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Abstract: This work provides a new method of obtaining optimizers of response functions. The method uses line search 

techniques and it is particularly useful for linear programming problems. The focus is to reach the optimizer in the fewest number 

of iterations. The method has been compared with simplex method, active set method, Linear Exchange algorithm (LEA), 

Quadratic exchange algorithm (QEA), and Minimum norm exchange algorithm (MNEA) and is found comparatively efficient. 

Numerical demonstrations prove effectiveness of the new method.    

Keywords: Linear Programming; line search; optimizers; response functions. 

1 Introduction 

A standard LP problem is defined as an optimization problem of a linear objective 

function in n non-negative variables subject to m linearly independent constraints (where m < n, 

m = n or m > n). The objective function could be called the response function. When the interest 

of the experimenter is to locate the optimum of the response function, Response Surface 

Methodology (RSM) comes into play. According to Montgomery [7], Response Surface 

Methodology is a collection of mathematical and statistical techniques useful for analyzing 

problems where several independent variables x1, x2, …, xn influence a dependent variable 

(response), say Z. The minimizer (or maximizer) of the objective function is a point Xx
~*

 , 

where X
~

 is a member of the experiment space {            , whose components are as defined 

below; 

   ={ x } is the space of all possible trials of the experiment. 

   = { f(x) } is a space of finite dimensional continuous functions that can be defined on X
~

. 

   = {   
  } is the space of positive, continuous random observation error which can be defined 

on X
~

.  

In this work we assumed that the constraints are linear inequalities defined on convex 

feasible region. We seek therefore a method of solving linear programming problems using 

experimental design techniques. The method presented in this paper is such that would arrive at 

the desired optimum (minimum or maximum) in the fewest number of iterations. 

2 Literature Review and Methodology 

The procedure embodied in the search algorithm of Box [1] locates the optimum X
~

x *   

of a response function using line search equation, 

x*  dx                (2.1) 

Journal of Statistics Applications & Probability                  
 
                                                                                             An International Journal  

 
http://dx.doi.org/10.12785/jsap/020203 

mailto:oodiakosa@rocketmail.com


                                     Osita Odiakosa and Mary Iwundu : A Quick Convergent Inflow Algorithm... 401 

 

 

 

where x  is the starting point of search, d is the direction of search and  is the step-length. Many methods 

have been provided for obtaining the components of the above line equation. These methods include the 

steepest descent (ascent) method, the Newton’s method (see e.g Storey [11]). Umoren [12] considered the 

construction of exact D-optimum designs for constrained optimization problems. Umoren [13] presented a 

maximum norm exchange algorithm for solving linear programming problems. Umoren [14] applied 

optimal design theory to the solutions of a constrained optimization problems. Umoren [15] presented 

some optimality conditions for the existence of optimizers of a certain class of linear programming 

problems. Umoren [16]  developed a quadratic exchange algorithm for solving linear programming 

problems. Other related works include Umoren [17] and Etukudo and Umoren [2]. 

  One of the recent line search techniques that is a powerful tool for solving different optimization 

problems that are often encountered in mathematical programming is due to Onukogu and Chigbu [9]. The 

line search technique is built around the concept of super convergence. The algorithm locates the local 

optimizer of a response function in the fewest number of moves and hence the technique is called Super 

Convergent Line Series (SCLS). Etukudo and Umoren [3] have modified the Super Convergent Line 

Series algorithm for solving linear programming. This reduction has reduced the computational 

requirements of the initial algorithm. Many comparisons have been made using the modified algorithm and 

may be seen in Etukudo and Umoren [4],  Umoren and Etukudo [19], [20], Etukudo, Umoren and Enang 

[6]. 

 In this work, we develop a new approach of obtaining an optimizer of a response function 

using the line equation in 2.1. Specifically, we provide a new method of obtaining the direction of 

search.  The direction is such that has minimum variance property and is based on designing the 

experiment to minimize the variance of the response function. Onukogu [8] has shown that the 

optimizer of a response function has a minimum variance. We seek then a line equation that 

searches in the direction of minimum variance. Thus, given an n-variate response function f( x ) = 

g x with k-component gradient vector g , the gradient vector g  can be transformed by an n x k 

full rank matrix of transformation, say T, so that Z = T g , has minimum variance. The direction 

vector is then d = A
-1

 T g  , where A is an n x n nonsingular symmetric matrix. In a minimization 

problem, the line equation becomes dxx *   

and in a maximization of problem the line equation becomes dxx * . The components 

of the line equation, x , , and d are optimally chosen. We present in section 2.1 the sequence of 

steps involved in the algorithm.  

2.1 The Algorithm 

The line search algorithm follows the following sequence of steps,  

S1: Form the design measure,   
  , by selecting N support points Nx...,x,x 21  from X

~
. The 

support points that make up the design measure  must satisfy the m linear inequality constraints 

and must result in a non-singular information matrix. To obtain a non-singular information 

matrix, the number of support points say N, must satisfy the bound  

11
2
1  )( nnNn                 (2.2) 

 (see e.g Onukogu [8], Pazman [10]) 

S2: Obtain the optimal starting point 
*

x . For n-variates, say, x1, x2, ... , xn the average of N 

support points  can be used as the optimal starting point. That is,  

 *****
,,...,

n
xxxxx 321            (2.3) 

where 

  Nxxxxx n /,...,,,

*

11312111   
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  Nxxxxx n /,...,,,

*

22322212   

. 

. 

. 

  Nxxxxx nnnnnn /,...,,,

*

321  

S3: Determine the information matrix, kM corresponding to the design measure K

kN ; k = 0., Mk = 

T,  

S4: Obtain the determinant of the information matrix, say,  det ( kM ). 

S5: Obtain the variance-covariance matrix, 
1

kM , of the information matrix, kM , where M
-1

  = A
-

1
 

S6: Relate the coefficients of the objective function with the information matrix by  

gM
Z

Z
Z k

k

k

k 









2

1              (2.4) 

where g  is the vector of the coefficients of the objective function. 

S7: Determine the direction of search kd , where kd  is an n-component vector defined by  

  



























 

n

kkk

d

d

d

ZMd

.

.

.

2

1

1                     

 (2.5) 

S8: Obtain the normalized direction of search 
*

kd  such that 1
1

*
*

kk dd  

The normalized direction vector is defined as  

  


























































*

*

2

*

1

2

1

22

2

2

1

*

.

.

.

.

.

.

...

1

n
n

n

k

d

d

d

d

d

d

ddd
d

         (2.6) 

S9: Determine the optimal steps-length,
* , by 

 
   

    











 


*

inii

iinii*

kj
dC,...,C,C

bxC,...,C,C
minmin

21

021              (2.7) 

i = 1,2,3, …, n 

j = 1,2,3, …, m        

S10: With 
*

x ;
* ; 

*
d ; make a move to  ,

****

kkk dxx  k1         

where k = 0,1, …, q. 

S11: Evaluate   ;11   kk fxf                 

S12: Setting k = k+1 and N = N+1 add 
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the points 
*

1kx  in step S10 above to the design measure in step S1 and if 
*

kx 1  satisfy the 

constraints, continue from step S2 to step S11. Thus obtaining 
*

2kx . 

S13:  Is 
**

12   kk xx   <  > 0? 

if No, go to step S12 and continue the process.  

If Yes, the optimizer of the objective function is 1kX  

3 Numerical Demonstration 

The working of the algorithm developed in section 2 shall be tested numerically using 

some linear programming problems.  

3.I llustration 1 

The problem here is to maximize the objective function 

Z = 3x1 + 2x2                                      

(3.1) 

Subject to  

4x1 + 3x2  12 

4x1 + x2  8        

4x1 – x2  8  

x1, x2  0 

To enable us maximize the given objective function we select the support points 

      2,5.0,1,5.1,2,1  satisfying the linear constraints and satisfying equation 2.2. With these 

support points, we form the initial design measure as  

    



















250

151

21
0

3

.

.   

Notice that each of the support points that make up the initial design measure satisfies the three 

constraints of the objective function. We highlight this briefly as follows; 

Using the constraint 4x1 + 3x2  12, the support point (1,2) yields 10, (1.5, 1) yields 9 and (0.5,2) 

yields 8. Using the constraints 4x1 + x2  8 the support points (1,2) yields 6, (1.5,1) yields 7 and 

(0.5,2) yields 4. 

Similarly, using the constraint 4x1 – x2  8 the support point (1,2) yields 2, the support point 

(1.5,1) yields 5 and the support point (0.5,2) yields 0. 

Hence, the selected points satisfy the constraints.  

The design matrix associated with the initial design measure ( )0(

3 ) is  



















250

151

21

0

.

.X  

The starting point of the search is obtained by evaluating the average of the three points selected. 

This yields  

















































66671

00001

3

212

3

50511

02

01

0
.

.
..

x

x
x  

The corresponding information matrix, M0, of the design matrix, X0, is 
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



































95.4

5.45.3

25.0

15.1

21

212

5.05.11
0

1

00 XXM  

whose determinant value is det 25.110 M  

The variance covariance matrix,  isM 1

0

  

 












3111040

4080

..

..
 

The vector of coefficient of the objective function, g, is  

g = 








2

3
 

 

With 










2

3
g  and  0 









9

5.4

5.4

5.3
 

we compute asZ0  

Z0 =


























531

519

2

3

9

54

54

53
0

.

..

.

.
g  

The direction of search is  

 





























 

99971

00003

531

519

3111040

4080
0

1

00
.

.

.

.

..

..
ZMd   

The normalized direction of search  

22

*

0

9997.10000.3

1


d  



















5547.0

8321.0

9997.1

0000.3
 

The step-lengths are computed as below; 

For the first constraint, 

  
 

 
60090

55470

83210
34

12
66671

00001
34

01 .

.

.

.

.





















  

For the second constraint, 

  
 

 
60090

55470

83210
14

8
66671

00001
14

02 .

.

.

.

.





















   

For the third constraint, 

  
 

 
04302

55470

83210
14

8
66671

00001
14

03 .

.

.

.

.























  

In order to avoid making a move that takes us away from the feasible region, we consider using 

the shortest step length as measured by its absolute value. Hence, the optimal step length is  

  
  = | -0.6009 | = 0.6009. 

With 
*

0x ,
** , 00 d , a move is made to 
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 































































00002

50001

00002

50001

33330

50000

66671

00001

55470

83210
60090

66671

00001

1

0001

.

.
x

.

.

.

.

.

.

.

.
.

.

.

dxx

*

****

 

With 










02

51
1

.

.*
x , the value of the objective function is   581 .

*
xf  

Also, we notice that 










02

51
1

.

.*
x  satisfies the three linear constraints. Before checking for optimality 

we need to make a second move. In other to do that the point 
*

1x  is added to the initial design 

measure and hence yields a new design measure 

 





















25.1

25.0

15.1

21

)1(

4
 

The corresponding design matrix is  





















25.1

25.0

15.1

21

1X
 

The coordinate of the average of the four points are 

 75001125011 ..x   

The corresponding information matrix is 

 









135.7

5.775.5
11

1

1 XX  

and the associated determinant is  
5.18det 1   

 The variance covariance matrix is  














3108.04054.0

4054.07027.0
1

1M  

With 










2

3
g  and  1 









13

5.7

5.7

75.5
 

we compute Z  as 



























5048

2532

2

3

13

57

57

755
11

.

..

.

.
gZ   

The direction of search is  









 

99971

00023
1

1

11
.

.
d  

The normalized direction of search is 










5546.0

8321.0*

1d  

We compute the step-length as follows: 

For the first constraint 
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 

 
45070

55460

83210
34

12
75001

12501
34

11 .

.

.

.

.





















  

For the second constraint 

  
 

 
45070

55460

83210
14

8
75001

12501
14

12 .

.

.

.

.





















   

For the third constraint 

  

 

 
85071

55460

83210
14

8
75001

12501
14

13 .

.

.

.

.























  

The optimal step-length is 

  *. 11211 45070   

With 
*

1x ,
** , 11 d , a second move is made 

  




































00002

50001

55470

83210
45070

75001

12501

2

1112

.

.
x

.

.
.

.

.

dxx

*

****

 

With 










02

51
2

.

.*
x ,  the value of the objective function is   582 .

*
xf  

Checking for optimality (by considering the norm of the vector 
**

12 xx  ).   we have 

0000.0

)0000.0()0000.0(

0000.0

0000.0

0000.2

5000.1

0000.2

5000.1

22

*

1

*

2






















 xx

 

This value satisfies the stopping rule. We notice that the value of the objective function at the first 

iteration is the same as the value of the objective function at the second iteration. 

Hence, the global maximum of the objective function, f( x ), is   











00002

50001
1

.

.*
x   

 

3.2 Illustration 2 
The problem considered here is given by  

minimize f( x ) = 3x1 + 2x2                (3.2) 

subject to  

2x1 + x2  6 

x1 + x2  4         
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x1 + 2x2  6  

x1, x2  0. 

We shall solve this problem using our Quick Convergent Inflow Algorithm (QCIA). We begin by 

selecting points to go into the design measure. With the points (1, 4) and (4, 1) we form the initial 

design measure as 

    










14

41
0

2
  

Notice that each of the support points that make up the initial design measure satisfies the three 

constraints of the objective function. The design matrix associated with the initial design measure 

(
)(0

2 ) is 










14

41
0X  

The starting point of the search is obtained by evaluating the average of the two points selected. 

This yields  52520 ..x . 

The corresponding information matrix is  




























178

817

14

41

14

41
0

1

00 XXM  

whose determinant value is det 2250 M  

The variance covariance matrix,  isM 1

0

  

   
    













07555600355560

03555600755560

..

..
 

The vector of coefficient of the objective function, g, is  

g = 









2

3  

With 










2

3
g  and  0 









17

8

8

17  

we compute asZ0  

Z0  = 


























58

67

2

3

17

8

8

17
0g  

 

The direction of search is  

 































9999961

0000043

58

67

07555600355560

03555600755560
0

1

00
.

.

..

..
ZMd   

The normalized direction of search  

22
0

99999610000043

1

..

*


d  



















5546990

8320510

9999961

0000043

.

.

.

.  

The step-lengths are computed as below; 

For the first constraint, 

  
 

 
0670410

2188012

51

5546990

8320510
12

6
52

52
12

01 .
.

.

.

.

.

.






















 

For the second constraint. 
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 

 
7211.0

3867.1

0.1

554699.0

832051.0
11

4
5.2

5.2
11

02 



















   

For the third constraint, 

  

 

 
77270

94131

51

5546990

8320510
21

6
52

52
21

03 .
.

.

.

.

.

.





















  

Hence, the optimal step length is 676041067604100 ..*   

With 
*

0x ,
** , 00 d , a move is made 

 


















































12502

93751

12502

93751

1251012

9374991

5546990

8320510
6760410

52

52

1

0001

.

.
x

.

.

.

.

.

.
.

.

.

dxx

*

****

 

With










12502

93751
1

.

.*
x , the value of the objective function is   0625101 .

*
xf  

Also, we notice that 










12502

93751
1

.

.*
x  satisfies the three linear constraints.  

Before checking for optimality we need to make a second move. In other to do that the point 
*

1x  is 

added to the initial design measure and hence yields a new design measure. 

   



















1250293751

14

41
1

3

..

)(  

The corresponding design matrix is  



















1250293751

14

41

1

..

X
 

The coordinates of the average of the three points are 

 37502312521 .,.x  

The corresponding information matrix is 

 









515625.21117188.12

117188.12753906.20
1

1

11 XX  

and the associated determinant is  
7070142991 .det   

 The variance covariance matrix is  

 













06924700404300

040430007178901

1
..

..
M  

With 










2

3
g  and  1









5156252111718812

1171881275390620

..

..  

we compute Z  as 
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

























38281479

49609486

2

3

5156252111718812

1171881275390620
11

.

.

..

..
gZ   

The direction of search is  









 

9999851

0000213
1

1

11
.

.
d  

The normalized direction of search is 










5546950

8320540
1

.

.*
d  

We compute the step-length as follows: 

For the first constraint, 

  
 

 
4506930

2188032

1

5546950

8320540
12

6
37502

31252
12

11 .
.

.

.

.

.





















  

For the second constraint, 

  
 

 
4957640

3867491

68750

5546950

8320540
11

4
37502

31252
11

12 .
.

.

.

.

.

.





















   

For the third constraint, 

  
 

 
5472730

9414441

06251

5546950

8320540
21

6
37502

31252
21

13 .
.

.

.

.

.

.





















  

The optimal step-length is 

  *. 111 4506930   

With 
*

1x ,
** , 11 d , a second move is made to 

 
****
dxx 1112   

 
 
















































1250.2

9375.1

1250.2

9375.1

125003.2

937499.1

554695.0

832054.0
450693.0

3750.2

3125.2

*

2x

 

With 










12502

93751
2

.

.*
x ,  the value of the objective function is   0625102 .

*
xf  

Checking for optimality (by considering the norm of the vector 
**

12 xx  ).   

we have 

00000

0000000000

00000

00000

12502

93751

12502

93751

22

12

.

).().(

.

.

.

.

.

.
xx
**
























 

This value satisfies the stopping rule. We notice that the value of the objective function at the first 

iteration is the same as the value of the objective function at the second iteration. 

Hence, the global minimum of the objective function, f( x ), is   
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









12502

93751
1

.

.*
x  . 

4 Results 
We present below the summary of search for the optimization problems considered in illustrations 

1 and 2 of section 3. The summary provides information on the performance of the algorithm as 

measured by the number of iterations required to reach the optimum, the determinant value of the 

information matrix, the optimizer, the value of the objective function and the norm of the vectors of 

optimizers. From the summary statistics in Table 1, we see that the value of the determinant 

increases with addition of an optimal point to the initial design measure. The table also shows that 

the objective function is maximized at the first move.  

 

Table 1: Summary Statistics for the maximization problems in illustration 1 

Iteration Det information 

matrix 

optimizer Value of objective 

function 

Norm  

1 11.2500 









0.2

5.1
 

8.5000 0 

2 18.5000 









0.2

5.1  8.5000 0 

 

Table 2:  Summary Statistics for the minimization problem in illustration 2. 

Iteration Det information 

matrix 

optimizer Value of 

objectivefunction 

Norm  

1 225 









1250.2

9375.1
 

10.0625 0 

2 299.707014 









1250.2

9375.1
 

10.0625 0 

Also from the summary statistics in Table 2, we see that the value of the determinant increases with 

addition of an optimal point to the initial design measure. The table also shows that the objective 

function is minimized at the first move.We observe that the algorithm attempts to improve an initial 

design as measured by the determinant value of information matrix. Comparative study has been 

made with existing algorithms such as, the Simplex Method, Active Set, LEA, QEA and MNEA. 

The Quick Converging Inflow Algorithm (QCIA) has performed credibly well. We present in table 

3 the summary of the comparative study using the minimization problem in illustration 2. 

Table 3: Solutions using Existing Algorithms. 

Technique Number of 

Iterations 

Value of the 

Minimizer 

Value of the Objective 

Function 

LEA 4 (1.87, 2.27) 10.15 

QEA 4 (1.88, 2.24) 10.12 

MNEA 4 (2.07, 1.97) 10.15 

Active Set 2 (2.00, 2.00) 10.00 

Simplex 2 (2.00, 2.00) 10.00 

 

5 Conclusion  

A Quick Convergent Inflow Algorithm (QCIA) has been presented for solving linear 

programming problems. The working of the algorithm has been presented for maximization 

problems as well as minimization problems. An important feature of the QCIA is that the starting 
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point, direction of search and the step length are optimally chosen. Specifically, the search moves 

in the direction of minimum variance and converges absolutely to the required optimum. 
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