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Abstract: This work provides a new method of obtaining optimizers of response functions. The method uses line search
techniques and it is particularly useful for linear programming problems. The focus is to reach the optimizer in the fewest number
of iterations. The method has been compared with simplex method, active set method, Linear Exchange algorithm (LEA),
Quadratic exchange algorithm (QEA), and Minimum norm exchange algorithm (MNEA) and is found comparatively efficient.
Numerical demonstrations prove effectiveness of the new method.
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1 Introduction

A standard LP problem is defined as an optimization problem of a linear objective
function in n non-negative variables subject to m linearly independent constraints (where m < n,
m = n or m > n). The objective function could be called the response function. When the interest
of the experimenter is to locate the optimum of the response function, Response Surface
Methodology (RSM) comes into play. According to Montgomery [7], Response Surface
Methodology is a collection of mathematical and statistical techniques useful for analyzing
problems where several independent variables xi, Xo, ..., xn influence a dependent variable
(response), say Z. The minimizer (or maximizer) of the objective function is a point >_<* eX ,
where X is a member of the experiment space {X,Fy,Y }, whose components are as defined
below;

X ={ x } is the space of all possible trials of the experiment.

F, = { f(x) } is a space of finite dimensional continuous functions that can be defined on X.

Y. = {2} is the space of positive, continuous random observation error which can be defined
on X.

In this work we assumed that the constraints are linear inequalities defined on convex
feasible region. We seek therefore a method of solving linear programming problems using
experimental design techniques. The method presented in this paper is such that would arrive at
the desired optimum (minimum or maximum) in the fewest number of iterations.

2 Literature Review and Methodology

The procedure embodied in the search algorithm of Box [1] locates the optimum x* e X
of a response function using line search equation,

x* =x*pd (2.1)
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where X is the starting point of search, d is the direction of search and p is the step-length. Many methods
have been provided for obtaining the components of the above line equation. These methods include the
steepest descent (ascent) method, the Newton’s method (see e.g Storey [11]). Umoren [12] considered the
construction of exact D-optimum designs for constrained optimization problems. Umoren [13] presented a
maximum norm exchange algorithm for solving linear programming problems. Umoren [14] applied
optimal design theory to the solutions of a constrained optimization problems. Umoren [15] presented
some optimality conditions for the existence of optimizers of a certain class of linear programming
problems. Umoren [16] developed a quadratic exchange algorithm for solving linear programming
problems. Other related works include Umoren [17] and Etukudo and Umoren [2].

One of the recent line search techniques that is a powerful tool for solving different optimization
problems that are often encountered in mathematical programming is due to Onukogu and Chigbu [9]. The
line search technique is built around the concept of super convergence. The algorithm locates the local
optimizer of a response function in the fewest number of moves and hence the technique is called Super
Convergent Line Series (SCLS). Etukudo and Umoren [3] have modified the Super Convergent Line
Series algorithm for solving linear programming. This reduction has reduced the computational
requirements of the initial algorithm. Many comparisons have been made using the modified algorithm and
may be seen in Etukudo and Umoren [4], Umoren and Etukudo [19], [20], Etukudo, Umoren and Enang
[6].

In this work, we develop a new approach of obtaining an optimizer of a response function
using the line equation in 2.1. Specifically, we provide a new method of obtaining the direction of
search. The direction is such that has minimum variance property and is based on designing the
experiment to minimize the variance of the response function. Onukogu [8] has shown that the
optimizer of a response function has a minimum variance. We seek then a line equation that

searches in the direction of minimum variance. Thus, given an n-variate response function f(x) =
g 'x with k-component gradient vector g, the gradient vector g can be transformed by an n x k

full rank matrix of transformation, say T, so that Z = T g, has minimum variance. The direction
vector is then d = A™ Tg , where A is an n x n nonsingular symmetric matrix. In a minimization

problem, the line equation becomes x * = X — pd
and in a maximization of problem the line equation becomes x* = Z<+ p d. The components

of the line equation, 2 p, and d are optimally chosen. We present in section 2.1 the sequence of
steps involved in the algorithm.

2.1 The Algorithm
The line search algorithm follows the following sequence of steps,

Si: Form the design measure, £ , by selecting N support points X,, X,, ... X, from X . The
support points that make up the design measure must satisfy the m linear inequality constraints
and must result in a non-singular information matrix. To obtain a non-singular information
matrix, the number of support points say N, must satisfy the bound

NnSN<In(n+l)+1 (2.2)

(see e.g Onukogu [8], Pazman [10])

S,: Obtain the optimal starting point Z( . For n-variates, say, Xi, Xz, ... , Xn the average of N
support points can be used as the optimal starting point. That is,

X :(Xllzz X3 /---/_)_(n) (2.3)
where

X: = (X11, X5, %13 /"'/Xln)/ N
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*

X, = (X21, X5, Xo3 /"'/X2n)/ N

*

X, = (x,ﬂ/ Xn2, %oz ,...,xnn)/ N

Ss: Determine the information matrix, M, corresponding to the design measure &, ; k = 0., My =
T,

S4: Obtain the determinant of the information matrix, say, det (M, ).

Ss: Obtain the variance-covariance matrix, M, ™, of the information matrix, M, where M™ = A’
1

Se: Relate the coefficients of the objective function with the information matrix by
Z, {Z“}:ng (2.4)
Zy, o
where g is the vector of the coefficients of the objective function.

S7: Determine the direction of search d, , where d, is an n-component vector defined by

dl
d2

gk:Mk_lzk: .

dn

(2.5) o
Sg: Obtain the normalized direction of search d, such that d fﬂ =1

The normalized direction vector is defined as

T

d, d,
d| |d;
i 1 - (2.6)
T Jdzedz e d? |- |
JdZ+d2+..+d
1d. ] |d]

So: Determine the optimal steps-length, o, by

. £ (CilaCiz »-"?Cin) (go)_bi— 2.7

min py; = min (Cil,Ciz ,...,Cm) (g*) ( )
i=123,...,n
j=12,3,...,m

Si0: With X ;p"; d";makeamoveto X, =X k+ p, d, ,
where k =0,1, ..., q.

S11: Evaluate f()_(k+1 ): fi

Si1o: Setting k = k+1 and N = N+1 add
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the points >_<:+1 in step Sjo above to the design measure in step S; and if x,,, satisfy the
constraints, continue from step S; to step Sy;. Thus obtaining X, ,, .

Sit I8l = Xeall <&>0?
if No, go to step Si2 and continue the process.
If Yes, the optimizer of the objective functionis X,,;

3 Numerical Demonstration
The working of the algorithm developed in section 2 shall be tested numerically using
some linear programming problems.

3.1 llustration 1
The problem here is to maximize the objective function
Z = 3%y + 2X»
(3.1)
Subject to
4xy + 3%, <12
41+ X, <8
4X; — X, < 8
X1, X2 >0
To enable us maximize the given objective function we select the support points
[2,2), (1.5,1),(0.5, 2)] satisfying the linear constraints and satisfying equation 2.2. With these
support points, we form the initial design measure as

1 2
£9-15 1
0.5 2

Notice that each of the support points that make up the initial design measure satisfies the three
constraints of the objective function. We highlight this briefly as follows;

Using the constraint 4x; + 3x, < 12, the support point (1,2) yields 10, (1.5, 1) yields 9 and (0.5,2)
yields 8. Using the constraints 4x; + x, < 8 the support points (1,2) yields 6, (1.5,1) yields 7 and
(0.5,2) yields 4.

Similarly, using the constraint 4x; — x, < 8 the support point (1,2) yields 2, the support point
(1.5,1) yields 5 and the support point (0.5,2) yields 0.

Hence, the selected points satisfy the constraints.

The design matrix associated with the initial design measure (&) is

12
X, = |15 1
05 2

The starting point of the search is obtained by evaluating the average of the three points selected.
This yields

7 1+15 + 05
o [Ye| _ 3 _ [1.0000
%, 2 +1+2 1.6667
3

The corresponding information matrix, My, of the design matrix, Xo is



Osita Odiakosa and Mary Iwundu : A Quick Convergent Inflow Algorithm... % NS P}
107

12

. 1 15 05 35 45

Mo=XeXo =1 1 2 |I2 L7145 o
05 2 |

whose determinant value isdet M, = 11.25
The variance covariance matrix, M;" is
0.8 -0.4
{— 0.4 0.3111}

The vector of coefficient of the objective function, g, is
(3
o=

With g:m and M, =(3-5 45}
2 45 9

we compute Z, as

3.5 45)\(3 19.5
Zy = M,g-= =
= 4.5 9 /\2 31.5
The direction of search is

08 -0.4 ][195] [3.0000
o | Jlst5] - 2ot

-0.4 0.3111(|315 1.9997
The normalized direction of search
4 = 1 [3.0000} _ {0.8321}
=0 \/3_00002 + 1.99972 |1.9997 0.5547

The step-lengths are computed as below;
For the first constraint,

1.0000
(43) 1.6667)
Por = - = —0.6009
0.8321
(4 3)
0.5547
For the second constraint,
1.0000
@1 (1 6667j_
P2 = a = —0.6009
0.8321
(4 1)
0.5547
For the third constraint,
1.0000
4 -1 [1 6667J_
Pos = : = —2.0430
0.8321
(4 -1)
0.5547

In order to avoid making a move that takes us away from the feasible region, we consider using
the shortest step length as measured by its absolute value. Hence, the optimal step length is
po =1-0.6009 | = 0.60009.

With X, ps , g, @ move is made to
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x, = Xo + pyd
1.0000 —0.8321 1.0000 0.5000 1.5000
= + [0.6009] = + =
1.6667 +0.5547 1.6667 0.3333 2.0000
. 1.5000
X, =
[2.0000}
With , _ {1'5}, the value of the objective function is f(x; |=8.5
=20
Also, we notice that - _ {1-5} satisfies the three linear constraints. Before checking for optimality
= 2.0

we need to make a second move. In other to do that the point >_<I is added to the initial design

measure and hence yields a new designh measure
1 2

15 1
05 2
115 2

The corresponding design matrix is
1 2

15 1
05 2
15 2
The coordinate of the average of the four points are
x, = {1.1250 1.7500}
The corresponding information matrix is
. {5.75 7.5}
X, X =M, =
75 13

and the associated determinant is
det M, = 185

The variance covariance matrix is
4, _ |0.7027 —0.4054
' ]-0.4054  0.3108
with :[BJ and M, = (5.75 7.5]
2 7.5 13
we compute Z as
5.75 7.5)\(3 32.25
Z, =Mg-= =
7.5 13/ 2 48.50
The direction of search is
N {3.0002}
d,=M;"2 =

o _
4

X, =

1.9997
The normalized direction of search is
N 0.8321
gl =
0.5546
We compute the step-length as follows:
For the first constraint
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1.12
(4 3)( 50)

1
1.7500]
Py = = —0.4507

(@ 3) (0.8321j

0.5546

For the second constraint

(@ 1) [1.1250]_8

1.7500

= = —0.4507
P12 0.8321
(4 1)
0.5546
For the third constraint
1.1250
(4 -1) -
1.7500
P = = —1.8507
0.8321
(4 -1)
0.5546

The optimal step-length is
|pll| = |p12| = 0.4507 = p,
With xl ,pl , dl , a second move is made

§2 = XI + pl Q*
1.1250 +0.8321
= + [0.4507]
1.7500 +0.5547

. 1.5000
X, =
2.0000
With _{1-5}, the value of the objective function is f&z) = 85
® =20

Checking for optimality (by considering the norm of the vector X, — x, ). we have

1 5000 1 5000 O 0000
2. OOOO 2 0000 0 0000

* *

X, = Xq| =

= /(0.0000)? + (0.0000)?
—0.0000

This value satisfies the stopping rule. We notice that the value of the objective function at the first
iteration is the same as the value of the objective function at the second iteration.

Hence, the global maximum of the objective function, f(x), is
_« (15000
X; =
(2.0000}

3.2 lllustration 2
The problem considered here is given by

minimize f(X) = 3xy + 2x (3.2)
subject to

2X1+ X, >6

X1+ X2 >4
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X1+ 2X, > 6

X1, X2 2 0.

We shall solve this problem using our Quick Convergent Inflow Algorithm (QCIA). We begin by
selecting points to go into the design measure. With the points (1, 4) and (4, 1) we form the initial

design measure as
1 4
0) _
S -

Notice that each of the support points that make up the initial design measure satisfies the three
constraints of the objective function. The design matrix associated with the initial design measure

(&9)is x, - F 4}
4 1

The starting point of the search is obtained by evaluating the average of the two points selected.

Thisyields x, =[25 2.5].

The corresponding information matrix is

M = XEX, = [1 4} {1 4} _ {17 8 }
4 1|4 1 8 17

whose determinant value isdet m, = 225

The variance covariance matrix, M;' is

Mt = {0.075556 —0.035556}

—0.035556 0.075556

The vector of coefficient of the objective function, g, is

g= 3
)
With g:[3j and M, :[17 8 J
2 8 17
we compute Z, as

3 17 8 3) (67
ZO -_ Mog: -
e |8 17) (2] 158
The direction of search is
4 _ mlz _ |0075556  -0.035556|[67] _[3.000004
° — e "1 _0,035556 0.075556 ||58| |1.999996
The normalized direction of search
“_ 1 3.000004 ]  [0.832051
=0 \/3,0000042 + 1.9999962 |1.999996 | |0.554699

The step-lengths are computed as below;
For the first constraint,
2.5
21 -6
Ceufile
Por = 0.832051] ~ 2.218801
(2 1)
0.554699

=0.067041

For the second constraint.
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2.5
@1 -4
25 1.0
Poo = = =0.7211
0.832051 1.3867
1 1
0.554699

For the third constraint,

€2 @2}6 15

Piz = = = 07727
0.832051)  1.9413
a2

0.554699
Hence, the optimal step lengthis p; = |o.67604Jj = 0.676041

With %,, o, , d,, a move is made

X, = Xo — podp

2.5 0.832051 1.937499 1.9375
= — [0.676041] = ~
2.5 0.554699 2.125101| | 2.1250
. [1.9375
X =
2.1250

ith,* _ |+ . the value of the objective function is f(x )=10.0625
With,* _ 19375 the value of the objective funct f(x;

2.1250
Also, we notice that ,* _ {1-9375} satisfies the three linear constraints.

2.1250

Before checking for optimality we need to make a second move. In other to do that the point x: IS
added to the initial design measure and hence yields a new design measure.
1 4
U= 14 1
1.9375 2.1250
The corresponding design matrix is
1 4
X, = |4 1
1.9375 2.1250
The coordinates of the average of the three points are
x, = {2.3125, 2.3750}
The corresponding information matrix is
. {20.753906 12.117188}
M, =X X, =
12.117188 21.515625
and the associated determinant is
det M, = 299.707014
The variance covariance matrix is
M - {0.071789 —0.040430}
! —0.040430 0.069247
With 92[3] and M, = {20.753906 12.117188}
2 12.117188 21.515625
we compute Z as
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; {20.753906 12.117188}{3}_ {86.496094}
1 T 1 -

" 112.117188 21.515625 79.382814
The direction of search is
B 3.000021
gl = Ml Zl =
1.999985
The normalized direction of search is

. [0.832054
= 10.554695

We compute the step-length as follows:
For the first constraint,

: 2 1) [2.3125]_

2.3750 1
0.832054) _ 2.218808 400093
(0.554695)
For the second constraint,
(2 3125)_4
2.3750 0.6875
0.832054)  1aserag | U9°Te
(0 554695)
For the third constraint,
(2 3125J
2.3750 _ 1.0625 — 0547273
(1 2) (O 832054J 1.941444
0.554695

The optimal step-length is
| = 0.450693 = p,

With Xf,pl* , gf, a second move is made to

* * * *

X, =% —-pd
2.3125 0.832054 1.9374997 [1.9375
= — [0.450693] = ~
2.3750 0.554695 2.125003| | 2.1250

. 1.9375
X, =
{2.1250}
With ) _[1'9375}, the value of the objective function is f(gZ) = 10.0625
~° |2.1250

Checking for optimality (by considering the norm of the vector >_<; — )_(I ).
we have
1.9375 1 9375 0 0000
2.1250 2 1250

-] - 2o -

= /(0.0000)? + (0.0000)?
= 0.0000

This value satisfies the stopping rule. We notice that the value of the objective function at the first
iteration is the same as the value of the objective function at the second iteration.

Hence, the global minimum of the objective function, f(X), is
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. {1.9375}
X = :

NS P

2.1250

4 Results

We present below the summary of search for the optimization problems considered in illustrations
1 and 2 of section 3. The summary provides information on the performance of the algorithm as
measured by the number of iterations required to reach the optimum, the determinant value of the
information matrix, the optimizer, the value of the objective function and the norm of the vectors of
optimizers. From the summary statistics in Table 1, we see that the value of the determinant
increases with addition of an optimal point to the initial design measure. The table also shows that
the objective function is maximized at the first move.

Table 1: Summary Statistics for the maximization problems in illustration 1

Iteration Det information | optimizer Value of objective | Norm
matrix function
1 11.2500 15 8.5000 0
5o
2 18.5000 15 8.5000 0
5o
Table 2: Summary Statistics for the minimization problem in illustration 2.
Iteration Det information | optimizer Value of | Norm
matrix objectivefunction
1 225 1.9375 10.0625 0
(2.1250)
2 299.707014 1.9375 10.0625 0
(2.1250)

Also from the summary statistics in Table 2, we see that the value of the determinant increases with
addition of an optimal point to the initial design measure. The table also shows that the objective
function is minimized at the first move.We observe that the algorithm attempts to improve an initial
design as measured by the determinant value of information matrix. Comparative study has been
made with existing algorithms such as, the Simplex Method, Active Set, LEA, QEA and MNEA.
The Quick Converging Inflow Algorithm (QCIA) has performed credibly well. We present in table
3 the summary of the comparative study using the minimization problem in illustration 2.

Table 3: Solutions using Existing Algorithms.

Technique Number of | Value of the | Value of the Objective
Iterations Minimizer Function

LEA 4 (1.87, 2.27) 10.15

QEA 4 (1.88, 2.24) 10.12

MNEA 4 (2.07,1.97) 10.15

Active Set 2 (2.00, 2.00) 10.00

Simplex 2 (2.00, 2.00) 10.00

5 Conclusion

A Quick Convergent Inflow Algorithm (QCIA) has been presented for solving linear
programming problems. The working of the algorithm has been presented for maximization
problems as well as minimization problems. An important feature of the QCIA is that the starting
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point, direction of search and the step length are optimally chosen. Specifically, the search moves
in the direction of minimum variance and converges absolutely to the required optimum.
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