
J. Stat. Appl. Pro. 14, No. 4, 493-505 (2025) 493

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/140401

Weighted Least Squares Estimator for ARPD(1) Model:

Methodology and Properties

Ahmed A. El-Sheikh1, Hamada A. A. Salama1 and Mohamed K. A. Issa2,∗

1Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical Research, Cairo University, Cairo,

Egypt
2Higher Institute of Cooperative and Managerial Studies, Cairo, Egypt

Received: 7 Jun. 2024, Revised: 21 Nov. 2024, Accepted: 23 Feb. 2025

Published online: 1 Jul. 2025

Abstract: Autoregressive models are fundamental tools in time series and panel data analysis, enabling the modeling of a variable

based on its past values to predict future outcomes. These models become particularly useful in panel data contexts, where observations

are collected across multiple entities over time. The Autoregressive Panel Data (ARPD) model is a prominent variant, offering insights

into both time-dependent and cross-sectional variations. Specifically, the ARPD model of order one, denoted as ARPD(1), is a first-

order model where the current value of the dependent variable is influenced by its immediate past value. The importance of the ARPD(1)

model lies in its ability to capture the dynamic behavior of the data while accounting for individual-specific effects. This paper focuses

on estimating parameters in a fixed-effect conditional ARPD(1) model using the Weighted Least Squares (WLS) method with different

weights. The study delves into the properties of this estimator, demonstrating its linearity, unbiasedness, and variance. Furthermore, the

performance of the WLS estimator is compared with alternative methods under the ARPD(1) framework. A Monte Carlo simulation is

conducted to evaluate the effectiveness of the WLS method versus the Ordinary Least Squares (OLS) method, using Mean Squared Error

(MSE), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) as benchmarks. The results from the simulation

highlight the superiority of the WLS estimator over OLS, making it the preferred choice for parameter estimation in ARPD(1) models.

Moreover, empirical estimation using real ARPD(1) data is performed, further reinforcing the advantages of the WLS approach over

traditional methods, particularly in terms of providing more accurate and reliable estimates.

Keywords: Conditional autoregressive panel; ARPD(1) model; fixed effect model; weighted least squares; Monte Carlo simulation.

1 Introduction

Time series analysis involves the statistical examination of time series data, which represents observations collected at
specific intervals or time periods. Numerous models are employed for representing and analyzing time series, with a
focus in this paper on conditional autoregressive panel data models (ARPD). Anderson and Hsiao [1] presented various
estimation methods for regression models with autoregressive covariance structures of order one. Their emphasis was
on maximum likelihood estimation for the stationary autoregressive panel data model. Levin and Lin [11] proposed an
autoregressive model to include individual fixed effects and a time trend in their model. The model with individual fixed
effects can be written:

yit = αi +ϕyi(t−1)+ εit , i = 1,2,3, . . . ,N and t = 1,2, . . . ,T (1)

where yit is the dependent variable for individual i at time t, yi(t−1) is the lagged dependent variable, αi represents the
individual fixed effects for individual i, ϕ is the autoregressive coefficient, and εit is the error term for individual i at time
t with mean 0 and variance σ2

ε . This model allows for more accurate and individualized analysis by considering both the
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time-specific trends and individual-specific effects. Also, they consider the ordinary least squares estimator of ϕ̂OLS which
is defined as:

ϕ̂OLS =

[

N

∑
i=1

T

∑
t=2

(yit − yi)
2

]−1[
N

∑
i=1

T

∑
t=2

(yit − yi)(yi(t−1)− yi)

]

(2)

Quah [13] derived the estimator of the ARPD(1) model panel data without a constant based on OLS as follows:

kit = ϕki(t−1)+ vit , i = 1,2,3, . . . ,N and t = 1,2, . . . ,T

where ki0 is the initial value, which is a given random variable with mean µ , variance σ2, and vit are independent
identically distributed with mean zero, variance σ2

v . The term kit represents the deviations of values around the mean,

specifically kit = yit − yi and ki(t−1) = yi(t−1)− yi(−1), where yi =
1
T ∑T

t=2 yit and yi(−1) =
1
T ∑T

t=2 yi(t−1). The cross-section

dimension N and the time dimension T are assumed to be of the same order of magnitude, that is, N = N(T ) = O(T ).
For the previous model, the ordinary least squares estimator ϕ̂OLS is considered, that is:

ϕ̂OLS =
∑N

i=1 ∑T
t=1 kitki(t−1)

∑N
i=1 ∑T

t=1 k2
i(t−1)

(3)

Issa et al. [10] employed the weighted symmetric method (WS) to estimate the parameters of a transformed second-
order autoregressive panel data model, ARPD(2), ensuring that no additional observations were lost. This study extends
the approach of Park and Fuller [12] by applying the weighted symmetric method (WS) to estimate parameters for the
ARPD(2) model with fixed effects. The model is specified as follows:

kit = ϕ1ki(t−1)+ϕ2ki(t−2)+ vit , i = 1,2,3, . . . ,N and t = 1,2, . . . ,T

Hsiao et al. [7] suggested a transformed likelihood approach to estimate a fixed effects ARPD(1) model. They proposed
conditions on the data generating process of exogenous variables to address the issue of ”incidental parameters,” showing
both are consistent and asymptotically normally distributed. Monte Carlo studies were conducted to evaluate MLE, MDE,
instrumental variable (IV), and generalized method of moments (GMM) estimators, showing the likelihood approach to
outperform GMM in terms of bias, root mean square error, and test statistics performance.

El-Sayed et al. [5] estimated the parameters of a second-order autoregressive panel data model. They used the ordinary
least squares (OLS) method to obtain the least squares estimators for these parameters. Additionally, they proved that these
estimators were linear, unbiased, and converged in probability.

Youssef et al. [14] investigated dynamic panel models, specifically applying the generalized method of moments
(GMM) to the ARPD(1) model, which had been widely used for its efficient estimators. They found that the efficiency
was influenced by the choice of the initial weight matrix. While it was common to use the inverse of the moment matrix,
the optimal initial weight matrix remained unknown, especially in system GMM estimation. The study introduced an
optimal weight matrix for the level GMM estimator and suboptimal ones for the system GMM, significantly enhancing
efficiency, particularly when the variance of individual effects was high compared to error variance.

Issa and Abdelwahab [9] derived estimators using the Weighted Symmetric (WS) method derived from the ARPD(2)
model. Additionally, they investigated various properties of the OLS estimator for the ARPD(2) model parameters,
particularly in the absence of homogeneity. The study examined the linearity, bias, variance, and asymptotic consistency
of the estimator and mathematically derived its asymptotic distribution.

Gonçalves and Perron [6] studied the bias and efficiency of alternative estimators for ARPD models characterized by
AR(1) process disturbances ARPD(1) and nonstationary regressors. They introduced a novel Combined GMM estimator
that integrates the strengths of the Arellano-Bond GMM [2] and Arellano and Bover system GMM [3] estimators. Through
simulations and empirical applications, they studied that the Combined GMM estimator outperforms existing estimators
in terms of efficiency. The underlying model for their analysis was a dynamic panel data model with ARPD(1) errors and
nonstationary regressors.

The research aims to reuse the WLS method using different weights to reduce the MSE of the estimator. To achieve
this, an estimator for the ARPD(1) model is derived using the Weighted Least Squares (WLS) method. The properties
of this estimator are discussed. A Monte Carlo simulation study is performed to compare the proposed estimator with
other methods across various sample sizes. Additionally, the ARPD(1) model is applied to real data for further evaluation.
The structure of the article is as follows: Section 2 presents the model and its assumptions. Section 3 derives the WLS
estimator for the ARPD(1) model and explores its properties. Section 4 conducts simulation studies to compare the OLS
estimator with the proposed WLS estimators (WLSA and WLSB). Section 5 applies these estimators to real data to assess
their practical effectiveness, reliability, and ability to accurately model various applications. Finally, Section 6 provides a
conclusion that summarizes the theoretical insights and the results from the simulation study.
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2 The Model and Assumptions

The first-order autoregressive panel data model takes the following form:

yit = αi +φyi(t−1)+ εit , i = 1,2,3, . . . ,N and t = 2, . . . ,T (4)

where yi(t−1) is an explanatory variable, yi0 is fixed, and φ is a coefficient such that |φ | < 1 for every i = 1,2,3, . . . ,N.
αi is an unobserved individual-specific time-invariant effect, which allows for heterogeneity in the means of the yit series
across individuals. We assume the cross-section dimension to be N and the time dimension T to be of the same order of
magnitude, that is, N = N(T ) = O(T ).

Summing Eq. (4) on both sides and dividing by T results in taking averages over the time dimension. Subtracting the
results yields a simpler implementation by applying the within transformation, which accounts for the disappearance of
individual effects by transforming the data into deviations with respect to individual means:

yit − ȳi = αi +φ
(

yi(t−1)− ȳi(−1)

)

+(εit − ε̄i), (5)

where

ȳi =
1

T

T

∑
t=2

yit , ȳi(−1) =
1

T

T

∑
t=2

yi(t−1), ε̄i =
1

T

T

∑
t=2

εit .

Equation (5) can be simplified as follows:

kit = φki(t−1)+ vit , i = 1,2,3, . . . ,N and t = 2, . . . ,T. (6)

where:
kit = yit − ȳi, ki(t−1) = yi(t−1)− ȳi(−1), vit = εit − ε̄i

is the unobservable error term with certain properties specified below. The following assumptions are applied:

1. The unknown parameter φ is constrained to |φ |< 1 for stationarity.
2. ki0 is fixed, and when N → ∞, the effect of εi1 will be negligible and tends to zero.
3. vit is independent and identically distributed (i.i.d.) with a Gaussian distribution with mean 0 and variance σ2

iε , and
the fourth moment of vit exists. Therefore, the function of variance determines the functional form of the conditional
heteroskedasticity.

4. E(ki(t−1),vit) = 0, meaning that the independent variables are predetermined in the sense that they are orthogonal to
the contemporaneous error term for every t = 2,3, . . . ,T , i = 1,2, . . . ,N.

5. E(vi j,vit) = 0 for all i 6= j and t 6= s.
6. E(vitv js | ki(t−1),k j(s−1)) = 0 for all i 6= j and t 6= s.

3 The Proposed Estimator and Its Properties

In this section, the estimator of the ARPD(1) panel data model and its properties will be derived using the WLS method.

Lemma 1. Based on the model of Eq. (6) with the same assumptions as above, by applying weighted least squares, we get

the within estimator of the Fixed Effects model:

φ̂W LS =
∑N

i=1 ∑T
t=2 wit kitki(t−1)

∑N
i=1 ∑T

t=2 witk
2
i(t−1)

Proof. Let Q be the weighted sum of squares of the random factors of model (??) of the estimated residuals:

Q =
N

∑
i=1

T

∑
t=2

witv
2
it =

N

∑
i=1

T

∑
t=2

wit

(

kit −φki(t−1)

)2
(7)

After differentiating equation (7) with respect to φ and setting the derivative to zero, we get:

φ̂W LS =
∑N

i=1 ∑T
t=2 wit kitki(t−1)

∑N
i=1 ∑T

t=2 witk
2
i(t−1)

(8)

The weighted wit suggested by Issa [8] will be reused in ARPD models as follows:
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A. wit = |ki(t−1)|
−2γi

B. wit = |ki(t−1)|
γi−1

where γi is the coefficient of heteroscedasticity according to Brewer [14]. Substitute the value of weight number (A) in
equation (8) to get:

φ̂W LS.A =
∑N

i=1 ∑T
t=2 |ki(t−1)|

−2γikitki(t−1)

∑N
i=1 ∑T

t=2 |ki(t−1)|−2γik2
i(t−1)

(9)

When γ = 0, we have φ̂WLS.A = φ̂OLS, and we revert to the form presented by Levin and Lin [2] in Eq. (2).
Substitute the value of weight number (B) in Eq. (8). to get:

φ̂W LS.B =
∑N

i=1 ∑T
t=2 |ki(t−1)|

γi−1kitki(t−1)

∑N
i=1 ∑T

t=2 |ki(t−1)|
γi−1k2

i(t−1)

(10)

When γ = 1, we have φ̂WLS.B = φ̂OLS, and we assume γi is a fixed effect for all times and individuals.

Lemma 2. Based on the model of the parameter of the WLS estimator in Eq. (8)., we can study the linearity, unbiasedness,

and variance.

var(φ̂W LS) =
N

∑
i=1

T

∑
t=2



witki(t−1)

(

N

∑
i=1

T

∑
t=2

wit k
2
i(t−1)

)−1




2

σ2
εi

Proof. Equation (8). can be rewritten as follows. It is easy to verify that φ̂WLS can be rewritten in linear form:

φ̂W LS =
N

∑
i=1

T

∑
t=2

zit kit (11)

where:

zit = wit ki(t−1)

(

N

∑
i=1

T

∑
t=2

witk
2
i(t−1)

)−1

(12)

By substituting kit from Eq. (6) into Eq. (11), we get:

φ̂W LS = φ +
N

∑
i=1

T

∑
t=2

zit vit (13)

By taking the expectation of Eq. (13) and using assumption (3), we get:

E(φ̂W LS) = φ

Since:
var(φ̂W LS) = E

[

φ̂W LS −φ
]2

(14)

Equation (13) can be rewritten as:

E
[

φ̂W LS −φ
]2

= E

[

N

∑
i=1

T

∑
t=2

zitvit

]2

E
[

φ̂W LS −φ
]2

= E

(

N

∑
i=1

T

∑
t=2

v2
itz

2
it

)

+ 2
N

∑
i< j

T

∑
t<s

T

∑
s=2

zit z jsvitv js

By using assumptions (4) and (5), we get:

E
[

φ̂W LS −φ
]2

= E

(

N

∑
i=1

T

∑
t=2

v2
itz

2
it

)

By using assumption (3), we get:

E
[

φ̂W LS −φ
]2

= E

(

N

∑
i=1

T

∑
t=2

v2
itz

2
it

)

=
N

∑
i=1

T

∑
t=2

z2
itσ

2
εi

(15)

By substituting the value of zit in Eq. (15), we obtain our proof.
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Note: By substituting the values of weighted A and B in Eq. (15)., we can obtain the form of the variance for the different
weights.

Table 1: ARPD (1) Model Estimation When γ = 0.3 and positive ϕ

(N,T) Criteria ϕ = 0.1 ϕ = 0.3 ϕ = 0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

(N,T) Criteria ϕ = 0.1 ϕ = 0.3 ϕ = 0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

10-25 MSE 9.8653 0.5925 0.5771 15.5340 0.4085 0.4021 29.3439 0.2334 0.2313

AIC -1717.69 34.7721 108.9326 -1695.75 29.5787 98.1899 -1740.99 29.2586 98.2333

BIC -1714.04 38.4287 112.5893 -1692.09 33.2353 101.8466 -1737.33 32.9153 101.8899

10-50 MSE 10.3450 0.5892 0.5726 16.3177 0.4041 0.3977 31.0651 0.2268 0.2248

AIC -3476.58 82.7537 279.5601 -3543.26 88.5938 266.1192 -3433.75 83.6207 256.2021

BIC -3470.84 88.4898 285.2962 -3537.53 94.3298 271.8553 -3428.02 89.3567 261.9382

10-100 MSE 10.5820 0.5872 0.5696 16.6988 0.4022 0.3959 31.8697 0.2239 0.2219

AIC -7179.37 107.6889 413.7131 -6770.07 155.9942 522.1895 -6694.52 210.1597 689.7848

BIC -7171.55 115.5044 421.5286 -6762.25 163.8097 530.0050 -6686.70 217.9753 697.6003

25-25 MSE 9.8639 0.5925 0.5772 15.5503 0.4088 0.4024 29.3392 0.2334 0.2313

AIC -1750.34 47.7524 137.7717 -1840.37 69.9339 181.0234 -1699.01 73.7937 192.5395

BIC -1746.69 51.4090 141.4283 -1836.71 73.5906 184.6800 -1695.35 77.4503 196.1962

25-50 MSE 10.3435 0.5893 0.5727 16.3218 0.4042 0.3978 31.0643 0.2268 0.2248

AIC -3462.85 63.1579 217.7020 -3384.90 73.4376 225.9134 -3366.23 96.3213 310.5586

BIC -3457.11 68.8940 223.4380 -3379.16 79.1737 231.6495 -3360.49 102.0574 316.2946

25-100 MSE 10.5798 0.5870 0.5693 16.6974 0.4022 0.3958 31.8646 0.2239 0.2219

AIC -6733.13 158.9565 512.0868 -6795.42 33.2238 277.8930 -6686.33 148.8547 462.2712

BIC -6725.32 166.7720 519.9023 -6787.60 41.0393 285.7086 -6678.51 156.6702 470.0867

50-25 MSE 9.8641 0.5924 0.5771 15.5476 0.4087 0.4023 29.3384 0.2335 0.2314

AIC -1749.71 16.6312 75.7734 -1781.58 38.9308 122.6424 -1665.51 92.1251 233.8779

BIC -1746.06 20.2878 79.4300 -1777.92 42.5875 126.2991 -1661.86 95.7817 237.5345

50-50 MSE 10.3470 0.5890 0.5724 16.3216 0.4042 0.3979 31.0505 0.2268 0.2248

AIC -3447.08 71.3939 233.5438 -3400.65 48.5380 195.4869 -3477.63 92.0927 276.1130

BIC -3441.34 77.1300 239.2799 -3394.91 54.2740 201.2230 -3471.89 97.8288 281.8491

50-100 MSE 10.5796 0.5870 0.5693 16.6962 0.4022 0.3959 31.8678 0.2239 0.2219

AIC -6642.47 182.3233 605.2486 -6747.58 232.1638 752.5092 -6820.25 106.0016 384.2487

BIC -6634.66 190.1388 613.0642 -6739.76 239.9793 760.3247 -6812.43 113.8171 392.0642

4 Simulation Study

This section aims to investigate the properties of the proposed estimation methods through the simulation study output
with OLS and WLS. The model is generated as follows:

1. ARPD(1) model without constant is generated. The errors are generated ∼ IIDN(0,1), and the autoregressive
parameter φ is chosen to be -0.3, -0.5, -0.1, 0.1, 0.3, and 0.5.

2. Different sample time and individuals for each combination of (N,T ) have been used:
– (10,25), (10,50), (10,100)
– (25,25), (25,50), (25,100)
– (50,25), (50,50), and (50,100)

3. Different values of γ have been used as: γi = 0.3,0.5,0.7.
4. MSE, AIC, and BIC as criteria of comparison.
5. All Monte Carlo experiments involved 10000 replications.

The simulation results for when γi = (0.3,0.5,0.7) and φ = (0.1,0.3,0.5,−0.1,−0.3,−0.5) are used. The tables (1 - 6)
present a detailed comparison of three methods (OLS, WLS.A, and WLS.B) for estimating an ARPD(1) model.
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Table 2: ARPD (1) Model Estimation When γ = 0.5 and positive ϕ

(N,T) Criteria ϕ = 0.1 ϕ = 0.3 ϕ = 0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

(N,T) Criteria ϕ = 0.1 ϕ = 0.3 ϕ = 0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

10-25 MSE 9.8653 0.5029 0.6231 15.5381 0.3695 0.4212 29.3373 0.2199 0.2376

AIC -1721.68 97.4040 61.3539 -1774.06 80.1410 48.1270 -1755.97 108.1744 64.0495

BIC -1718.03 101.0606 65.0106 -1770.40 83.7976 51.7836 -1752.31 111.8310 67.7061

10-50 MSE 10.3400 0.4875 0.6212 16.3192 0.3643 0.4166 31.0641 0.2139 0.2307

AIC -3380.81 146.1729 81.4126 -3432.89 225.3226 137.5207 -3424.64 171.0454 100.2360

BIC -3375.07 151.9090 87.1487 -3427.15 231.0587 143.2568 -3418.91 176.7815 105.9721

10-100 MSE 10.5815 0.4751 0.6206 16.7011 0.3621 0.4147 31.8702 0.2115 0.2278

AIC -6636.59 451.5107 273.3162 -7203.46 546.6053 332.7054 -6841.49 371.1251 221.3277

BIC -6628.77 459.3262 281.1317 -7195.64 554.4208 340.5209 -6833.68 378.9406 229.1432

25-25 MSE 9.8709 0.5029 0.6232 15.5482 0.3693 0.4212 29.3513 0.2198 0.2376

AIC -1713.13 134.1808 88.8945 -1710.25 66.3277 36.5311 -1757.28 108.0809 68.2768

BIC -1709.47 137.8374 92.5511 -1706.60 69.9843 40.1878 -1753.63 111.7375 71.9334

25-50 MSE 10.3479 0.4879 0.6213 16.3169 0.3644 0.4166 31.0542 0.2140 0.2308

AIC -3426.26 234.6900 139.2377 -3559.95 224.4677 136.5296 -3552.49 90.6584 37.4562

BIC -3420.52 240.4261 144.9737 -3554.21 230.2038 142.2657 -3546.75 96.3944 43.1922

25-100 MSE 10.5782 0.4748 0.6205 16.6926 0.3622 0.4146 31.8725 0.2115 0.2278

AIC -6932.87 311.8806 182.5601 -7128.39 554.6122 346.3290 -6910.50 566.1498 338.8934

BIC -6925.05 319.6961 190.3756 -7120.58 562.4277 354.1445 -6902.68 573.9653 346.7089

50-25 MSE 9.8647 0.5021 0.6228 15.5433 0.3695 0.4213 29.3409 0.2199 0.2376

AIC -1805.32 145.0608 91.0359 -1691.93 175.0328 116.0339 -1699.03 111.0869 71.6060

BIC -1801.66 148.7174 94.6925 -1688.27 178.6894 119.6906 -1695.37 114.7435 75.2626

50-50 MSE 10.3457 0.4879 0.6213 16.3167 0.3646 0.4166 31.0573 0.2140 0.2307

AIC -3375.82 243.4030 155.2937 -3419.58 203.2097 118.9686 -3384.50 219.8100 135.1243

BIC -3370.08 249.1391 161.0298 -3413.84 208.9458 124.7047 -3378.77 225.5460 140.8604

50-100 MSE 10.5808 0.4751 0.6206 16.6925 0.3621 0.4146 31.8693 0.2115 0.2278

AIC -6805.77 431.3942 257.0127 -6745.77 310.5323 172.7281 -6740.12 318.2737 185.2941

BIC -6797.96 439.2097 264.8283 -6737.96 318.3478 180.5436 -6732.30 326.0892 193.1096

Here is a more in-depth analysis of the results, focusing on the impact of varying sample sizes (N,T ), φ , and the
performance of each method within different N,T settings:

4.1 In Case of γi = (0.3,0.5,0.7) and φ are positive sign

In this case, the commentary is divided into two sections. The first section discusses the results of the Comparative
Analysis of Methods, while the second section addresses the results of the Intra Method Comparison. This division is
applicable only if the values of φ are positive sign.

4.1.1 Comparative Analysis of Methods

The performance of the Ordinary Least Squares (OLS) method and the newly proposed Weighted Least Squares methods
(WLS.A and WLS.B) is evaluated across different metrics: MSE, AIC, and BIC under various parameter settings. The
analysis is divided into three distinct scenarios with different values of φ = (0.1,0.3,0.5), and is summarized in tables (1,
2, and 3).

First: When φ = 0.1:

– MSE: WLS.A and WLS.B consistently outperform OLS across all sample sizes and time periods. The largest
improvements are observed for larger samples and longer time periods, with WLS.B showing the most significant
reduction in MSE.
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Table 3: ARPD (1) Model Estimation When γ = 0.7 and positive ϕ

(N,T) Criteria ϕ = 0.1 ϕ = 0.3 ϕ = 0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

(N,T) Criteria ϕ = 0.1 ϕ = 0.3 ϕ = 0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

10-25 MSE 9.8584 0.4730 0.6374 15.5508 0.3560 0.4274 29.3361 0.2149 0.2396

AIC -1804.19 163.7381 63.9493 -1655.68 81.5940 18.5334 -1711.21 170.2621 66.1746

BIC -1800.54 167.3947 67.6059 -1652.02 85.2506 22.1901 -1707.55 173.9187 69.8312

10-50 MSE 10.3559 0.4551 0.6369 16.3172 0.3506 0.4226 31.0531 0.2093 0.2327

AIC -3445.24 261.3330 87.7023 -3447.96 246.6041 76.0606 -3592.60 324.3485 111.2099

BIC -3439.50 267.0690 93.4384 -3442.23 252.3401 81.7967 -3586.87 330.0846 116.9460

10-100 MSE 10.5816 0.4371 0.6364 16.6995 0.3478 0.4207 31.8621 0.2070 0.2297

AIC -7283.96 515.3762 167.1367 -6951.62 645.9204 222.4474 -7254.18 654.0460 207.2372

BIC -7276.15 523.1918 174.9522 -6943.81 653.7359 230.2629 -7246.37 661.8615 215.0527

25-25 MSE 9.8689 0.4741 0.6377 15.5437 0.3560 0.4273 29.3297 0.2150 0.2396

AIC -1695.25 123.3938 45.5896 -1718.95 117.9463 36.6502 -1696.63 71.7041 9.3715

BIC -1691.59 127.0504 49.2463 -1715.30 121.6029 40.3068 -1692.97 75.3608 13.0282

25-50 MSE 10.3445 0.4547 0.6367 16.3242 0.3506 0.4227 31.0527 0.2093 0.2327

AIC -3524.35 253.6045 86.9561 -3539.50 225.5890 67.5385 -3326.86 257.8484 85.8169

BIC -3518.62 259.3405 92.6921 -3533.77 231.3250 73.2746 -3321.12 263.5844 91.5530

25-100 MSE 10.5818 0.4368 0.6364 16.6966 0.3480 0.4207 31.8654 0.2070 0.2297

AIC -6751.01 396.4496 107.3660 -6989.37 452.1356 121.3836 -7041.64 667.1644 209.0347

BIC -6743.20 404.2651 115.1815 -6981.55 459.9511 129.1991 -7033.82 674.9799 216.8502

50-25 MSE 9.8629 0.4740 0.6377 15.5347 0.3559 0.4273 29.3419 0.2148 0.2395

AIC -1695.66 110.1157 32.7953 -1823.04 86.7898 21.0633 -1747.36 158.1484 63.1430

BIC -1692.00 113.7723 36.4520 -1819.38 90.4465 24.7199 -1743.71 161.8051 66.7997

50-50 MSE 10.3469 0.4549 0.6368 16.3196 0.3506 0.4227 31.0512 0.2093 0.2327

AIC -3570.75 245.5100 78.3397 -3466.21 299.2092 102.4199 -3340.87 158.1716 31.7058

BIC -3565.01 251.2461 84.0758 -3460.48 304.9453 108.1559 -3335.13 163.9077 37.4419

50-100 MSE 10.5800 0.4369 0.6363 16.6962 0.3479 0.4207 31.8731 0.2070 0.2297

AIC -6781.97 443.8374 125.2546 -6810.07 525.0661 181.0855 -6784.70 539.8646 166.0688

BIC -6774.15 451.6529 133.0701 -6802.25 532.8816 188.9011 -6776.88 547.6801 173.8844

– AIC: Both WLS.A and WLS.B exhibit lower AIC values compared to OLS, indicating better model fit, particularly
for moderate to large sample sizes and longer time periods.

– BIC: Similar to AIC, WLS.A and WLS.B generally achieve lower BIC values, reflecting improved model performance
over OLS.

Second: When φ = 0.3:

– MSE: WLS.A and WLS.B maintain superior performance over OLS. The reduction in MSE is more pronounced for
larger sample sizes and longer time periods, with WLS.B again showing notable efficiency.

– AIC: The AIC values for WLS.A and WLS.B are consistently lower than those for OLS, suggesting that these methods
offer a better balance between model complexity and fit.

– BIC: Lower BIC values are observed for WLS.A and WLS.B compared to OLS, supporting their effectiveness in
handling larger datasets and extended time periods.

Third: When φ = 0.5:

– MSE: The trend continues with WLS.A and WLS.B outperforming OLS. The improvements in MSE are most
substantial with increasing sample size and time period.

– AIC: Both WLS.A and WLS.B show lower AIC values, particularly in larger sample sizes and longer time periods,
indicating superior model fit.

– BIC: Lower BIC values for WLS.A and WLS.B reinforce their advantage over OLS, especially with larger datasets.
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Table 4: ARPD (1) Model Estimation When γ = 0.3 and positive ϕ

(N,T) Criteria
ϕ =−0.1 ϕ =−0.3 ϕ =−0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

(N,T) Criteria
ϕ =−0.1 ϕ =−0.3 ϕ =−0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

10-25 MSE 6.9196 0.7397 0.7086 5.0600 0.8122 0.7629 3.6440 0.8265 0.7703

AIC -1736.70 34.3075 105.5233 -1778.24 41.3682 117.4269 -1833.57 45.4446 135.0723

BIC -1733.04 37.9641 109.1799 -1774.59 45.0249 121.0836 -1829.91 49.1012 138.7289

10-50 MSE 7.2687 0.7278 0.6909 5.3349 0.7806 0.7201 3.8176 0.7811 0.7144

AIC -3490.50 68.7350 220.1372 -3435.72 104.7995 294.1674 -3448.10 64.6698 220.8952

BIC -3484.76 74.4711 225.8733 -3429.98 110.5355 299.9034 -3442.36 70.4059 226.6312

10-100 MSE 7.4518 0.7189 0.6766 5.4731 0.7581 0.6881 3.9063 0.7505 0.6759

AIC -7155.89 250.0717 767.5050 -6776.09 162.1410 529.8706 -6924.70 271.6001 795.1747

BIC -7148.08 257.8872 775.3205 -6768.27 169.9565 537.6861 -6916.89 279.4157 802.9902

25-25 MSE 6.9181 0.7393 0.7083 5.0625 0.8124 0.7631 3.6427 0.8265 0.7703

AIC -1800.11 50.6094 143.0832 -1724.53 8.8483 67.0772 -1719.69 30.8764 101.3055

BIC -1796.45 54.2660 146.7398 -1720.87 12.5049 70.7339 -1716.03 34.5330 104.9621

25-50 MSE 7.2684 0.7279 0.6910 5.3363 0.7807 0.7201 3.8196 0.7810 0.7143

AIC -3427.93 100.3277 300.2953 -3611.16 129.8351 396.5201 -3497.61 74.1893 258.3955

BIC -3422.20 106.0638 306.0314 -3605.42 135.5711 402.2562 -3491.87 79.9254 264.1315

25-100 MSE 7.4495 0.7195 0.6773 5.4785 0.7587 0.6886 3.9073 0.7506 0.6760

AIC -6794.21 106.7458 414.5926 -6906.00 174.4955 550.1713 -6722.09 133.7106 475.5320

BIC -6786.40 114.5614 422.4082 -6898.18 182.3110 557.9868 -6714.28 141.5261 483.3476

50-25 MSE 6.9186 0.7394 0.7084 5.0632 0.8114 0.7621 3.6439 0.8267 0.7704

AIC -1718.24 38.8694 113.8351 -1690.88 18.8384 83.5892 -1672.48 16.4649 78.5443

BIC -1714.58 42.5260 117.4918 -1687.23 22.4950 87.2458 -1668.83 20.1216 82.2010

50-50 MSE 7.2738 0.7280 0.6911 5.3358 0.7809 0.7204 3.8158 0.7804 0.7137

AIC -3454.57 26.0021 161.2374 -3436.63 130.4298 366.4524 -3551.69 42.9456 182.4433

BIC -3448.83 31.7382 166.9735 -3430.89 136.1659 372.1885 -3545.95 48.6817 188.1794

50-100 MSE 7.4500 0.7195 0.6774 5.4771 0.7583 0.6883 3.9073 0.7500 0.6753

AIC -6811.28 160.0356 533.9021 -6830.51 128.6325 441.0150 -6920.41 132.5387 466.7110

BIC -6803.46 167.8511 541.7176 -6822.69 136.4480 448.8305 -6912.59 140.3543 474.5265

4.1.2 Intra method Comparisons

This part evaluates the performance of each estimation method OLS, WLS.A, and WLS.B by analyzing their results across
various conditions. It includes two main comparisons: first, how each method performs with different sample sizes while
keeping either N or T fixed, and second, the impact of changing N and T on each method?s performance. Each method
will be presented and analyzed separately to highlight its performance under different scenarios.

– OLS Method:
– Effect of Sample Size (N): With fixed T , OLS generally shows increased MSE, AIC, and BIC values as N grows.

The performance deteriorates with larger N, indicating less robustness in larger datasets.
– Effect of Time (T): With fixed N, OLS performance improves with longer time periods, showing reduced MSE,

AIC, and BIC values. This trend reflects OLS?s capacity to handle extended time series more effectively.
– WLS.A Method:

– Effect of Sample Size (N): WLS.A consistently performs better than OLS, with MSE, AIC, and BIC improving
as sample size N increases, demonstrating robustness in handling larger datasets.

– Effect of Time (T): For fixed N, WLS.A shows a strong performance improvement with longer time periods, with
substantial reductions in MSE, AIC, and BIC, indicating enhanced efficiency in extended datasets.

– WLS.B Method:
– Effect of Sample Size (N): WLS.B outperforms both OLS and WLS.A in most cases, with notable improvements

in MSE, AIC, and BIC as sample size N increases. This method shows the best performance among the three,
especially with larger sample sizes.
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Table 5: ARPD (1) Model Estimation When γ = 0.5 and Negative ϕ

(N,T) Criteria
ϕ =−0.1 ϕ =−0.3 ϕ =−0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

(N,T) Criteria
ϕ =−0.1 ϕ =−0.3 ϕ =−0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

10-25 MSE 6.9176 0.5697 0.8029 5.0618 0.5644 0.9171 3.6426 0.5665 0.9544

AIC -1697.56 133.8154 87.7228 -1777.32 97.1482 58.7241 -1756.17 101.7173 59.8468

BIC -1693.91 137.4721 91.3794 -1773.66 100.8048 62.3807 -1752.51 105.3739 63.5034

10-50 MSE 7.2703 0.5197 0.8004 5.3353 0.4770 0.9073 3.8162 0.4794 0.9303

AIC -3476.58 169.5512 97.4207 -3417.15 169.2008 99.7294 -3483.24 268.4006 163.6742

BIC -3470.84 175.2873 103.1568 -3411.42 174.9368 105.4655 -3477.51 274.1367 169.4103

10-100 MSE 7.4471 0.4710 0.7986 5.4793 0.4029 0.9002 3.9054 0.4215 0.9165

AIC -6790.23 482.0713 289.6638 -6722.90 494.7315 283.7602 -6896.49 457.2959 274.5616

BIC -6782.42 489.8868 297.4793 -6715.09 502.5470 291.5757 -6888.68 465.1114 282.3772

25-25 MSE 6.9173 0.5694 0.8027 5.0619 0.5644 0.9177 3.6460 0.5663 0.9546

AIC -1745.70 116.5619 74.4522 -1746.70 86.1982 48.5233 -1791.50 97.5767 60.3172

BIC -1742.04 120.2185 78.1088 -1743.04 89.8549 52.1799 -1787.84 101.2333 63.9738

25-50 MSE 7.2720 0.5192 0.8008 5.3354 0.4768 0.9075 3.8184 0.4801 0.9315

AIC -3417.25 169.7302 94.3977 -3465.06 272.2907 170.9059 -3501.30 203.5320 123.9465

BIC -3411.52 175.4663 100.1338 -3459.32 278.0268 176.6420 -3495.56 209.2681 129.6825

25-100 MSE 7.4489 0.4721 0.7990 5.4750 0.4046 0.9002 3.9084 0.4215 0.9166

AIC -6717.23 415.8513 248.2406 -6813.14 337.8615 197.5822 -6919.48 507.3212 306.3516

BIC -6709.41 423.6668 256.0561 -6805.33 345.6770 205.3977 -6911.66 515.1367 314.1671

50-25 MSE 6.9170 0.5689 0.8025 5.0641 0.5643 0.9174 3.6444 0.5659 0.9540

AIC -1695.91 54.9805 26.8249 -1717.77 130.4930 80.8944 -1716.50 135.0491 84.7892

BIC -1692.26 58.6371 30.4815 -1714.11 134.1496 84.5510 -1712.84 138.7057 88.4458

50-50 MSE 7.2708 0.5193 0.8007 5.3363 0.4762 0.9073 3.8183 0.4800 0.9312

AIC -3506.99 169.6904 99.4678 -3488.15 196.2946 119.5992 -3365.50 201.3273 124.0887

BIC -3501.26 175.4265 105.2039 -3482.41 202.0306 125.3352 -3359.76 207.0634 129.8248

50-100 MSE 7.4502 0.4723 0.7993 5.4761 0.4042 0.9003 3.9082 0.4218 0.9168

AIC -6737.16 610.1064 351.2496 -6816.73 490.5285 307.8790 -7104.62 346.1799 195.3501

BIC -6729.35 617.9219 359.0651 -6808.92 498.3440 315.6945 -7096.81 353.9954 203.1656

– Effect of Time (T): Like WLS.A, WLS.B shows significant improvements with longer time periods. The method?s
efficiency increases notably, with the lowest MSE, AIC, and BIC values observed.

Overall, both WLS.A and WLS.B demonstrate clear advantages over OLS across various metrics, particularly in handling
larger datasets and longer time periods. The comparative analysis indicates that WLS.B is the most effective method,
offering superior performance across all scenarios..

4.2 In Case of γi = (0.3,0.5,0.7) and ϕ are Negative Sign

In this case, the commentary is divided into two sections. The first section discusses the results of the Comparative
Analysis of Methods, while the second section addresses the results of the Intra Method Comparison. This division is
applicable only if the values of ϕ are negative.

4.2.1 Comparison across Methods (MSE, AIC, BIC)

The proposed methods WLS.A and WLS.B were compared with the traditional OLS method using the criteria MSE, AIC,
and BIC for different values of the autoregressive parameter ϕ (-0.1, -0.3, and -0.5). The results, presented in tables (4,
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Table 6: ARPD (1) Model Estimation When γ = 0.7 and Negative ϕ

(N,T) Criteria ϕ =−0.1 ϕ =−0.3 ϕ =−0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

(N,T) Criteria ϕ =−0.1 ϕ =−0.3 ϕ =−0.5

OLS WLS.A WLS.B OLS WLS.A WLS.B OLS WLS.A WLS.B

10-25 MSE 6.9170 0.5221 0.8342 5.0557 0.5063 0.9719 3.6524 0.5133 1.0252

AIC -1727.79 102.843 29.894 -1683.47 72.9586 10.926 -1712.38 163.3414 62.3924

BIC -1724.13 106.4997 33.5507 -1679.81 76.6153 14.5826 -1708.72 166.998 66.049

10-50 MSE 7.2685 0.461 0.8352 5.3398 0.4102 0.9712 3.8194 0.4254 1.0124

AIC -3339.62 485.305 177.9824 -3531.84 242.2699 74.3528 -3559.05 252.8204 84.4003

BIC -3333.88 491.041 183.7184 -3526.11 248.006 80.0889 -3553.31 258.5565 90.1364

10-100 MSE 7.4513 0.4028 0.8361 5.4806 0.3294 0.969 3.9088 0.3681 1.0041

AIC -6677.27 689.2402 203.9398 -6728.41 549.5299 172.2117 -6749.24 425.1904 122.5856

BIC -6669.46 697.0557 211.7553 -6720.6 557.3454 180.0272 -6741.43 433.0059 130.4011

25-25 MSE 6.9169 0.5216 0.8336 5.0624 0.5073 0.9727 3.6463 0.513 1.024

AIC -1785.43 126.9742 44.2544 -1684.54 215.829 86.1799 -1840.37 172.9335 66.5789

BIC -1781.78 130.6308 47.911 -1680.88 219.4857 89.8365 -1836.71 176.5901 70.2355

25-50 MSE 7.2718 0.461 0.8353 5.3362 0.4079 0.9702 3.8172 0.4246 1.0113

AIC -3376.56 209.3109 59.288 -3480.8 270.1758 88.4327 -3438.71 199.9613 59.1594

BIC -3370.83 215.0469 65.0241 -3475.06 275.9119 94.1687 -3432.97 205.6974 64.8955

25-100 MSE 7.4512 0.4026 0.8361 5.4765 0.329 0.9688 3.9061 0.3683 1.0038

AIC -6959.83 513.2732 149.1171 -7039.47 503.3703 134.1362 -7030.01 457.6635 143.1951

BIC -6952.01 521.0887 156.9326 -7031.66 511.1858 141.9517 -7022.2 465.479 151.0106

50-25 MSE 6.9207 0.5227 0.8343 5.0635 0.5067 0.9724 3.6463 0.514 1.0249

AIC -1713.79 194.4504 81.3052 -1735.28 166.8572 68.4712 -1699.75 202.31 82.9239

BIC -1710.13 198.1071 84.9618 -1731.62 170.5138 72.1279 -1696.1 205.9666 86.5805

50-50 MSE 7.2717 0.4614 0.8355 5.3374 0.4088 0.9708 3.8183 0.4251 1.0114

AIC -3388.67 300.224 107.2046 -3575.84 180.1739 46.1446 -3349.65 202.5652 53.1203

BIC -3382.94 305.96 112.9407 -3570.1 185.91 51.8807 -3343.91 208.3012 58.8563

50-100 MSE 7.451 0.4032 0.8361 5.4779 0.3287 0.9688 3.9058 0.3681 1.0035

AIC -7227.33 409.0175 102.8343 -6887.71 619.0341 190.1353 -6758.16 365.4327 96.9974

BIC -7219.52 416.833 110.6498 -6879.89 626.8496 197.9508 -6750.34 373.2482 104.8129

5 and 6), reveal consistent trends. In terms of MSE, both WLS.A and WLS.B consistently outperform OLS, especially
as ϕ decreases, indicating a more accurate estimation. For AIC and BIC, WLS.A and WLS.B often show lower values
compared to OLS, suggesting better model selection criteria, especially when T increases relative to N. This trend is
evident across all tables, demonstrating the efficiency of WLS methods over OLS, particularly in scenarios with higher
autoregressive parameters and larger T .

4.2.2 Comparison within Each Method (MSE, AIC, BIC)

– OLS Method: When analyzing the OLS method alone, it is observed that as T increases while N is fixed, the MSE
generally decreases, indicating improved estimation accuracy. However, the AIC and BIC values do not always
decrease correspondingly, suggesting that while the model fit improves with more data points, the complexity and
penalty terms may impact the overall model selection criteria.

– WLS.A Method: For the WLS.A method, a similar trend is noticed with a decreasing MSE as T increases. Notably,
the AIC and BIC values for WLS.A tend to improve significantly as T increases, particularly when ϕ is higher,
indicating that WLS.A adapts well to larger datasets and higher autoregressive parameters, making it a robust choice
for model estimation.

– WLS.B Method: WLS.B shows the most significant reduction in MSE as T increases, even more so than WLS.A.
This suggests that WLS.B may be more sensitive to increases in T , providing the most accurate estimates in large-
sample scenarios. The AIC and BIC values for WLS.B also tend to decrease as T increases, particularly for higher
values of ϕ , reinforcing its effectiveness in both model fit and complexity management in larger datasets.
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Summary

– Ordinary Least Squares (OLS): Performs better with positive initial values of ϕ , as indicated by lower MSE, AIC,
and BIC values in tables (1, 2 and 3) compared to tables (4, 5 and 6).

– WLS.A and WLS.B: Both methods consistently outperform OLS regardless of whether the initial values of ϕ are
positive or negative. However, they show slightly better performance with positive ϕ , as indicated by lower MSE,
AIC, and BIC values in tables (1, 2 and 3).

Overall, while WLS methods (both A and B) demonstrate superior performance compared to OLS in both scenarios, they
achieve the best results with positive initial values of ϕ .

5 Real Data Application

The feasibility of the proposed estimators are illustrated using productivity across 74 countries from 1992 to 2016 using
Zakaryan [15]. Figure 1 shows this data that consist of 25 year observations of 74 countries. The preliminary analysis of
the data indicates that the time series in all sectors lack stationarity in terms of variance and mean. Therefore, logarithmic
transformation was applied, followed by taking the first differences of the data. This approach ensures that the data
becomes stationary. By using Levin, Lin & Chu and Augmented Dickey-Fuller tests for stationarity assumption of the
time series, the tests were used. The results were as follows:

Table 7: Output of the Unit Root Test

Method Statistic Prob. Cross-sections Obs

Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -19.2015 0.0000 74 1628

Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat -22.2587 0.0000 74 1628

ADF - Fisher Chi-square 765.833 0.0000 74 1628

PP - Fisher Chi-square 1204.49 0.0000 74 1702

Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic

normality.

Based on the results of the unit root tests, the data becomes stationary after taking the first differences and applying the
logarithmic transformation. We can use the ACF and PACF, as shown in the following figure, to determine whether the
data follows ARPD(1) models. The results are illustrated in the figure 1 below. To compare between (OLS), (WLS.A),

Fig. 1: Sample ACF and PACF for Annual Productivity
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and (WLS.B) methods of estimation for the parameter of ARPD (1) model in the different values of γi. To measure the
accuracy, (MSE), (AIC), and (BIC) are computed. The results of tables (7, 8) indicated that the new methods (WLS.A and
WLS.B) give good performance for the values of (MSE), (AIC), and (BIC) for different values of γ with respect to other
methods.

Table 8: MSE, AIC, and BIC for Different Estimators

ρ Estimator MSE AIC BIC

0.3 WLS.A 0.002302869 -0.5222403 -0.5217419

WLS.B 0.002303158 -0.5744420 -0.5738938

OLS 0.252301952 -5.7453508 -5.7398687

0.5 WLS.A 0.002304197 -0.5221472 -0.5216488

WLS.B 0.002302611 -0.5744842 -0.5739360

OLS 0.252301952 -5.7453508 -5.7398687

0.7 WLS.A 0.002307912 -0.5218871 -0.5213888

WLS.B 0.002302206 -0.5745154 -0.5739672

OLS 0.252301952 -5.7453508 -5.7398687

Conclusion

This article delves into estimating parameters for ARPD(1) models using a technique called Weighted Least Squares
(WLS). It proposes two different weighting schemes and calculates the variances of the estimated parameters under various
scenarios, while also exploring some properties of the WLS estimator. Building upon Issa’s work, the study extends AR(1)
models to handle constant terms and missing data points. A Monte Carlo simulation compares the performance of three
estimators: Ordinary Least Squares (OLS), WLS with weighting (WLS.A), and WLS with weighting (WLS.B). The
simulation assesses results across different sample sizes (N) and time periods (T), considering both positive and negative
initial values for the model parameter. The results consistently show that both WLS methods (A and B) achieve lower
Mean Squared Error (MSE) compared to OLS, indicating a more accurate fit for the model. This advantage extends to the
AIC and BIC, where WLS methods generally produce lower values. WLS methods are therefore preferable when selecting
the best model. Furthermore, the analysis of real data confirms that both WLS methods outperform OLS regardless of
whether the initial values are positive or negative, with slightly better performance observed for positive initial values, as
reflected in lower MSE, AIC, and BIC values. Overall, while WLS methods demonstrate superior performance compared
to OLS in both scenarios, they achieve the best results with positive initial values.
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