
Appl. Math. Inf. Sci.7, No. 4, 1451-1457 (2013) 1451

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070425

A Comparative Study on the Algorithms for a
Generalized Josephus Problem

Lei Wang1 and Xiaodong Wang2,3,∗

1Microsoft AdCenter, Bellevue, WA 98004, USA
2Faculty of Mathematics and Computer Science, Fuzhou University, 350002 Fuzhou , China
3Faculty of Computer Science, Quanzhou Normal University, 362000 Quanzhou, China

Received: 3 Dec. 2012, Revised: 14 Jan. 2013, Accepted: 12 Mar.2013
Published online: 1 Jul. 2013

Abstract: The classic Josephus problem can be described as follows: There aren objects, consecutively numbered from 1 through n,
arranged in a circle. We are given a positive integer k. Beginning with a designated first object, we proceed around the circle, removing
every kth object. After each object is removed, counting continues around the circle that remains. This process continues until all n
objects have been removed. In a generalized Josephus problem, a number of lives l is introduced for the problem. Each object has l
lives. The object is removed only when it has been selected l times. In thispaper we present a fast algorithm for generating the Josephus
permutation for the generalized Josephus problem. Our new algorithm can also be applied to a more general case of the generalized
Josephus problem where the lives for all objects can be different. Thetime and space complexities of new algorithms are O(lnlogk) and
O(n) respectively. The computational experiments demonstrate that theachieved results are not only of theoretical interest, but also that
the techniques developed may actually lead to considerably faster algorithms.

Keywords: Josephus permutation, hit sequence, full binary tree

1. Introduction

In this paper we study a new variant of the Josephus
problem [1,2,3].

The classic Josephus problem is defined as follows.
Suppose thatn objects, consecutively numbered from 1
throughn, are arranged in a circle and that we are given a
positive integerk. Beginning with a designated first
object, we proceed around the circle, removing everykth
object. After each object is removed, counting continues
around the circle that remains. This process continues
until all n objects have been removed. The order in which
the objects are removed from the circle defines a
particular permutation of the integers 1,2, · · · ,n. This
permutation is usually called the(n,k) Josephus
permutation. For example, the (6,4) Josephus permutation
is (4 2 1 3 6 5).

There are also various generalizations on the classic
Josephus problem in the literature [4,6]. In a recent
research [5], the classic Josephus problem was
generalized as follows. A uniform number of livesl is
introduced for the problem. Each object hasl lives. The

object is removed only when it has been selected forl
times. This new variant of Josephus problem was called
Feline Josephus problem. In this generalized Josephus
problem, corresponding to the order in which the objects
are removed from the circle, there is also a particular
permutation of the integers 1,2, · · · ,n. This permutation is
called the(n,k, l) Josephus permutation. For example, the
(6,4,2) Josephus permutation is (4 2 1 6 5 3). The classic
Josephus problem is a special case of the generalized
Josephus problem whenl = 1.

We are interested in algorithms which, given integers
n, k and l , generate the corresponding(n,k, l) Josephus
permutation. AnO(n2) time algorithm usingO(n2) space
to compute the last removed object of a given generalized
Josephus problem withn objects is sketched in [5]. The
time and space complexities of the algorithm are
independent of the problem parametersk and l . The
algorithm is conceptual feasible. Due to theO(n2) time
and space costs of the algorithm, the algorithm is only of
theoretical interest. It is not practical.

In this paper we present a practical algorithm for
generating the general(n,k, l) Josephus permutation. Our

∗ Corresponding author e-mail:wangxiaodong@qztc.edu.cn

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070425

1452 L. Wang and X. Wang: Algorithms for a Generalized...

new algorithm can also be applied to a more general case
of the generalized Josephus problem where the lives for
all objects can be different. The time and space
complexities of the new algorithm isO(ln logk) andO(n)
respectively. Throughout the paper, we assume that a real
RAM with a uniform cost criterion is the computational
model. In particular, this means that each arithmetic
operation requires constant time.

The organization of the paper is as follows. In the
following 4 sections we describe the algorithms and our
computational experience with the algorithms for
generating the general(n,k, l) Josephus permutation. In
section 2 we describe a new variant tree based algorithm
for generating the hit sequences of the generalized
Josephus problem and their correctness and complexities.
Based on the algorithm in section 2, an improved
algorithm for generating the (n,k, l) Josephus
permutations is proposed in section 3. In section 4 we
give a computational study of the presented algorithms
which demonstrates that the achieved results are not only
of theoretical interest, but also that the techniques
developed may actually lead to practical algorithms.
Some concluding remarks are in section 5.

2. A Fast Algorithm

In this section we describe a fast algorithm for generating
the (n,k, l) Josephus permutation. The algorithm is a
variant of a tree based algorithm for classic Josephus
problem proposed by Lloyd [3]. The new variant of the
algorithm uses a heap like data structure and modified to
solve the generalized Josephus problem.

2.1. The Data Structures of the Algorithm

The parameters to the generalized Josephus problem are
the number of objectsn, the skip factork, and the number
of lives l . We make no assumptions about these
parameters. In particular,k or l or both, could be larger
than n. When the parameters are given, the following
notations are introduced for the generalized Josephus
problem in [5].

Let hi be theith selected object.

The sequenceh1,h2, · · · ,hl ·n is called the hit sequence.
Let xi be theith removed object.
The sequencex1,x2, · · · ,xn is called the kill sequence.

It is obvious that the kill sequence forms the(n,k, l)
Josephus permutation of(1,2, · · · ,n). In the following
sections, an object is calledactive before it is removed,
anddeadafter it is removed.

For the given generalized Josephus problem, there are
n objects and the skip factor isk. In the following
sections, we consider a more general Josephus problem,

where the numbers of lives for each object are not
necessary consistent. Assume at the beginning, the
number of lives for theith object bel i ,1≤ i ≤ n. We use
an arrayl to store the number of lives for each object.
When theith object is selected, the corresponding value
of l [i] is decreased by 1. If the value ofl [i] becomes 0, the
ith object is removed.

Let m = 2⌈logk⌉ and b = ⌈n/m⌉. The n objects
{1, · · · ,n} are divided evenly intob groups as follows.

{1, · · · ,m};{m+1, · · · ,2m}; · · · ;{(b−1)m+1, · · · ,n}

Each group hasm objects, except the last one.
For each groupj,1≤ j ≤ b, we use an arraya[j −1]

of size 2m−1 to store a full binary treeTj , with integers
in group j stored at its leaves
a[j − 1][m− 1],a[j − 1][m], · · · ,a[j − 1][2m− 2]. All of
the b full binary treesTj ,1 ≤ j ≤ b constitute a two
dimensional arraya. The ith active object inTj is the ith
active integer encountered in a left-to-right traversal of
the leaves ofTj . Also, a sequence of objectsy1, · · · ,yp is
in leaf order with respect to the treeTj , if for 1 ≤ i ≤ p, yi
is the ith active integer in treeTj . When the object in a
leaf is removed, the corresponding leaf isdead, otherwise
it is anactiveleaf.

The full binary treeTj is represented as an array
indexed binary tree a[j − 1]. For each node
a[j − 1][i],0 ≤ i ≤ m − 2, its left child node is
a[j − 1][2 ∗ i + 1] and its right child node is
a[j − 1][2 ∗ i + 2]. For each nodea[j − 1][i], its parent
node is a[j − 1][⌊(i − 1)/2⌋]. Every node of each tree
a[j−1] contains a count of the number of active leaves in
the subtree rooted at that node. This is the size of the
node. When an object is removed, the size of each subtree
containing the object is decreased since that object is now
dead.

Notice that the meanings of the values stored in the leaf
nodes and the non-leaf nodes of each treeTj are different.
It is obvious that the number of active leaves in the subtree
rooted at a leaf is 1 if the leaf is active, and 0 if the leaf
is dead. In order to distinguish the node type of each tree
Tj , we change the sign of integere stored in a leaf to−e.
Whenever we read a negative integer−e, we know that it
is a leaf node representing the objecte.

In addition, the trees are doubly linked together in a
circular fashion, with treeTj linked after the treeTj−1 and
before the treeTj+1. Two arraysprevandnextare used to
represent the backward and the forward links respectively.

2.2. An Algorithm for Generating Hit Sequences

The algorithm consists of two parts: the initialization
procedure and the main program. In the initialization

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 4, 1451-1457 (2013) /www.naturalspublishing.com/Journals.asp 1453

procedure, the data structure for the whole algorithm is
initialized as follows.

Algorithm 2.1: INIT(n,k,b,next, prev)

m← 2⌈logk⌉,b← ⌈n/m⌉
for i← 0 to b−1

do











































s← i ∗m, t← (i +1)∗m
for j ← 0 to m−1

do u[j]← 0
for j ← s to min(t−1,n−1)

do u[j−s]←−(j +1)
BUILD(u,a[i])
t← (i +1) mod b
next[i]← t, prev[t]← i

In the algorithm described above, the sub-algorithm
BUILD(u,v) is used to build the full binary treev
described in the last subsection with its leaves given by
the arrayu in the left-to-right order. A recursive function
COUNT(v, i) is used to count the number of active leaves
in the subtree rooted at nodev[i] in a bottom-up fashion.
A leaf node with size 1 is recognized by the sign of its
value.

Algorithm 2.2: BUILD (u,v)

procedure COUNT(v, i)
if m< i +2

then







if v[i]< 0
then return (1)
else return (0)

else







v[i]← COUNT(v,2∗ i +1)
v[i]← v[i]+COUNT(v,2∗ i +2)
return (v[i])

main
for i← 0 to m−1

do v[m+ i−1]← u[i]
COUNT(v,0)

It is clear that the algorithm COUNT(v, i) requires
O(m) = O(k) time and so the algorithm COUNT(v, i) for
each binary tree requiresO(k) time. Thus, the
initialization procedure requiresO(n) total time.

By the set ofb trees represented by the arraya, the
main program to generate the hit sequences consists of the
following:

We will show later that the total cost of these
operations to generate a hit object isO(logk). When two
consecutive trees become small, we then combine the two
trees into a new tree of height⌈logk⌉. Such a combining
operation is used to guarantee that the movement between
trees when generating a hit object is limited to one or two.
By amortizing the cost of the operations among the dead

objects in the two original trees, we can maintain the
O(logk) cost for each hit object.

Algorithm 2.3: ALGORITHM-L(n,b)

i← 0, r ← 0, t← b−1
while i < n

do







TREE(r, t)
j ← LEAF(r, t)
HIT(i, j, r, t)

In the algorithm ALGORITHM-L(n,b), three
subalgorithms are called. The sub-algorithm TREE(r, t) is
used to locate the tree containing the next active object to
be hit. The sub-algorithm LEAF(r, t) is used to find the
next active leaf to be hit. The sub-algorithm HIT(i, j, r, t)
is used to output the next hit object and adjust the data
structure. In these three sub-algorithms, the variabler
plays an important role. The variabler records the
number of active objects to the right of currently hit leaf
node in the full binary tree containing it. This variable is
very useful to find the position of the next hit object in
our data structures. With the changing of the hit
sequences, the variabler changes accordingly. The
variablet is the index of the full binary tree containing the
active leaf to be hit.

Algorithm 2.4: TREE(r, t)

if t = next[t] and r < k
then r ← k+a[t][0]−1− (k− r−1) mod a[t][0]

else
{

while r < k
do t← next[t], r ← r +a[t][0]

Algorithm 2.5: LEAF(r, t)

j ← 0,nxt← r−k
while j +1< m

do











rs← SIZE(a[t][2∗ j +2])
if r− rs< k

then j ← 2∗ j +2
else j ← 2∗ j +1, r ← r− rs

r ← nxt
return (j)

In the algorithms above, the function SIZE(a[t][j])
returns the number of active leaves in the subtree rooted
at the nodea[t][j].

Algorithm 2.6: HIT(i, j, r, t)

h←−a[t][j]
output (h)
if l [h−1]> 1

then l [h−1]← l [h−1]−1
else K ILL (i, j, r, t)

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1454 L. Wang and X. Wang: Algorithms for a Generalized...

The sub-algorithm KILL (i, j, r, t) is the heart of the
whole algorithm which removes the dead leaf from the
current binary tree and adjusts the current data structures.

Algorithm 2.7: K ILL (i, j, r, t)

a[t][j]← 0
while j > 0

do j ← ⌊(j−1)/2⌋,a[t][j]← a[t][j]−1
if t 6= next[t]

then



























if a[t][0]+a[next[t]][0] = m

then
{

r ← r +a[next[t]][0]
COMBINE(t)

else if a[t][0]+a[prev[t]][0] = m

then
{

t← prev[t]
COMBINE(t)

The algorithm COMBINE(t) will combine the two
small treesa[t] anda[next[t]] into a new binary treea[t],
and the treea[next[t]] will no longer be used.

Algorithm 2.8: COMBINE(t)

x← next[t], i← 0
for j ← 0 to m−1

do
{

if a[t][m+ j−1]< 0
then u[i]← a[t][m+ j−1], i← i +1

for j ← 0 to m−1

do
{

if a[x][m+ j−1]< 0
then u[i]← a[x][m+ j−1], i← i +1

BUILD(u,a[t])
next[t]← next[next[t]], prev[next[t]]← t

Now we consider the time complexity for the whole
algorithm.

From the tests performed in the algorithm
K ILL (i, j, r, t), we know that at the beginning of each
execution of TREE(r, t), either there is exactly one tree
with active leaves, or for each treea[t] with active leaves
we have,

a[t][0]+a[next[t]][0]≥m≥ k.

It follows that there must be two trees with active
leaves for the while-loop body of TREE(r, t) to be
executed. Therefore, the while-loop body of each call of
TREE(r, t) is executed at most twice.

In the leaf search algorithm LEAF(r, t), the search
follows a path from the root of the treea[t] to a leaf
a[t][j]. Since each tree created by the algorithm has a
height of logk, the cost per iteration of the while-loop in
LEAF(r, t) is O(logk).

Next we consider the algorithm KILL (i, j, r, t). The
time cost of the algorithm consists of two parts. The first
part is a series of node value changes from the leafa[t][j]
to the roota[t][0]. Since the height of the tree is logk, the
time of the first part isO(logk).

The second part of the time cost is incurred by the
algorithm COMBINE(t). The cost of the algorithm is

dominated by the execution time of BUILD (u,a[t]) to
build the new full binary treea[t]. We already know the
time cost for this task isO(k). This part of cost can
amortized to each leaf of the tree as follows. In the
algorithm COMBINE(t), trees a[t] and a[next[t]] are
combined. When these trees are created, each hasm
active leaves. When the algorithm COMBINE(t) is
performed, these two trees havem active leaves andm
dead leaves. TheO(m) cost of the algorithm can thus be
divided evenly among the objects stored at them dead
leaves. Each such object is thus assigned a cost ofO(1).
Since each object is charged at most once, the total cost of
the algorithm COMBINE(t) performed in the whole
algorithm isO(n).

DenoteL =
n

∑
i=1

l i . Since there are totalL iterations for

the whole algorithm and each iteration requiresO(logk)
time. The time complexity of the whole algorithm is thus
O(L logk).

The space used by the algorithm is obviouslyO(n).

Theorem 1 The algorithm ALGORITHM-L(n,b) for
solving the generalized Josephus problem requires
O(L logk) time and O(n) space.

3. An Improved Algorithm

By exploring the following property of the hit sequences
for a given generalized Josephus problem, we can
improved the algorithm described in the last section
further. A similar property was mentioned in [5] with an
informal proof. The fact mentioned there seems right, but
the proof is not strict and incorrect. We will express this
useful property by a theorem and give a strict proof here.

We divide the hit sequence inton segments by the
successively removed objects as follows

r1, r2, · · · , rn.

The segmentr i is called roundi hit sequence. The last
object ofr i is theith removed object.

Theorem 2 For each fixed index i,1 ≤ i ≤ n, the hit
sequences ri can be uniquely formulated as ri = αsβ ,
where s is a positive integer, and both of the sequencesα
andβ are sequences of unique elements of{1,2, · · · ,n}.

Proof.We consider the hit sequencer i for fixed index i.
There has beeni − 1 objects removed beforer i . The
current n− i + 1 objects remained can be written in
decreasing order byp1, p2, · · · , pn−i+1. The positionpd is
the starting position where its predecessorxi−1 was just
removed. Then the next object hit will be
h1 = p1+(d+k−1) modn−i+1. In general, suppose|r i | = t,
and for each 1 ≤ j ≤ t,
d j = 1+(d+ jk−1) modn− i +1, h j = pd j , then the hit
sequencer i can be written ash1,h2, · · · ,ht .

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 4, 1451-1457 (2013) /www.naturalspublishing.com/Journals.asp 1455

If all of the objectsh1,h2, · · · ,ht are distinct, then we
know the lives of the objectht must be 1, and it is the
next removed object. This is the case ofα = /0 andβ =
{h1,h2, · · · ,ht}.

Otherwise, the lives of each object in{h1,h2, · · · ,ht}
must be greater than 1. In this case, there must be a cycle
in {h1,h2, · · · ,ht}. Suppose the cycle be
{hu,hu+1, · · · ,hv}, 1≤ u≤ v≤ t. This means that all of
the objectsh1,h2, · · · ,hv are distinct, andhv+1 = hu is the
first object repeatedly hit. We can show thatu = 1, since
otherwisehu−1 = hv has been hit repeatedly beforehu.
Therefore, we know that{h1,h2, · · · ,hv} forms a cycle of
the hit sequence.

Suppose thatl∗ = min{l [h j] | 1 ≤ j ≤ v}, and
j∗ = min{ j | l [h j] = l∗,1≤ j ≤ v}. It is readily seen that
h j∗ will be the next object to be removed. That ish j∗ = ht .
If we denoteα = {h1,h2, · · · ,hv}, β = {h1,h2, · · · ,h j∗},
ands= l∗−1, then the hit sequencer i can be written as
r i = αsβ . We can easily seen thats> 0, sincel∗ > 1. In
the special case ofj∗ = v, we haver i = αs+1. �

From Theorem2, we know that the lives of the
current objects can be easily updated from the
information in determiningr i = αsβ .

First, if p j 6∈ {h1,h2, · · · ,ht}, then the lives ofp j
remains unchanged.

From the proof of Theorem2 we know that the last
object of β is the removed objectxi of round r i . So, if
p j ∈ β , then l [p j] = l [p j]− s− 1. If p j ∈ α and p j 6∈ β ,
thenl [p j] = l [p j]−s.

According to the Theorem2, we can improve the
algorithm for solving the generalized Josephus problem
to a new algorithm ALGORITHM-N(n,b) as follows.

The sub-algorithm HIT(i, j, r, t) of the algorithm

ALGORITHM-L(n,b) is changed to follows.

Algorithm 3.1: HIT(i, j, r, t)

h←−a[t][j]
q[g]← h,g← g+1
if g= 1 or l [h−1]< l [q[min]−1]

then
{

min← g−1
p[0]← t, p[1]← j, p[2]← r

if l [q[min]−1] = 1 or g> 1 and h= q[0]

then
{

CHANGE(t, j, r,g,min)
K ILL (i, j, r, t)

In the algorithm described above, we use an arrayq to
record the hit sequenceα of round r i as stated in
Theorem2. A variablemin is used to record the index of
α with minimal lives. When an object with only one life
is found or a cycle of the hit sequence is found, we then
have determinedr i = αsβ . With the minimal lives inα
recorded bymin, we can easily update the lives of the

current objects according to Theorem2 by algorithm
CHANGE(t, j, r,g,min) as follows.

Algorithm 3.2: CHANGE(t, j, r,g,min)

d← l [q[min]−1]
for i← 0 to min

do l [q[i]−1]← l [q[i]−1]−d
for i←min+1 to g−2

do l [q[i]−1]← l [q[i]−1]−d+1
g← 0, t← p[0], j ← p[1], r ← p[2]

In the two sub-algorithms above, another arrayp is
used to record the informationt, j, r on the tree containing
the next removed active object.

Other parts of the algorithm ALGORITHM-L(n,b)
remains unchanged.

Suppose for each hit sequencer i , the corresponding
cyclic hit sequence stated in Theorem2 be αi , and the
length ofαi be denoted asti ,1≤ i ≤ n.

DenoteT =
n

∑
i=1

ti .

Since there are totallyT iterations for the whole
modified algorithm and each iteration requiresO(logk)
time. The time complexity of the improved algorithm is
thusO(T logk).

The space used by the algorithm is obviouslyO(n).

Theorem 3 The improved algorithm
ALGORITHM-N(n,b) for solving the generalized
Josephus problem requires O(T logk) time and O(n)
space.

The modified algorithm is indeed an improvement on

the algorithm described in the last section, sinceT =
n

∑
i=1

ti

is much smaller thanL =
n

∑
i=1

l i . For example, ifn and k

are relatively prime, and each object has a uniform
number of livesl , then the hit sequence will have the form
α l−1β , whereα and β are permutations of{1,2, · · · ,n}
and β is the Josephus permutation forl = 1 [5]. So, in

this case, the length ofα equals ton, andT =
n

∑
i=1

ti = n,

L =
n

∑
i=1

l i = l ∗ n. The original algorithm requires

O(l ∗nlogk) time, while the improved algorithm requires
O(nlogk) time even though the number of livesl may
tend to infinite.

4. Computational Experiments

In this section, we give some computational experiments
on the performance of the algorithms for the generalized
Josephus problem.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1456 L. Wang and X. Wang: Algorithms for a Generalized...

Table 1: Comparing algorithms for smallk andl : Running times
in seconds

n k l Alg-R Alg-L Alg-N
102 4 6 0 0 0
103 8 9 0.031 0 0
104 16 12 1.81 0.109 0.047
105 32 15 177.029 1.342 0.421
106 64 18 ***** 18.876 4.571
107 128 21 ***** 259.974 50.653

Table 2: Comparing algorithms for smalll and increasingk:
Running times in seconds

n k l Alg-R Alg-L Alg-N
105 102 15 175.048 1.685 1.951
105 103 15 174.969 2.201 2.591
105 104 15 175.172 2.652 2.824
105 105 15 174.829 2.793 0.639
105 106 15 174.096 2.808 0.671
105 107 15 174.268 2.901 0.641
105 108 15 174.845 2.917 0.671
105 109 15 174.564 2.917 0.655

Our computational experiments were carried out on a
personal computer with Pentium(R) Dual Core CPU 2.10
GHz and 2.0 Gb RAM. The word size of the processor is
w= 32.

We compare the three algorithms, theO(n2) time
algorithm in [5], denoted by ALGORITHM-R(), the
algorithm ALGORITHM-L() described in section 2 and
the improved algorithm ALGORITHM-N() described in
section 3 for 5 different test data sets.

In order to compare the algorithms with
ALGORITHM-R(), the data sets are designed with a
uniform number of lives for each test case.

The running times in seconds of the 3 algorithms for
computing the generalized Josephus permutations with
small parametersk and l are compared in Table1. The
times reported for each value ofn indicate the results of
running repeated 10 times to mitigate the effects of
random fluctuations in system overhead.

In the following tables, the entries marked with symbol
***** could not be solved due to insufficient memory or
time.

As expected, in our experiments for smallk andl , the
improved algorithm performs best with the number of
objectsn increasing. For this data set the Algorithm-R
exhibits anΩ(n2) time bound in the worst case.

Table 2 gives the running times in seconds of the 3
algorithms for computing the generalized Josephus
permutations with small parametersl and increasingk.

For this data set, the time costs of the 3 algorithms have
only small changes as the parameterk increasing.

Table 3: Comparing algorithms forn andk fixed and increasing
l : Running times in seconds

n k l Alg-R Alg-L Alg-N
105 107 102 174.721 17.893 0.655
105 107 103 174.252 176.997 0.687
105 107 104 174.252 1767.79 0.641
105 107 105 174.221 ***** 0.655
105 107 106 796.755 ***** 0.655
105 107 107 904.894 ***** 0.641
105 107 108 910.572 ***** 0.761
105 107 109 915.517 ***** 0.686

Table 4: Comparing algorithms forn fixed and increasingk and
l : Running times in seconds

n k l Alg-R Alg-L Alg-N
105 3723359 102 173.955 19.921 0.655
105 41912239 103 173.784 198.588 0.671
105 126590963 104 173.987 1962.31 0.671
105 152585351 105 173.797 ***** 0.671
105 198676927 106 174.268 ***** 0.671
105 271830677 107 176.274 ***** 0.702
105 273068023 108 200.711 ***** 0.687
105 273068023 109 432.151 ***** 0.702

Table 3 gives the running times in seconds of the 3
algorithms for computing the generalized Josephus
permutations with parametersn and k fixed and
increasingl .

As expected, in our experiments for increasingl , the
time cost of the algorithm ALGORITHM-L() is increasing
with the parameterl increasing.

While the algorithm ALGORITHM-R() and the
improved algorithm ALGORITHM-N() are not affected by
the increasing of the parameterl .

The improved algorithm ALGORITHM-N() performs
best. For this data set the ALGORITHM-R() exhibits an
Ω(n2) time bound too.

Table 4 gives the running times in seconds of the 3
algorithms for computing the generalized Josephus
permutations with parametersn fixed and increasingk
andl .

The effect of increasingk is not significant for the 3
algorithms.

Table 5 gives the running times in seconds of the 3
algorithms for computing the generalized Josephus
permutations with the 3 parametersn ,k andl increasing.

As expected, for this data set, the improved algorithm
performs best with the 3 parametersn ,k andl increasing.
The algorithm ALGORITHM-L() is affected significantly
by the parameterl and ALGORITHM-R() exhibits an
Ω(n2) time bound in the worst case.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 4, 1451-1457 (2013) /www.naturalspublishing.com/Journals.asp 1457

Table 5: Comparing algorithms forn, k and l increasing:
Running times in seconds

n k l Alg-R Alg-L Alg-N
102 195 102 0 0 0
103 1942 103 0.046 0.249 0.015
104 19420 104 2.013 29.702 1.575
105 194201 105 174.408 3795.01 0.702
106 1942007 106 ***** ***** 8.253

5. Concluding Remarks

We have proposed an efficient algorithm for computing
the generalized Josephus permutations. The time cost of
the new algorithm isO(T logk) andO(n) space is used.
For some special cases of the generalized Josephus

problem, T =
n

∑
i=1

ti = O(n). So our new algorithm

requires O(nlogk) time in these cases. This is a big
improvement on the previous algorithms.

For the general Josephus problem, whether the formula

T =
n

∑
i=1

ti = O(n) is always true is an open problem. We

will investigate the problem further.

Acknowledgement

The authors acknowledge the financial support of Science
and Technology of Fengze under Grant No.2009FZ24 and
2010FZ02 and the Haixi Project of Fujian under Grant
No.A099. The authors are grateful to the anonymous
referee for a careful checking of the details and for
helpful comments that improved this paper.

References

[1] W.W. ROUSE BALL AND H.S.M. COXETER.
Mathematical Recreations and Essays, Dover Publications
(1987).

[2] R.L. GRAHAM , D.E. KNUTH AND O. PATASHNIK .
Concrete Mathematics, Addison Wesley (1994).

[3] E.L. LLOYD. An O(nlogm) algorithm for the Josephus
problem. Journal of Algorithms4(3), (1983) 262–270.

[4] A. M. ODLYZKO AND H. S. WILF. Functional Iteration and
the Josephus Problem.Glasgow Math. J.33, (1991) 235–
240.

[5] F. RUSKEY AND A. W ILLIAMS . The Feline Josephus
Problem.Theory of Computing Systems, 50, (2012) 20–34.

[6] N. THERIAULT. Generalizations of the Josephus problem.
Utilitas Mathamatica58, (2000) 161–173.

Lei Wang, PhD
in Computer Science
from Georgia Institute
of Technology 2011.
Applied researcher at
Microsoft. Has experience
in computer science with
emphasis in algorithm
design. The areas of interest
are approximation and

randomized algorithms,mechanism design, market
equilibrium computation.

Xiaodong Wang,
Professor in Computer
Science Department of
Quanzhou Normal University
and Fuzhou University,China.
Has experience in
computer science and
applied mathematics.
The areas of interest
are design and analysis of

algorithms,exponential-time algorithms for NP-hard
problems,strategy game programming.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	A Fast Algorithm
	An Improved Algorithm
	Computational Experiments
	Concluding Remarks

