning on the linear and quadratic discriminate functions (13) and (20) 

respectively, then calculate the classification accuracy in each case to differentiate between them. 

 

 

I.  PCA-modification with linear discriminate function 

We have two populations 
1

 and 
2

  in which n1=40 belong to 
1

  from the AR model, n2=30 

belong to 
2

  from the BL model with N=128 for each. Writing a suitable code using "Mathematica 

8" to calculate the estimated variance covariance matrix of R̂ (128 x 128) that defined in (7). 

Calculate the k principal components for the above estimated covariance matrix R̂   
which 

contribute at least 90% of the total variation by writing the suitable Matlab code. We found that 

there are k = 65 principals components contributes 90% of all variation,  

so 
1 2 651 2 65

ˆ ˆ ˆˆ ˆ ˆ( ,e ),( ,e ), ...,( ,e )    are the Eigen values and Eigen vectors pairs of the 

covariance matrix. 

        Now, we have 65 principal components that will be represented as a linear combination of       the 

Eigen-vectors using Equation (13).  

        Calculate the two population means 
1
(Y)  and 

2
(Y)  by using Equations (6) and (12), and then 

substituting in the modified linear discriminant function (13) to classify between the two 

populations according to its value, if it is  ≥  0 then we classify the series as it belongs to the first 

population 1 ,
 (the Autoregressive model AR(2)), otherwise classify it as the second population 

2  (the Bilinear model BL(1,0,1,1) ). 
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II. Applying the PCA-modification in quadratic discriminant function  

In the PCA quadratic discriminate method we need to calculate the principal components for the 

estimated covariance matrices
1R̂ and

2R̂ which contribute 90 % of the total variation and complete 

in the same way as in the linear discriminate modified method.
  

 
 

(D) Applying the K-Nearest Neighbor (KNN) method 

 Appling the known KNN method using weka 3.6 and also by using R 2.15.2 packages by writing 

the suitable code for implementation, then comparing between our PCA modification in linear and 

quadratic discriminant function and the KNN method, remembering the failing in the usual 

discriminate analysis and the Mahalanobis distance measure methods, we have got the following 

results described in Table 1.: 

 

6.1.1 Conclusions 

In the two predefined models the average of all 40 series of {X(t)}’s = 2.64 while the average of 

all 30 series of {Y(t)}’s = 2.45, which are too close to each other.  

 

Applied Method Number of misclassified 

observations 

Overall 

Accuracy 

DA Failed ___ 

Mahalanobis Distance Failed ___ 

Linear PCA-modification 6 0.91 

Quadratic  PCA-modification 0 1 

 

KNN 

K = 3 22 0.687 

K= 5 24 0.657 

K= 4, 7 27 0.614 

K=10 29 0.586 

Table 1. 

 

Hence with this small difference between the two averages the KNN method becomes difficult to 

classify between the two groups, and when applying the PCA modification in quadratic 

discriminate function, the number of misclassified observations are less than the number of 

misclassified observations when applying the linear discriminate function. This result clears that 

our PCA modification method produces a road map way for classification with great accuracy 

rather than the other methods. 

 

 

6.2 Real–World Case Study - ECG Data. 

In this section, we apply our PCA-modification method to a real-world time series ECD data sets 

from UCR time Series data sets (Keogh, Xi, Wei, and Ratanamahatana (2006)). The electrocardiogram 

(ECG) is a recording of body surface potentials generated by the electrical activity of the heart. It is a 
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two-class disease time series classification problem with length = 96, a “normal” class (the 

majority/negative class) with many examples = 69, and very few examples of the “abnormal” (the 

minority/positive class) with number of examples = 31. ECG dataset can be plotted using “Minitab 14” 

by taking one example from the “normal” class as “pop1” and other example from the “abnormal” 

class as “pop2” and plotting them as given in Figure 2. and Figure 3.  

 
    

 

 

 

 

 

 

 
 Figure 2. 

 

 
Figure 3. 

 

Applying our PCA-modification method for the ECG data set and using the same criteria for determining 

the value of k principal components, it was found to be 25 components are required to represent 90% of the 

total variation, then we completed in the same way as in simulated series to classify the groups. And 

referring to Koknar-Tezel and Latecki (2009 and 2010) for using the SVM and SVM-GP classification 

methods, our results can be showed in Table 2. 

 

 

 

Applied Method No. of  misclassified 

observations 

Overall Accuracy 

LDA Failed ___ 

Mahalanobis measure Failed ___ 

Linear PCA-modification 14 0.86 

Quadratic  PCA-modification 13 0.87 

SVM 20 0.800 

SVM-GP 21 0.79 

KNN (with K= 10) 22  0.77 

Table 2. 
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6.2.1 Conclusions 

 

Table 2., showed that the “Overall Accuracy” when applying the PCA-modification in the 

Quadratic case is 0.87 with 13 misclassified observations, while in applying the PCA-modification in the 

Linear case it was 0.86 with 14 misclassified observations, in each case the result was better than applying 

the SVM and SVM-GP methods. In summary, our PCA-modification method for the ECG data set, has 

achieved a better performance than the traditional SVM method and the improved SVM method (SVM-

GP). 

 

 
References 

 
[1] Al-Kandari, N.M. and Jolliffe, I.T. (2001) “Variable selection and interpretation of covariance principal components”. 

Commun. Statist.—Simul. Computat., 30, 339-354. 

[2] Bishop, C. M.  (2006) “Pattern Recognition and Machince Learning”. Springer, Cambridge. 

[3] Cichocki, A.  and Amari, S. (2002) “Adaptive Blind Signal and Image Processing - Learning Algorithms and 

Applications”. Wiley. 

[4] Fu, T. C. (2011) “A review on time series data mining. Engineering Applications of Artificial Intelligence”, 24(1), 164-

181. 

[5] Johnson, R. A. and Wichern, D. W. (2007) “Applied Multivariate Statistical Analysis (6th Edition) ”. Prentice Hall. 

[6] Jolliffe, T. (2002) “Principal Component Analysis (2nd edition)”. Springer-Verlag. 

[7] Keogh, E. and Kasetty, S. (2002) “On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical 

Demonstration”. In proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining. July 23 - 26, 2002. Edmonton, Alberta, Canada. pp 102-111. 

[8] Keogh, E. , Xi, X. , Wei, L. and Ratanamahatana, C. A. (2006) “The UCR time series classification and clustering home 

page: http://www.cs.ucr.edu/~eamonn/ Time series data/”. 

[9] Keogh, E. and Kasetty, S. (2002) “On the need for time series data mining benchmarks: A survey and empirical 

demonstration”. In proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining, pp 102-111.  

[10] K¨oknar-Tezel, S.  and Latecki, L.  J.  (2009) “Improving SVM Classification on Imbalanced Data Sets in Distance 

Spaces”. IEEE Int. Conf. on Data Mining (ICDM, December 2009), Miami, Florida, USA. 

[11] K¨oknar-Tezel, S.  and Latecki, L.  J.  (2010) “Improving SVM Classification on Imbalanced Time Series Data Sets with 

Ghost Points”. Knowledge and Information Systems. 

[12] Li Wei , Eamonn Keogh (2006) “Semi-supervised time series classification”, Proceedings of the 12th ACM SIGKDD 

international conference on Knowledge discovery and data mining, August 20-23, 2006, Philadelphia, PA, USA. 

[13] Shumway, R. H.  (1988) “Applied Statistical Time Series Analysis”. Englewood Cliffs, New Jersey: Prentice Hall. 

[14] Vines, S. (2000) “Simple principal components,” Applied Statistics, 49, 441–451. 

[15] Ye, L. and Keogh, E.  (2009) “Time Series Shapelets: A New Primitive for Data Mining”. In Proceedings of the 15th 

ACM SIGKDD international conference on Knowledge discovery and data mining. Paris, France, p. 947–956. 

[16] Zhang, Z. , Cheng, J. , Li, J. , Bian, W. and Tao, D. (2012) “Segment-Based Features for Time Series Classification”- 

The Computer Journal, 2012 55(9): 1088-1102. 

 

 

http://www.amazon.com/Applied-Multivariate-Statistical-Analysis-6th/dp/0131877151/ref=sr_1_sc_5?s=books&ie=UTF8&qid=1319265830&sr=1-5-spell
http://dl.acm.org/citation.cfm?id=1150498&CFID=207989791&CFTOKEN=98945871
http://dl.acm.org/citation.cfm?id=1150498&CFID=207989791&CFTOKEN=98945871

