Appl. Math. Inf. Sci.7, No. 4, 1451-1457 (2013) N =) 1451

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070425

A Comparative Study on the Algorithms for a
Generalized Josephus Problem

Lei Wang and Xiaodong Warfg*

IMicrosoft AdCenter, Bellevue, WA 98004, USA
2Faculty of Mathematics and Computer Science, Fuzhou University,(5B0zhou , China
SFaculty of Computer Science, Quanzhou Normal University, 3620@nghou, China

Received: 3 Dec. 2012, Revised: 14 Jan. 2013, Accepted: 1220ihB.
Published online: 1 Jul. 2013

Abstract: The classic Josephus problem can be described as follows: Ther@hbjects, consecutively numbered from 1 through n,
arranged in a circle. We are given a positive integer k. Beginning witlsigdated first object, we proceed around the circle, removing
every kth object. After each object is removed, counting continuesdrthe circle that remains. This process continues until all n
objects have been removed. In a generalized Josephus problemmb&maf lives | is introduced for the problem. Each object has |
lives. The object is removed only when it has been selected | times. Ipaher we present a fast algorithm for generating the Josephus
permutation for the generalized Josephus problem. Our new algorithral®a be applied to a more general case of the generalized
Josephus problem where the lives for all objects can be differentiffileeand space complexities of new algorithms are O(Inlogk) and
O(n) respectively. The computational experiments demonstrate thathiwved results are not only of theoretical interest, but also that
the techniques developed may actually lead to considerably faster algarithm

Keywords. Josephus permutation, hit sequence, full binary tree

1. Introduction object is removed only when it has been selectedl for
times. This new variant of Josephus problem was called
In this paper we study a new variant of the Josephud-eline Josephus problem. In this generalized Josephus
problem [1,2,3]. problem, corresponding to the order in which the objects
The classic Josephus problem is defined as followsaré removed from the circle, there is also a particular
Suppose thah objects, consecutively numbered from 1 Permutation of the integers 2, --- , n. This permutation is
throughn, are arranged in a circle and that we are given acalled the(n, k,1) Josephus permutation. For example, the
positive integerk. Beginning with a designated first (6,4,2) Josephus permutationis (4 216 5 3). The classic
object, we proceed around the circle, removing ey Josephus problem is a special case of the generalized
object. After each object is removed, counting continuesJosephus problem whén= 1.
around the circle that remains. This process continues We are interested in algorithms which, given integers
until all n objects have been removed. The order in whichn, k andl, generate the correspondirig,k,|) Josephus
the objects are removed from the circle defines apermutation. AnO(n?) time algorithm usingd(n?) space
particular permutation of the integers2l---,n. This to compute the last removed object of a given generalized
permutation is usually called the(n,k) Josephus Josephus problem with objects is sketched irb]. The
permutation. For example, the (6,4) Josephus permutatiotime and space complexities of the algorithm are
is(421365). independent of the problem parametérsand |. The
There are also various generalizations on the classi@lgorithm is conceptual feasible. Due to t@¥n?) time
Josephus problem in the literaturd,§]. In a recent and space costs of the algorithm, the algorithm is only of
research §], the classic Josephus problem was theoretical interest. Itis not practical.
generalized as follows. A uniform number of livéss In this paper we present a practical algorithm for
introduced for the problem. Each object Halsves. The generating the generéh,k,|) Josephus permutation. Our

* Corresponding author e-mavangxiaodong@gqztc.edu.cn

© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070425

1452 NS 2 L. Wang and X. Wang: Algorithms for a Generalized...

new algorithm can also be applied to a more general casehere the numbers of lives for each object are not
of the generalized Josephus problem where the lives fonecessary consistent. Assume at the beginning, the
all objects can be different. The time and spacenumber of lives for théth object be;,1 <i < n. We use
complexities of the new algorithm (Inlogk) andO(n) an arrayl to store the number of lives for each object.
respectively. Throughout the paper, we assume that a redVhen theith object is selected, the corresponding value
RAM with a uniform cost criterion is the computational of I[i] is decreased by 1. If the value df] becomes 0, the
model. In particular, this means that each arithmeticith object is removed.

operation requires constant time. Let m = 2M°9K and b = [n/m]. The n objects

Th.e organization of the paper is as fqllows. In the {1,---,n} are divided evenly intd groups as follows.
following 4 sections we describe the algorithms and our

computational experience with the algorithms for
generating the generah,k,1) Josephus permutation. In
section 2 we describe a new variant tree based algorithm
for generating the hit sequences of the generalized=ach group hasobjects, except the last one.
Josephus problem and their correctness and complexities. For each groug,1 < j < b, we use an arrag/j — 1]
Based on the algorithm in section 2, an improved of size 2n— 1 to store a full binary tredj, with integers
algorithm for generating the (n,k,l) Josephus in group i stored at its leaves
permutations is proposed in section 3. In section 4 wea[j — 1][m— 1],a[j — 1][m],---,a[j — 1][2m— 2]. All of
give a computational study of the presented algorithmsthe b full binary treesTj,1 < j < b constitute a two
which demonstrates that the achieved results are not onlgimensional array. Theith active object inT; is theith
of theoretical interest, but also that the techniquesactive integer encountered in a left-to-right traversal of
developed may actually lead to practical algorithms.the leaves offj. Also, a sequence of objecys, -,y is
Some concluding remarks are in section 5. in leaf order with respect to the trd@g, if for 1 <i < p, y;
is theith active integer in tred;. When the object in a
leaf is removed, the corresponding leaflsad otherwise

2. A Fast Algorithm it is anactiveleaf.
The full binary treeT; is represented as an array
In this section we describe a fast algorithm for generatingindexed binary tree a]j — 1]. For each node
the (n,k,1) Josephus permutation. The algorithm is aaj — 1](i],0 < i < m— 2, its left child node is
variant of a tree based algorithm for classic Josephusyj — 1J[2 « i + 1] and its right child node is
problem proposed by Lloyd3]. The new variant of the a[j — 1][2 i + 2]. For each node|j — 1][i], its parent
algorithm uses a heap like data structure and modified tanode isa[j — 1]{| (i — 1)/2]]. Every node of each tree
solve the generalized Josephus problem. a[j — 1] contains a count of the number of active leaves in
the subtree rooted at that node. This is the size of the
node. When an object is removed, the size of each subtree
2.1. The Data Structures of the Algorithm gontéaining the object is decreased since that object is now
ead.
The parameters to the generalized Josephus problem are Notice that the meanings of the values stored in the leaf

the number of objects, the skip factok, and the number ~nodes and the non-leaf nodes of each feare different.
of lives |I. We make no assumptions about theseltis obvious that the number of active leaves in the subtree

parameters. In particu|ak, or | or both, could be |arger rooted at a leaf is 1 if the leaf is active, and 0 if the leaf
than n. When the parameters are given, the following iS dead. In order to distinguish the node type of each tree
notations are introduced for the generalized Josephudj, We change the sign of integeistored in a leaf to-e.

{4,---.m};{m+1,---.2m};---; {(b—21)m+1,--- ,n}

problem in p]. Whenever we read a negative integes, we know that it
_ . is a leaf node representing the object
Lethi be theith selected object. In addition, the trees are doubly linked together in a

circular fashion, with tredj linked after the tred;_; and
before the tredj1. Two arraysprevandnextare used to
represent the backward and the forward links respectively.

The sequenchy, hy,-- -, hy., is called the hit sequence.
Letx be theith removed object.
The sequencey, X, - - - , X is called the kill sequence.

It is obvious that the kill sequence forms the,k,I)
Josephus permutation dfl,2,---,n). In the following
sections, an object is calleattive before it is removed, 2.2. An Algorithm for Generating Hit Sequences
anddeadatfter it is removed.

For the given generalized Josephus problem, there are
n objects and the skip factor ik In the following The algorithm consists of two parts: the initialization
sections, we consider a more general Josephus problerprocedure and the main program. In the initialization

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 4, 1451-1457 (2013)www.naturalspublishing.com/Journals.asp NS 2 1453

16

procedure, the data structure for the whole algorithm isobjects in the two original trees, we can maintain the

initialized as follows. O(logk) cost for each hit object.
Algorithm 2.1: INIT(n, Kk, b, next prev) Algorithm 2.3 ALGORITHM-L(n,b)
m < 21°9Kl b« [n/m| i+ 0r«0t«+b-1
fori<Otob—1 whilei <n
S« ixmt<« (i+1)xm TREE(r,1)
for j«Otom—1 do ¢ j « LEAF(r,t)
do ufj] -0 HIT(i, j,rt)

for j «stomin(t—1,n—1)

oY doufj—g + —(j+1)

. In the algorithm AGORITHM-L(nb), three
BUILD(u, afi]) subalgorithms are called. The sub-algorithReE(r,t) is
L (.' +1) mod b : used to locate the tree containing the next active object to
nexfi] t, prevt] « i be hit. The sub-algorithm £AF(r,t) is used to find the

.) _next active leaf to be hit. The sub-algorithmtHii, j,r,t)

In the algorithm described above, the sub-algorithmis used to output the next hit object and adjust the data
BuiLD(u,v) is used to build the full binary tree/ structure. In these three sub-algorithms, the variable
described in the last subsection with its leaves given byp|ays an important role. The variable records the
the arrayu in the left-to-right order. A recursive function number of active objects to the right of currently hit leaf
COUNT(v,i) is used to count the number of active leaves node in the full binary tree containing it. This variable is
in the subtree rooted at nod] in a bottom-up fashion. very useful to find the position of the next hit object in
A leaf node with size 1 is recognized by the sign of its our data structures. With the changing of the hit

value. sequences, the variable changes accordingly. The
. variablet is the index of the full binary tree containing the
Algorithm 2.2: BuiLD(u,V) active leaf to be hit.
procedure COUNT(v;i) Algorithm 2.4: TREE(rt)
ifm<i+2
if viij <O ift =nex{t] and r <k
then then return (1) thenr < k+at][0] — 1— (k—r — 1) mod alt][0]
elsereturn (0) o whiler <k
dot < nextt],r < r +at][0]

V[i] <= V[i] + COUNT(V, 2% i +2)

{v[i} < COUNT(V,2%i+1)
else
return (v[i])

Algorithm 2.5: LEAF(r,t)

main
for i< Otom—-1 je0onxter—k
dovim+i—1] < u[i] while j+1<m
COUNT(Vv,0) rs < Size(alt][2x j + 2])
ifr—rs<k
It is clear that the algorithm GUNT(v,i) requires then j < 2xj+2
O(m) = O(k) time and so the algorithm @NT(v,i) for elsej«2«j+1r«r—rs
each binary tree requiresO(k) time. Thus, the < nxt
initialization procedure requiréd(n) total time. return (j)

By the set ofb trees represented by the arraythe
main program to generate the hit sequences consists of the In the algorithms above, the functionizg(alt][j])
following: returns the number of active leaves in the subtree rooted
at the nodeat][j].

Algorithm 2.6: HIT(i,j,r,t
We will show later that the total cost of these g AR

operations to generate a hit objectO¢logk). When two h « —alt][j]

consecutive trees become small, we then combine the twooutput (h)

trees into a new tree of heigfibogk]. Such a combining ifIlh—1] > 1

operation is used to guarantee that the movement between then Ilh—1] <+ I[h—1] -1
trees when generating a hit object is limited to one or two. gseKiLL (i,j,r.t)

By amortizing the cost of the operations among the dead

© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1454 NS P

L. Wang and X. Wang: Algorithms for a Generalized...

The sub-algorithm KL (i, j,r,t) is the heart of the

dominated by the execution time ofuB.D(u,a[t]) to

whole algorithm which removes the dead leaf from the build the new full binary treat]. We already know the
current binary tree and adjusts the current data structurestime cost for this task i€O(k). This part of cost can

Algorithm 2.7: KiLL(i, j,r,t)

alt][j] 0
while j >0
doj« [(j—1)/2],alt][j] < alt][j] -1
if t # next]
if a[t][0] + a[nex{t]][0] =m
ren {1 r e
then 3 seif alt][0] + alprevt] (0]
then { Compmel)

=m

The algorithm ©MBINE(t) will combine the two
small treesaft] and a[nex{t]] into a new binary treat],
and the tre@[nex{t]] will no longer be used.

Algorithm 2.8: COMBINE(t)

X <— nexft],i < 0
for j«Otom—-1
do if at]m+j—-1 <0
then ufi] «<— aft]m+j—1,i+i+1
for j«Otom—1
do ifax]m+j—1<0
then ufi] < aX/[m+ j—1],i «+i+1
BuILD (u,alt])
nexft] < nex{nexft]], prevMnexft]] « t

Now we consider the time complexity for the whole
algorithm.

From the tests performed in the algorithm
KiLL (i, j,r,t), we know that at the beginning of each
execution of REE(r,t), either there is exactly one tree
with active leaves, or for each tregt] with active leaves
we have,

alt][0] + a[nextt]][0] > m> k.

It follows that there must be two trees with active
leaves for the while-loop body of REE(r,t) to be

amortized to each leaf of the tree as follows. In the
algorithm QoMBINE(t), trees ajt] and a[nextt]] are
combined. When these trees are created, eachnhas
active leaves. When the algorithm o®BINE(t) is
performed, these two trees hawmeactive leaves andn
dead leaves. Th®(m) cost of the algorithm can thus be
divided evenly among the objects stored at thelead
leaves. Each such object is thus assigned a co®X bf.
Since each object is charged at most once, the total cost of
the algorithm ©MBINE(t) performed in the whole
algorithm isO(n).

n

Denotel = lel Since there are totél iterations for

the whole algorithm and each iteration reqw@(éogk)
time. The time complexity of the whole algorithm is thus
O(Llogk).

The space used by the algorithm is obviousiy).

Theorem1 The algorithm ALGORITHM-L(n,b) for
solving the generalized Josephus problem requires
O(Llogk) time and @n) space.

3. An Improved Algorithm

By exploring the following property of the hit sequences
for a given generalized Josephus problem, we can
improved the algorithm described in the last section
further. A similar property was mentioned iB][with an
informal proof. The fact mentioned there seems right, but
the proof is not strict and incorrect. We will express this
useful property by a theorem and give a strict proof here.

We divide the hit sequence into segments by the
successively removed objects as follows

r17r27'“ 7rn-

The segment; is called round hit sequence. The last
object ofr; is theith removed object.

Theorem 2 For each fixed index,1 < i < n, the hit

executed. Therefore, the while-loop body of each call ofsequences;rcan be uniquely formulated as + asg,

TREE(r,t) is executed at most twice.
In the leaf search algorithm HaF(r,t), the search
follows a path from the root of the treaft] to a leaf

where s is a positive integer, and both of the sequences
andf are sequences of unique element$P, --- n}.

aft][j]. Since each tree created by the algorithm has &roofWe consider the hit sequencgfor fixed indexi.

height of logk, the cost per iteration of the while-loop in
LEAF(r,t) is O(logk).
Next we consider the algorithm IKL (i, j,r,t). The

There has beem — 1 objects removed beforg. The
currentn — i + 1 objects remained can be written in
decreasing order by, p2,-- -, Pn_i+1. The positionpy is

time cost of the algorithm consists of two parts. The firstthe starting position where its predecesson was just

part is a series of node value changes from thed@afj]
to the roota]t][0]. Since the height of the tree is Ikgthe
time of the first part i€D(logk).

removed. Then the next object hit will be
h1 = Py (dyk-1) modn-it1- IN general, supposgi| = t,
and for each 1 <] <

The second part of the time cost is incurred by thedj = 1+ (d+ jk —1) modn—i+1, hj = pg;, then the hit

algorithm QoMBINE(t). The cost of the algorithm is

sequence; can be written abg, hy,--- by

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 4, 1451-1457 (2013)www.naturalspublishing.com/Journals.asp NS 2 1455

16

If all of the objectshy, hy,--- h; are distinct, then we current objects according to Theoretnby algorithm
know the lives of the objecty must be 1, and it is the CHANGE(t, j,r,g, min) as follows.

next removed object. This is the casemt= 0 andf3 =
{h1,hg,--- h}. Algorithm 3.2: CHANGE(t, j,r, g, min)

Otherwise, the lives of each object {ing,hy,--- ,h} d I [g[mir] — 1]
must be greater than 1. In this case, there must be a cych;Or i — O0tomin
in {hl,h27 ,h}. Suppose the cycle be do I [qfi] — 1] « I[qfi] — 1] — d
{hu,hut1, - hv} 1 <u<v<t. This means that all of for i « min+1tog— 2
the objectshl,hz, .-+, hy are distinct, andh,.; = hy is the dol[qfi] — 1] « 1[qfi] — 1] —d +1
first object repeatedly hit. We can show that 1, since g 0t pl0],j + p[U,r « p[2]
otherwiseh,_1 = h, has been hit repeatedly befohg. ’ ’ '
Therefore, we know thaths, hy,--- ,hy} forms a cycle of

the hit sequence. _ _ In the two sub-algorithms above, another arfays
Suppose thatl* = min{l[hj] | 1 < j < v}, and used to record the informatidnj,r on the tree containing

j*=min{j | 1[hj] =1*,1 < j <v}. Itis readily seen that the next removed active object.
h;« will be the next object to be removed. Thahis = h. Other parts of the algorithm AGORITHM-L(n,b)
If we denotea = {hy,hp,---,h,}, B = {hi,h2,--- ,hj<}, remains unchanged.
ands=1* —1, then the hit sequengg can be written as Suppose for each hit sequengethe corresponding
ri = aspB. We can easily seen that> 0, sincel* > 1. In cyclic hit sequence stated in Theorerbe a;, and the
the special case gf = v, we haver; = ast1. 0 length ofa; be denoted ag,1 <i <n.

From Theorem2, we know that the lives of the D < !

. . enoteT =) t;.

current objects can be easily updated from the p
information in determining; = a®°p. Since there are totallyl iterations for the whole

First, if p; ¢ {h1,hp,---,h}, then the lives ofp; modified algorithm and each iteration requir@$logk)
remains unchanged. time. The time complexity of the improved algorithm is

thusO(T logk).

F h f of Th k hat the |
rom the proof of Theorer# we know that the last The space used by the algorithm is obviousiy).

object of B is the removed object; of roundr;. So, if

pj € B, thenl[pj] =1[pj] —s— 1. lf pyc aandp; B, Theorem3 The improved algorithm

thenl[p;] =I[pj] —s. ALGORITHM-N(n,b) for solving the generalized
According to the Theoren2, we can improve the Josephus problem requires (Dlogk) time and Qn)

algorithm for solving the generalized Josephus problemspace.

to a new algorithm AGORITHM-N(n,b) as follows.

The sub-algorithm I (i, j,r,t) of the algorithm
ALGORITHM-L (n,b) is changed to follows. the algorithm described in the last section, siiice thi

n
is much smaller thalh = ZI. For example, ifn andk

The modified algorithm is indeed an improvement on
n

Algorithm 3.1 HIT(I, J.r,0) are relatively prime, and each object has a uniform

h« —alt][]] number of lived, then the hit sequence will have the form
qlg) < h,g«g+1 a'-1B, wherea and are permutations of1,2,---,n}
if g=1or I[h—1] < I[g[min — 1] and 8 is the Josephus permutation foe 1 [5]. So, in
. n
min<—g—1 ; _ -
then) this case, the length af equals ton, andT = $ t; = n,
pIO] ¢, pit] « J,piZ -1 2!

if I[g[min] —1] =1o0r g>1and h=q[0]
th {CHANGE(t,j,r,g,min)

L = ZI. = | x n. The original algorithm requires
KiLL (i, j,r,t)

O(l «nlogk) time, while the improved algorithm requires
O(nlogk) time even though the number of livésmay

tend to infinite.

In the algorithm described above, we use an agty
record the hit sequence of round r; as stated in
Theorem2. A variableminis used to record the index of 4. Computational Experiments
o with minimal lives. When an object with only one life
is found or a cycle of the hit sequence is found, we thenin this section, we give some computational experiments
have determined; = asB. With the minimal lives ina on the performance of the algorithms for the generalized
recorded bymin, we can easily update the lives of the Josephus problem.

© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1456 NS 2 L. Wang and X. Wang: Algorithms for a Generalized...

Table 1. Comparing algorithms for smalandl: Running times ~ Table 3: Comparing algorithms fon andk fixed and increasing

in seconds I: Running times in seconds

n K I | AlgR Alg-L Alg-N n k | Alg-R Alg-L Alg-N

1 4 6 [0 0 0 1 10/ 1% | 174721 17.893 0.655

1834 ?6 ?2 2-2?1 8109 %047 10° 10' 1C® | 174.252 176.997 0.687

16 32 15| 177029 1342 0421 10° 107 10* | 174.252 1767.79 0.641

16 64 18| *** 18876 4571 100 10" 10° | 174221 **** 0.655

107 128 21| ** 250974 50.653 10° 107 10° | 796.755 *** (0.655
10° 107 107 | 904.894 **++ (0.641
10° 107 10° | 910.572 v 0.761
10° 107 10° | 915517 *** 0.686

Table 2: Comparing algorithms for small and increasing<:
Running times in seconds

n k | Alg-R Alg-L Alg-N

10° 108 15| 175.048 1.685 1.951 Table 4: Comparing algorithms fon fixed and increasing and

10° 10° 15| 174969 2201 2.591 I Running times in seconds

10° 10* 15| 175.172 2.652 2.824 n K [AlgR AlgL AlgN

10° 10° 15| 174.829 2.793 0.639 10° 3723359 18 | 173955 19.921 0.655

100 106 15| 174.096 2.808 0.671 10° 41912239 18 | 173.784 198588 0.671

10° 107 15| 174268 2.901 0.641 10° 126590963 1H | 173.987 1962.31 0.671

10 108 15| 174.845 2917 0.671 10° 152585351 19 | 173.797 * 0671

16 10° 15| 174564 2917 0.655 10° 198676927 10 | 174.268 *+x 0671
10° 271830677 10| 176.274 ** (0.702
10° 273068023 1B | 200.711 ** 0.687
10° 273068023 19| 432.151 * 0.702

Our computational experiments were carried out on a
personal computer with Pentium(R) Dual Core CPU 2.10
GHz and 2.0 Gb RAM. The word size of the processor is
w=32.

We compare the three algorithms, ti@n?) time
algorithm in B], denoted by AGORITHM-R(), the
algorithm ALGORITHM-L() described in section 2 and
the improved algorithm AGORITHM-N() described in
section 3 for 5 different test data sets. . . .

. ... with the parametdrincreasing.

In order to compare the algorithms with) .

ALGORITHM-R(), the data sets are designed with a_While the algorithm AGORITHM-R() and the
uniform number of lives for each test case. |mproved a!gonthm AGORITHM-N() are not affected by

The running times in seconds of the 3 algorithms forthe mcregsmg of the parameter
computing the generalized Josephus permutations with ~1he improved algorithm AGORITHM-N() performs
small parameterk and| are compared in Tablé. The ~ Dest For this data set theL&ORITHM-R() exhibits an
times reported for each value ofindicate the results of £2(n) time bound too.
running repeated 10 times to mitigate the effects of Table4 gives the running times in seconds of the 3
random fluctuations in system overhead. algorithms for computing the generalized Josephus

In the following tables, the entries marked with symbol Permutations with parameters fixed and increasing
=% could not be solved due to insufficient memory or andl.
time. The effect of increasing is not significant for the 3

As expected, in our experiments for smiakndl, the algorithms.
improved algorithm performs best with the number of Table5 gives the running times in seconds of the 3
objectsn increasing. For this data set the Algorithm-R algorithms for computing the generalized Josephus
exhibits anQ (n?) time bound in the worst case. permutations with the 3 parametersk andl increasing.

Table 2 gives the running times in seconds of the 3 As expected, for this data set, the improved algorithm
algorithms for computing the generalized Josephusperforms best with the 3 parameters and| increasing.

Table 3 gives the running times in seconds of the 3
algorithms for computing the generalized Josephus
permutations with parameter®i and k fixed and
increasing.

As expected, in our experiments for increasinghe
time cost of the algorithm AGORITHM-L () is increasing

permutations with small parameterand increasing. The algorithm A GoRITHM-L() is affected significantly
For this data set, the time costs of the 3 algorithms havéby the parametet and ALGORITHM-R() exhibits an

only small changes as the paramétancreasing. Q(n?) time bound in the worst case.

@© 2013 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 4, 1451-1457 (2013)www.naturalspublishing.com/Journals.asp

Table 5: Comparing algorithms fom, k and | increasing:
Running times in seconds

n k I Alg-R Alg-L Alg-N
107 195 1iF]o 0 0
103 1942 16 | 0.046 0.249 0.015

104 19420 14 | 2.013 29.702 1.575
10° 194201 16 | 174.408 3795.01 0.702
10° 1942007 1B | weexx ok 8.253

Lei Wang, PhD
in Computer Science
from Georgia Institute
of Technology 2011.
Applied researcher at
Microsoft. Has experience
in computer science with
emphasis in algorithm
design. The areas of interest
are approximation and

randomized algorithms,mechanism design, market

5. Concluding Remarks

We have proposed an efficient algorithm for computing

the generalized Josephus permutations. The time cost of

the new algorithm iSO(T logk) and O(n) space is used.

For some special cases of the generalized Josephug

problem, T = Zit. = O(n). So our new algorithm

requires O(nlogk) time in these cases. This is a big
improvement on the previous algorithms.

Forthe general Josephus problem, whether the formula

T= Zt. =) is always true is an open problem. We

will investigate the problem further.

Acknowledgement

The authors acknowledge the financial support of Science
and Technology of Fengze under Grant No.2009FZ24 and
2010FZ02 and the Haixi Project of Fujian under Grant

No0.A099. The authors are grateful to the anonymous
referee for a careful checking of the details and for

helpful comments that improved this paper.

References

[1JW.W. Rouse BaLL AND H.S.M. COXETER
Mathematical Recreations and Essaipover Publications
(1987).

[2] R.L. GRAHAM, D.E. KNUTH AND O. PATASHNIK.
Concrete Mathematic#\ddison Wesley (1994).

[B]E.L. LLoyD. An O(nlogm) algorithm for the Josephus
problem. Journal of Algorithmg4(3), (1983) 262-270.

[4] A. M. ODLYZKO AND H. S. WiLF. Functional Iteration and
the Josephus ProblenGlasgow Math. J33, (1991) 235—
240.

[5] F. Ruskey AND A. WiLLIAMS. The Feline Josephus
Problem.Theory of Computing Systena®), (2012) 20-34.

[6] N. THERIAULT. Generalizations of the Josephus problem.
Utilitas Mathamaticas8, (2000) 161-173.

equilibrium computation.

Xiaodong Wang,
Professor in Computer
Science Department of
Quanzhou Normal University
and Fuzhou University,China.

Has experience in
computer science and
applied mathematics.

The areas of interest
are design and analysis of

algorithms,exponential-time algorithms for NP-hard
problems,strategy game programming.

© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	A Fast Algorithm
	An Improved Algorithm
	Computational Experiments
	Concluding Remarks

