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Abstract: In this paper we consider generalized Pareto distribuio@ct expressions and some recurrence relations for samgle
product moments of upper record values are derived. Fuathbaracterization of this distribution based on condéi@nd recurrence
relation of single moments of record values is presented.
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1 Introduction

Arandom variable&X is said to have generalized Pareto distribution (Hall antin&e[9]) if its probability density function
(pdf) is of the form

_BA+a) B \Ya
f(x) = (aX+B)2(aX+B) , x>0, a,B>0 (1.1)
and the corresponding survival function is
— B\ 1+(1/a)
F(x)_(axﬂg) , x>0, a,f>0 (1.2)

WhereF (x) = 1—F(x), a > —1, B > 0, thenF is said to be member of generalized Pareto distributiorhdti&l be
noted that form > 0 and—1 < a < 0 this model is, respectively, a Pareto distribution andwé?alistribution. Moreover
the survival function1.2) tends to the exponential survival function@gends to zero. This model is a flexible one due
to its properties, i.e. it has a linear mean residual lifectiom its coefficient of variation of the residual life is iant
and its hazard rate is the reciprocal of linear function.

For more details and some applications of this distributioa may refer to Hall and Wellne®]and Johnsomet al. [11].
Record values are found in many situations of daily life adl we in many statistical applications. Often we are
interested in observing new records and in recording themekample, Olympic records or world records in sport.
Record values are used in reliability theory. Moreoverséhstatistics are closely connected with the occurrencessti

of some corresponding non homogeneous Poisson procesinusiaack models. The statistical study of record values
started with Chandleig], he formulated the theory of record values as a model focesgive extremes in a sequence of
independently and identically random variables. FeBgghve some examples of record values with respect to gagblin
problems. Resnick2?] discussed the asymptotic theory of records. Theory of nlea@lues and its distributional
properties have been extensively studied in the literafareexample, see, Ahsanullab][ Arnold et al. [2,3], Nevzorov

[18] and Kamps 12] for reviews on various developments in the area of records.

We shall now consider the situations in which the record esl(e.g. successive largest insurance claims in non-life
insurance, highest water-levels or highest temperatuheshselves are viewed as "outliers” and hence the second or
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third largest values are of special interest. Insurancinslan some non life insurance can be used as one of the
examples. Observing successk/argest values in a sequence, Dziubdziela and Kopocifi$kirpposed the following
model ofk record values, wheileis some positive integer.

Let {Xn,n > 1} be a sequence of identically independently distribuieidd) random variables withpdf f(x) and
distribution function(df) F(x). The j—th order statistics of a samp{&, X, ..., Xn) is denoted by;:,. For a fixk > 1

we define the sequene{U,ﬁk), n > 1} of k upper record times ofX,,n > 1} as follows

0l 1

k . . K .
Ul’(lJr):L: mln{j > Ur(| ) : Xj 1) +k+1> &ék):Uék)Jrkfl}'

The sequencéYrSk), n> 1} with Yn(k) = )ﬂJ<k)'U<k)+kfl’n =1,2,... are called the sequenceslotipper record values of

{Xn,n>1}.

Fork=1andn=1,2,... we Writeul(l) = Up. Then{U,,n > 1} is the sequence of record times{of,,n > 1}. The

sequence{Yrsk),n > 1}, where Y¥ = X, is called the sequence & upper record values ofXn,n > 1}. For

convenience, we shall also takék) = 0. Note thatk = 1 we haveYrsl) = Xu,,n > 1, which are record value of

{Xn,n>1}. MoreoverYl(k) =min{Xy, Xz, ..., Xk = X1k}
Let {Xrgk), n > 1} be the sequence &fupper record values then frorh.8). Then thepdf of Xr(,k), n> 1is given by

000 = g INEOHF 13)

and the jointpd f of Xr(nk) andX,Sk), 1<m<n,n>2isgiven by
k" —

Fy w0 (X Y) = (=D (n—m—1)] [—In(F(x)]™*
< [INF(y) + I ™ I L2 1), X< (L.4)

We shall denote

) k Kk
I‘lrg:j;)k:E((XL(J()m))rv(xL(J()n))s)v 1<m<n-1 and rs=12...,
(r.0)

e =E(OS ) =i, 1<m<n-1 and r=12...,

(m
0. K
Hr(n,'rﬁ)k:E((XL(,(L))s):u,f&, 1<m<n-1 and s=12...,

Recurrence relations are interesting in their own righeyrare useful in reducing the number of operations necessary
obtain a general form for the function under consideratramthermore, they are used in characterizing the distdhat
which in important area, permitting the identification ofppdation distribution from the properties of the sample.
Recurrence relations and identities have attained impoetaeduces the amount of direct computation and hence
reduces the time and labour. They express the higher orderemis in terms of order moments and hence make the
evaluation of higher order moments easy and provide somelsichecks to test the accuracy of computation of
moments of order statistics.

Recurrence relations for single and product momentsretcord values from Weibull, Pareto, generalized Paretor, Bu
exponential and Gumble distribution are derived by PawatesSzynal 19,20,21]. Sultan P4], Saran and Singh2f],
Kumar [16], Kumar and Khan 17] are established recurrence relations for moments r@fcord values from modified
Weibull, linear exponential, exponentiated log-logisiitd generalized beta Il distributions respectively. Basdinan
and Ahsanullah4, 5] have proved recurrence relations for single and producherds of record values from generalized
Pareto, Lomax and exponential distributions respectivBlgcurrence relations for single and product moment of
generalized exponential distribution are derived by Krearal. [14] and Khanet al. [15] are characterized the
distributions based on generalized order statistics. Kafbf| investigated the importance of recurrence relations of
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order statistics in characterization. In this paper, waldigthed some explicit expressions and recurrence ratatio
satisfied by the single and product momentskofipper record values from the generalized Pareto distabuth
characterization of this distribution based on conditlomgectation and recurrence relations of single moments of
record values.

2 Relationsfor Single moment

First of all, we may note that for the generalized Paretaibistion in (1.1)

F(x) = (alxjf) £(x). 2.1)
The relation in 2.2) will be exploited in this paper to derive recurrence relas for the moments of record values from
the generalized Pareto distribution.
We shall first establish the explicit expression for singtementk record vaIueE((Xék))'). Using (1.3, we have
kn
(n—1)!,

By settingt = [F (x)]%/(1t9) in (2.2), we get

r

Nn:& =

[ nEI LR 0 (2.2)

n_ 1+ @B’k
ok = m}o(”p@)

Again by puttingw = —Int(1+@)/a we obtain

/‘1 (k+1)(1+a)+1
t ]
JO

+p-r [~ nt(l+a)/a]n—1dt'

r n( B\ i r 1
doar ok (§) 52 (b) e e e

Remark 2.1: Fork =1 in (2.3) we deduce the explicit expression for single moments otupgcord values from
the generalized Pareto distribution.
Recurrence relations for single momentkaipper record values fronhf (1.2) can be derived in the following theorem.
Theorem 2.1: For a positive integek > 1 and forn > 1 andr =0,1,2,.. .,

__ar n_ .0 Br (r-1)
(1 (1+ C{)k) un:k - un—l:k"’ (1+ a)kun:k : (2-4)
Proof We have from equationd (3
n_ K /'°° L (B N 11E o 1k—1
o= oy Jy X I IMFOI OO (xdx (2.5)

Integrating by parts treating (x)]<~1f (x) for integration and the rest of the integrand for differatitin, we get

T e Tl AR S UG DR

the constant of integration vanishes since the integraidened in 2.5) is a definite integral. On usin@ (1), we obtain

= Bt e (9 X EANE HE oo

+B X Hn(ER) HEO0M ()

and hence the result given i@.4).
Remark 2.2 Settingk =1 in (2.4) we deduce the recurrence relation for single moments oéupgrord values from
the generalized Pareto distribution.
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3 Reationsfor Product moment

On using (.4), the explicit expression for the product moment& oécord valuesygﬁ:)k can be obtained

(rs) _ K" o T E 1)
Bk = Ty X O™ G0 (3.1)
where “ B B B
0= [ VI-InE(y) +In(ECoI™ ™ HF ) (y)dy (3.2)

By settingw = In(F(x)) — In(F(y)) in (3.2), we obtain

_ n-m B s 3 S [ (X)]k+(p—s)a/(l+a)l-(n7m)
G(x) = (1+a) (5) pzo(l)p<p> [(1+a)k+a(p—s)m

On substituting the above expressiorGik) in (3.1) and simplifying the resulting equation, we obtain

By S o 1
ook = (L @K™ () FZOQZF”F’”(;) (;) “Ta+ okt a(p—s MA+ ak+a(pra—r—s™

(3.3)
Remark 3.1 Settingk =1 in (3.3) we deduce the explicit expression for product momentsainetvalues from the
generalized Pareto distribution.
Making use of 2.1), we can drive recurrence relations for product momentswuyfper record values

Theorem 3.1: Forl<m<n-—2andr,s=12...,

as Bs 1
(1 (1+a) )IJmnk I‘lmn 1k+ (1+a)k“r§r:rfk ) (34)
Proof: From equation1.4 forl<m<n-—2andr,s=0,1,2,...,
(rs) _ K" /"" (S reyme1 ()
B = =i ==yt Jp X [N OOI™ 5 (i (35)

where

= [ Vn(Fy) + InFoo)™ ™ )y

Integratingl (x) by parts treatingF (x)]“"1f(y) for integration and the rest of the integrand for differatitn, and
substituting the resulting expression B5), we get

(ts) _ ,(r9) KT Y
um,n:k*um,nfl:kJrk(m_l)!(n_m_l)!/o /x XyS

=y = n—-m-1rz, f(X)
x[=In(F(y)) +In(F (x))] 1[F(X)]k[,:(x)]f(y)dydx,

the constant of integration vanishes since the integriinis a definite integral. On using the relatich ), we obtain

+ s« // Xy*[—In(F{
“m”k ”m” k(1 +a)(m—1)!(n—m—1)!

<)+ I ™ HFO0R L (e B [ ./'°° Xy

m-1

X [=In(F (x)]™ *[=In(F () + In(F (x))]" ™ [F ()<

and hence the result given iB.4).

Remark 3.2 Settingk =1 in (3.4) we deduce the recurrence relation for product moments péugecord values from
the generalized Pareto distribution.

One can also note that Theorem 2.1 can be deduced from Th&otdwy puttings = 0.
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4 Char acterization

Let {Xn,n > 1} be a sequence @fi.d continuous random variables withf F(x) and pdf f(x). Let Xy, be then—th
upper record values, then the conditiopelf of Xy, givenXym =x, 1 <m<ninview of (1.3) and (L.4), is

(nTl_l)! [—InF (y) +1 nl:_(x)]nml%, X>y. (4.1)

Theorem 4.1: LetX be an absolutely continuous random variable wlitt~ (x) andpdf f(x) on the support0, ), then
form<n,

f(Xum [ Xum =X) =

[(ax+B)(1+a)" ™~ B]
a

— [3 1+(1/a)
F(x)f(aXJrB) , x>0, a,>0.

EXumXum =X =

(4.2)

if and only if

Proof: From @.1), we have

E D Xum =X = g | "y fin(EX)m Iy 4.3)

(n—m-—1)! Jx F(y) F(x)
_ 1+
By settingt = In(%) = '”(Zﬁfé)( e from (1.2) in (4.3), we obtain
1

E[XU(n)lxu(m) = X] = /°°[(ax+B) at/(1+a) B]tnfm—leftdt

a(n—m—1)! Jo
~ (ax+B) /'°° —[1—a/(1+a)jten—m-1 4 B /‘oo —tyn—m—1
—a(n—m-1)!Jo © ! dt a(n—m—1)!Jo et dt

Simplifying the above expression, we derive the relatioregiin @.2).
To prove sufficient part, we have from.(@) and .2

m /X " Y- INE(Y) + INF OO ™ L6 (y)dy = F ()M (), (4.4)
where
He(x) = LOXF B)(l; a)" "B
Differentiating @.4) both sides with respect tq we get
(n—m—-2)! / YI=InF(y) +InF ()" zi%f(y)dyf(X)Hr(X)JrF_(X)Hr/(X)
) Hy (%) _ (1+a)

F(¥)  [Ha(0) —H(x)]  (ax+p)
which proves that

- B 1+(1/a)
F(x)f(aXJrB) , x>0, a,>0.

Theorem 4.2: Letk > 1 is a fix positive integen, be a non- negative integer atdbe an absolutely continuous
random variable withpd f f(x) andcdf F(x) on the support0, ) , then

__ar M _ .0 Br -y
(1 (1+a)k)“ﬂk Hn-ait ke (4-5)

if and only if

= B 1+(1/a)
F(X)_(aerB) , x>0, a,>0.
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Proof: The necessary part follows immediately from equati®d@)( On the other hand if the recurrence relation in
equation 4.5) is satisfied, then on using equatidn3), we have

S X E I

B ﬁ X nEoo) 2 G0k o

ark?

STy X nFO (g

+<1+rfr3>r—<knn—1>!/omxrl['n<F_(x>>]”l[F‘(x)]“f(x)olx. (4.6)

Integrating the first integral on the right hand side of etuai4.6), by parts and simplifying the resulting expression,
we find that

rk" ® o1 = N L[ E (a k-1
T AR S L)
— ax B B
X{F(x)—(1+a+1+—a)f(x)}dx_o 4.7)
Now applying a generalization of the Miintz-Szasz Theofldmiang and Lin, L] to equation 4.7), we get
fx) 1+a
() ax+p

which proves that

=\ B 1+(1/a)
F(X>7(ax+[§) , x>0, a,8>0.

5 Applications

The results established in this paper can be used to deteth@mean, variance and coefficients of skewness and laurtosi
The moments can also be used for finding best linear unbiatedstor (BLUE) for parameter and conditional moments.
Some of the results are then used to characterize the dibrib

6 Conclusion

In this study some exact expressions and recurrence mesdfio single and product moments of record values from the
generalized Pareto distribution have been establishethéfuconditional expectation and recurrence relatiosingle
moments of record values has been utilized to obtain a cteaization of the generalized Pareto.
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