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Abstract: The major objective of this paper is to propose a novel double Laplace — ARA transform (DL-ARAT). This transform
is employed to establish the convolution theorem, existence conditions, and other relevant theorems results, including derivative
properties. Subsequently, the DL-ARAT is applied to solve a range of illustrative integro-differential equations. This approach was
shown to be a powerful and efficient means to tack integro - differential equations.
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1 Introduction

Integral transform methods are regarded among the basic
and most widely used approach in solving partial
differential equations. For instance, partial differential
equations (PDEs) are utilized to model many phenomena
in disciplines related to Mathematics such as Physics,
Engineering and other scientific fields. These models are
written using a variety of partial differential equations [1,
2,3,4,5,6,7,8,9,10,11,12]. Integral transforms can be
equally utilized to solve both integral and
integral-differential equations. Thus, this paper primarily
seeks to solve the aforementioned types through double
Laplace-ARA transform. The double integral transform
provides us with an efficient means whereby
integral-differential equations can be easily transformed
into algebraic equation so as to obtain the exact solutions.
This study is rooted in the advances made by Scholars
who exerted great efforts to develop the above method
and apply them to a wide range of Mathematical
problems. Example, include carried out the double
Laplace transform [13,14,15,16], double Sumudu
transform [16,17,18,19,20], the double Laplace—Sumudu
transform [21,22], the double Elzaki transform [23], the
double Kamal transform [24], the double formable
transform [25], the double Laplace-ARA [26], the double
ARA transform [27], among other.

Among the previous method is double Laplace-ARA
Transform which has been increasingly used recently to
solve partial differential equations (PDEs), integral
equation (IEs) and integral-partial differential equations
(IPDEs).

The main objective of our current study is to
demonstrate that the DL-ARAT transforms has
advantages in handling oscillatory functions, its ability to
simplify and handle initial and boundary conditions, and
its effectiveness in reducing the complexity of solving
partial integro-differential equations compared to other
well-known double transforms, such as the double
Laplace transform and the double Sumudu transform. As
shown in [26], the duality of the ARA transform relative
to the Laplace transform gives it an advantage that allows
it to overcome the singularity at r = 0. Given these
advantages, we decided to construct this new combination
of the Laplace and ARA transforms, so that we can reap
the benefits of these two powerful transforms. We have
named this new approach the double Laplace-ARA
transforms.

This article is organized as following: In Section 2,
Fundamental Facts of new integral ARA and Laplace
transforms. In Section 3, we introduce a new double
integral transform, the DL-ARAT, that combines the
Laplace transform and the ARA transform and present
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some properties of this transform. In Section 4, we apply
the DL-ARAT to IPDEs. In Section 5, some examples are
presented and solved with the DL-ARAT, In Section 6,
the results and discussion. Lastly, In Section 7, the
conclusion.

2 Fundamental Facts of Laplace and ARA
Transforms of order one:

In this section, we introduce the basic properties of single
Laplace and ARA transforms.

2.1 Fundamental Facts of single Laplace
transform: [28]

Definition 1.Let f(x) be a function of x specified for x >
0. Then Laplace transform of f(x), denoted by L[f(x)], is
defined by

LI ())(v) = F(v) = /Ome*”ﬂx)dx, v>0, (1)

and the inverse of Laplace transform is given by

! /Hime”F(v) dv=f(x), x>0. (2)

- 2”1 Cc—ioo

L7 (v)]

Theorem 1(Existence conditions). If f(x) is piecewise
continuous function on the interval [0,00) and of
exponential order ¥. Then L[f(x)] exists for Re(v) > ¥
and satisfies

f(x)] < pe®™,
where U is positive constant. Then, the Laplace transform
converges absolutely for Re(v) > 9.

Proof.Using the definition of Laplace transform, we get

[F(v)[ =

'/: e "[f(x)]dx| < ./: e | f(x)|dx

< - —(v—ﬂ)xd _ %
<uf e e

Re(v) > 9.

Therefore, the Laplace transform converges absolutely for
Re(v) > 9.

In the following table, we present some properties of
single Laplace transform.

2.2 Fundamental Facts of single ARA
Transform of order one: [28]

Definition 2.The single ARA transform of order one of a

continuous function f(t) on a given interval (0, o) is given
by

GLF(1)](s) = O(s) = s /:e’”f(t)dh s>0, ()

Table 1: Laplace transform of frequently encountered
functions

76 [ 70

1 v

o 1"(m:¢]1)7 m>0

e~ %, acR

sin(ax) i a€R

sinh(ax) | %, a€R

f(x) vE(v) = £(0)

SO | vFEE) -y v EY0), n=0123,.

and the inverse ARA transform is expressed as

rCtioco LSt
: / S o(s)ds = fr). @

o 275[. Cc—ijoo S

G~[F(s)]

Theorem 2(Existence conditions). If the function f(t) is
continuous in each domain 0 < t < @ and satisfying

[f(1)] < Me™,

where M is a positive constant, then, the ARA transform of
order one converges absolutely for Re(s) > .

In the following table, we present some properties of

single ARA transform of order one.

Table 2: ARA transform of order one of frequently
encountered functions

ft) Glf(0)](s)

1 1

/b 1“(bb+1)7 b>0

o ﬁ7 beR

sin(bt) ﬁ’ beR

sinh(bt) | 7%, a€R

1) sQ(s) —sf(0)

fO@) | ") —xh " * D), n=0,1,23,...

All the above results can be obtained from the
definition of Laplace and ARA transforms and simple
calculations.

3 Double Laplace-ARA transform of order
one (DL-ARAT):

In this section, a new integral transform, DL-ARAT, that
combines the Laplace transform and the ARA transform
of order one is introduced. We present basic properties
concerning the existence conditions, linearity and the
inverse of this transform. Moreover, some essential
properties and results are used to compute the DL-ARAT
for some basic functions. We introduce the convolution
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theorem and the derivatives properties of the new
transform. Recall that the ARA transform of order one of
a piecewise continuous function f(¢) on [0,0) is given as:

Let u(x,t) be continuous function of two positive
variables x and 7. Then the DL-ARAT of u(x,?) is defined

as:
LG, [u(x,t)] = Q(v,s —s/ / ~Os 1y (x, 1)) dixdt,
v,s > 0.
(%)

Clearly, the DL-ARAT 1is a linear integral
transformation as shown below:

LG [Au(x,t) + Bw(x,1)] =
/ / ~0x ) [ Ay (x, 1) + Bw(x,1)] dxdt

—As/ / ~Ox [y (x, 1) dxdt
+Bs/ / ~Ox [y (x, 1)) dxdt

—ALth[ ( X, )]+BLth[ ( ’t)]'

where A and B are constants.
And, the inverse of the DL-ARAT is given as:

L:'(G; 00,9 = (1) [ enan

2mi joo

(1,) /r+lw—Q(v $)ds = u(x,1). (6)

27i ) Jr—io

3.1 DL-ARAT of some basic functions:

—Let u(x,t) =1, x> 0,7 > 0. Then:

ot~ [

/ef"xdx-s/ e'dt=1, Re(s)>0.
0 0

—Let u(x,1) =x%P, x> 0,7 > 0and «, B are constants.
Then:

LG,xtB —s//

vx+sl dxdt =

~Ots) [ 4B dxedr =

/ e [x %) dx- s/ P dt = Lx®] - G/[fP).
0 0
Thus,
By _ alfB! B
LXGt [)Cat ] = W, Re(a) > l,Re(S) > 0.

—Let u(x,t) = e tP x>0, t>0 and a,p are
constants. Then:

—(vx+st) aHﬁt}dxdt _

L G (Xx+ﬁf _S/ /
/ 7VX[eOUC} dx - S/ —st [er]dl‘
0 0

Thus,

Li[e™]- Gile”").

LGy [e™ P! = {Re(a) +Re(s)} > 0.

L
(v—a)(s—p)’
Similarly,

s

(v—ia)(s—iB)

Using the property of complex analysis, we have:

LG, [ei(ocx—kﬁt)} _

s(sv—oaf)+is(vB +sa)

L.G, [e (ax+Bt)]

(v2+0?)(s* + B?)
Using Euler’s formulas:
sinx = %, COSx = ¥,
and the formulas:
sinhx = ¢ _zeix , coshx= ¢ +2€7x .

Therefore, we conclude the following:

s(vB+sa)
(V2 +a?)(s>+ )’
s(sv—af)

(v +0?)(s*+ B2)’
s(vB+sa)
(7= )= )’
s(sv+apf)
07— o)~ )

L,G;[sin(ax+ PBr)] =

L,Gy[cos(ox+ fBr)] =

L,G;[sinh(ax+ Bt)] =

L,G;[cosh(ox+ Bt)] =

Where Im (o) < Re(s).

~L:Gi[Jo(AV/xt)] = s [g7 fg7 =00 [JO(AW)]dxdt
Jo Ho(A/an)e ™ dux-s [ g(t)e ™ di = 385

—Let u(x,t) = f(x)g(¢), x > 0,¢ > 0. Then:

LG/[f ]=s / / ~ER £ (x)

/:e*”[fuﬂdx-s | e ls0ldr = Lils)-Gilg(o)

Vg (t)]dxdt =
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3.2 Existence conditions for DL-ARAT:

Let u(x,t) be function of exponential order & and 8 as x — o and ¢ — oo. If there exists a positive N such that Vx > X and
t > T, we have:

lu(x,1)| < Ne® P,
We can write u(x,7) = O(e®*P") as x — coand t — o0, v > ¢ and s > .

Theorem 3.Let u(x,t) be a continuous function on the region [0,X) x [0,T) of exponential order o and . Then
L, G:[u(x,1)] exists for v and s provided Re(v) > o and Re(s) > f3.

Proof.Using the definition of DL-ARAT, we get:

s// ~Ox 0y (x, 1)) dxdt
< // =001y (x, 1) | dxdit

<N/ (=) gy s/ e B gy
0

Re(v) > o and Re(s) > B.

O(v,s)| =

B (v—a)(s—ﬁ)’

3.3 Some important theorems of DL-ARAT:
Theorem 4(Shifting Property). Let u(x,t) be a continuous function and LyG,[u(x,t)] = Q(v,s). Then:

LG [e™Pru(x,1)] = (v—a,s—B). @)

5
s—B
Proof.

LG [ Pru(x,t)] = s / e~ TPy (x 1) dxdt
0
(s—B) / / (=)r o= (=B (x, 1) dxdt

W (v—o,s—p).

Theorem 5(Periodic Function). Let L. G, [u(x,t)] exists, where u(x,t) periodic function of periods & and B such that:

MO\

ulx+o,t+B) =u(x,t), V.

Then:
LGy lu(x.1)] = San f(fle_(;)fzf;zig;;t)dxdl. @)
Proof.Using the definition of DL-ARAT, we get:
LG, lu(x,1)) fs/ / —(wtst)y, u(x,t)dxdt. 9)
Using the property of improper integral, Eq. (9) can be written as:
LG, [u(x,1) —s/ / —(vast) u(x,r) dxdt—|—s/ / —(vetst)y, u(x,t)dxdt. (10)
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Putting x = o+ p and t = f + 7 on the second integral in Eq. (10). We obtain

O(v,s fs/ / ~ 05y (x, ) dixdt

—|—s/ / (@) +s(B+0) (o 4 p, B+ T)dp d. (11)

Using the periodicity of the function u(x,), Eq. (11) can be written by:

Q(v,s —s/ / —0x ) (e, 1) dxdt

—(va+sp) / / vp+s’c p T) dp dr. (12)

Using the definition of DL-ARAT, we get:

Q(v,s —s/ / “0xtsy (x, 1) dxdt + e V2P Q(v,5). (13)

Thus, Eq. (13) can be simplified into:

Qvs) =1 mﬂﬁ (// (ks xt)dxdt)

Theorem 6(Heaviside Function). Let LG, [u(x,?)] exists and L,G;[u(x,t)] = Q(v,s), then:
LG lu(x— 8,1 —e)H(x— 8,1 — )] = e "7 Q(v,5). (14)

where H(x — 0,t — €) is the Heaviside unit step function defined as:

1, x>0,t>¢
H(x—6,t—¢&)=< " ’
(x=9, ) {0, Otherwise.

Proof.Using the definition of DL-ARAT, we get:
L,G[u(x—8,t —e)H(x— 6,1 —¢
—s/ / ) (y(x— 5,1 — £)H (v — 8,1 —€)) ddr
—s/ / ~x ) y(x— 8.t — €)dxdr.  (15)

Putting x— 0 = p and t — € = 7 in Eq. (15). We obtain

LGy [u(x— 8,1 —)H(x— 8,1 —¢ —s/ / Y(E+P)=5(e ) (o TV dp d. (16)
Thus, Eq. (16) can be simplified into:
LG [u(x—8,t —€)H(x— 6,1 — €)]

— ¢ V0sE (s/ / e P u(p, 1) dpdr)
0 Jo

— efvﬁfseQ(v’ S).

Theorem 7(Convolution Theorem). Letr L.G;[u(x,7)] and L.G,[w(x,t)] are exists and L,G:[u(x,t)] = Q(v,s),
L.Gi[w(x,t)] = W(v,s), then:

LG [uxxw(x,1)] = %Q(V,S)W(l@ s). (17)
where

"X t
u**w(x,t):/ / u(x—p,t—1)w(p,7)dpdr,
0 Jo

and the symbol xx denotes the double convolution with respect to x and t.

© 2025 NSP
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Proof.Using the definition of DL-ARAT, we get:

LG ux*w(x,t)]
*s/ / ~O0xH50) (s s (x, 1)) dxdt

—s/ / —(vxtst) </ / —p,t—1T) (p,f)dpdr) dxdt. (18)

Using the Heaviside unit step function, Eq. (18) can be written as
LGy [ux*w(x,1)]

:s/w/we*(”‘*“) </w/wu(x—p,t—T)H(x—p,t—f)w(p,f)dpdf) dxdt. (19)
o Jo o Jo

Thus, Eq. (19) can be written as

LGy [u**w(x,1)]

*// Prdpdr(// e RISy (x —pt — D) H(x—pt — )dxdt>

= [ wlo s e )

=009) /ow /ow e P w(p,T)dpdr

= %Q(V,S)W(V,S).

Theorem 8(Derivatives Properties). Let u(x,7) be a continuous function and L,G,[u(x,t)] = Q(v,s). Then, we get the
following derivatives properties:

1.L,G, _augf’ﬂ =sQ(v,s) — sL[u(x,0)],
21,6, [ 2550 = v0(v,5) ~ Glu(0,1)],
3.L,G; {azgl(f’t)} =52Q(v,s) — s>L[u(x,0)] — sL {@}
41, [Z4520] = 120(v,5) —vGlu(0,1)] - G [2402],
(v,s) —sG[u(0,1)] — vsL[u(x,0)] + sG[u(0,0)].

LG | ™

] / / ~(sr-vx) {a”’;’)}dxdt
:/O e*Vde-s/O e”(aug;’t)>dt.

Using integration by parts, we obtain

s/:e*ﬂ (Wg,;)) di = s (—u(x,O) +s/0°°eﬂu(x,t)dt) .

} =s0(v,s) — sL[u(x,0)]. (20)

Therefore,
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LG, | 75

} // ~(st) [a”fct)]dxdr
= [Tear [Te (‘T) .

Using integration by parts, we obtain

/me—vx (au(x,t)> dx = —u(0,1) Jrv/ooe_vx”(xvt)dx'
0 ax 0

L.G, [8";;”} —Q(v.5) — Glu(0,1)]. @1

Therefore,

LG, [aﬂ }s/ / ~(stvx) { (t ’)} dxdt
_ ©  (d%u(x,1)
_ VX g st )
—/Oe dxs/oe ( 372 )dt.

Using integration by parts, we obtain

[ (P (2 [ (20 )

Using Eq. (20), we have

LXGI{ gﬂ’ }:szQ(v,s)—szL[u(x,O)]—sL[au(axt’o)]. 22)

)]y [ [ [P0 g
= /0 ear- | e (9235;7;)) dx.

Using integration by parts, we obtain

o (d%u(x,t) _ du(0,1) [ du(x,1)
/Oe ( 2 )dx—— " —|—v/oe ( pp )dx.

Using Eq. (21), we have

[02u(x,1)] Ju(0,
L.G, _g(xﬁt)_ =v2Q(v,s)—vG[u(O,t)]—G{ ”éx I)]. (23)

-azu(x7t)_ o Y —(st+vx) dJ u(x t)
Lth_c?xat__s/o/oe (88 >dxdt

o azu(x t) o
_ —st ’ . —Vx
= S/O e ( o1 > dt /0 e dx.
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Table 3: DL-ARAT to some basic functions.

eo‘x+B’u(x,t)
u(x—06,t—€)H(x—8,t —¢€)

u(x,r) LyGt[u(x,1)] = Q(v,s)
i e

et =) G—P)

sin(ox + Br) %
cos(ax+ Bt) %
sinh(ox+ fBr) %
cosh(ax + fBt) %
Jo(Av/xt) e

ﬁQ(V —O,s— B)
eiVé*JSQ(v,S)

u sk xw(x,1) %Q(v7 )W (v,s)

uz (x,1) sQ(v,s) —sL[u(x,0)]

ux(x,1) vO(v,s) — G[u(0,1)]

Uz (x,1) s20(v,s) — s2L[u(x,0)] — sL[u; (x,0))

Uy (X, 1) v2O(v,s) — vGu(0,1)] — Glux(0,1)]

Uy (x,1) vsQ(v,s) — sG[u(0,1)] — vsL[u(x,0)] + sG[u(0,0)]

Using integration by parts, we obtain

d%u(x,t)

—(st4vx)

/ / ( Ixdi ) dudt

= —/Neﬂ’ 9u(0,1) dt—i—vs/m/ooe*(“*"x) Julx1) dxdt.
0 ot 0 Jo ot

And, using Eq. (21) and single ARA transform of u,(0,7), we have

21/! X
T )] —1501019) = GIU(0.)] 5L O] +5G1u(0,0), .

LGy { o

The previous results of DL-ARAT to some basic functions, some theorems and basic derivatives are summed up in the
Table below:

4 Presentation of Double Laplace-ARA Transform Method in Solving IDEs

To illustrate the basic idea of this method for solving integral partial differential equations, we consider instances of
Volterra integral equations, Volterra integro-partial differential equations, and integro-partial differential equations.

4.1 Volterra Integral Equation

Consider the following Volterra integral equation:

X 1
u(x, 1) :f(x,t)Jr)// /u(xfp,tff)w(p,f)dpdf 25)
0 Jo
where u(x,t) is unknown function, f(x,¢) and w(x,t) are two known functions, and 7 is constant.
The main idea of this method is to apply the DL-ARAT to Eq. (25) as follows:
Xt
LG [u(x,1)] = LyG; {f(x,t) + y/o /0 u(x—p,t—1)w(p,t)dpdr (26)
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Using the differentiation property of the DL-ARAT of Eq. (26) and Theorem 7, we have:

1
005 = F5) +7( LW (1)) @)
Eq. (27) can be simplified as:
F(s,v)
V,§) = ——F—"— 28
Q( ) 1 _ %W(V, S) ( )
Operating with the inverse of DL-ARAT on both sides of Eq. (28) gives:
1 F(s,v)
=L '¢M | —2 29
u(x,t) =L, G, ZW(V,S)} (29)
where u(x,t) represents the term arising from the known functions f(x,#) and w(x, ).
4.2 Volterra Integro-Partial Differential Equations
Consider the following Volterra integro-partial differential equation:
du(x,t) du(x,t Xt
0 L 2D sy [ [ uta—poi—eiwlp. v dpat (30)
ox ot 0 Jo
with the following initial condition:
u(x,0) = h(x), (31
and the following boundary condition:
u(0,1) = g(1). (32)
where u(x,7) is unknown function, f(x,#) and w(x,#) are two known functions, and ¥ is constant.
Applying Laplace transform to the initial condition in Eq. (31), we get:
Llu(x,0)] = LIh(x)] = H(v)
Applying ARA transform to the boundary condition in Eq. (32), we get:
Gu(0,2)] = Glg(1)] = G(s)
Applying DL-ARAT to Eq. (30), we get:
du(x,t) Jdu(x,t Xt
LG, | 2Hen)  oul )} ~ LG, [f(x,t) 7 [Cate=p.s—vup,5)dpas (33)

Using the differentiation property of the DL-ARAT of Eq. (33), initial and boundary conditions, and Theorem 7, we
have:

vO(v,8) —G+5Q(v,s) —sH = F(v,s) + %/Q(v7 )W (v,s) (34)

Eq. (34) can be simplified as:
F(s,v)+G+sH

5) = 35
O(v.s) vts—IW(v,s) (33)
Operating with the inverse of DL-ARAT on both sides of Eq. (35) gives:
41 | F(s,v)+ G+ sH
xt)=L;'G7 | — 36
ubnt) =L G, vts—IW(v,s) (36)

where u(x,) represents the term arising from the known functions f(x,7), w(x,?), h(x) and g(z).
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4.3 Integro-Partial Differential Equations

Consider the following integro-differential equation:

%u(x,t)  9%u(x,t vt
vt) ST e + | [ ute=pa=omip.0)dpdz = rx) (37)
with the following initial conditions:
u(x,0) =hi(x), u/(x,0)=hs(x), (38)
and the following boundary conditions:
u(0,0) =g1(t), u(0,1) =ga2(2). (39)

where u(x,?) is unknown function, f(x,#) and w(x,#) are two known functions.
Applying Laplace transform to the initial conditions in Eq. (38), we get:

Llu(x,0)] = L{h1(x)] = Hi(v),  Llus(x,0)] = L{ha(x)] = Ha(v)
Applying ARA transform to the boundary conditions in Eq. (39), we get:

Glu(0,1)] =Glg1(1)] = Gi(s), Glux(0,1)] = Glga(1)] = Ga(s)
Applying DL-ARAT to Eq. (37), we get:

82 ’ &2 , Xt
LG, g(;f 2 Zfﬁ t)+u(x,t)+/0 /Ou(x—p,t—f)w(p,f)dpdr = LGi[f (x,1)] (40)

Using the differentiation property of the DL-ARAT of Eq. (40), initial and boundary conditions, and Theorem 7, we
have:

[s2Q(v,s) — s*H| — sHy] — [ Q(v,5) —vG1 — Ga] + Q(v,s) + éQ(v,s)W(v7 s)=F(v,s) 41)
Eq. (41) can be simplified as:

s(F(s,v) +s*Hy +sHy —vG1 — Gy)
= 42
O(v.s) s3—sv2+s+W(v,s) (42)

Operating with the inverse of DL-ARAT on both sides of Eq. (42) gives:

(F(s,v) +s>Hy 4+ sH, —vG| — G»)

43
$3—s2+5+W(ns) “43)

u(x,t) =L 'G! u

where u(x, ) represents the term arising from the known functions f(x,t), hi(x), g1(¢), ha(x), g2(¢), and w(x,t).

4.4 General Methodology

The general methodology for applying the DL-ARAT method to solve the integral equations defined in this section:

1.Apply DL-ARAT to the main equation
2.Solve the algebraic equation resulting from the effect of DL-ARAT on the main equation
3.0btain the final solution using the inverse DL-ARAT method

And the general methodology for applying the DL-ARAT method to solve the partial integral equations:

1.Apply the Laplace transform to the initial conditions

2.Apply the ARA transformation to the boundary conditions

3.Apply DL-ARAT to the main equation

4.Solve the algebraic equation resulting from the effect of DL-ARAT on the main equation
5.0btain the final solution using the inverse DL-ARAT method
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5 Applications

In this section, we introduce five interesting examples of IPDEs and solve them by the current method.

5.1 Application 5.1

Consider the following Volterra integral equation:

X !
uter) =27 [ [ulp.v)dpds (44)
o Jo
Applying the DL-ARAT to Eq. (44), we have:
O(v,s) = % — LG [1#*u(x,t)] = % -y |:1Q(V,S):| (45)

Eq. (45) can be simplified as:

As 425
= = 46
Q(V,S) VS"‘}/ 4VS+ (2\/,)7)2 ( )
Taking the inverse of DL-ARAT to Eq. (46), then the solution of Eq. (44) is:
425
=L'G' | ———5 | = A2yt
ux1) =L."G {4vs+ (Z\ﬁ/)z] Ho(2vr)
5.2 Application 5.2
Consider the following Volterra integral equation:
X 1
4t:y/ / u(x—p,t—1u(p,7)dpdt 47)
0 Jo
Applying the DL-ARAT to Eq. (47), we have:
4 v 4 2
7 . —4 48
= = Tow.5)-0n5) = L(0(ns)) (8)
Eq. (48) can be simplified as:
2
O(v,s) = — (49)
MR
Taking the inverse of DL-ARAT to Eq. (49), we get the solution of Eq. (47):
2 2
=L7'G! =
v =L G [f% ﬁ} Ty
5.3 Application 5.3
Consider the following Volterra integral equation:
X 1
xe* —xe* ! :/ / e u(x—p,t—1)dpdt (50)
0 Jo
Applying the DL-ARAT to Eq. (50), we have:
| s _ 0O(v,s) 51)
(=12 (=1s+1) (=D(s+1)
Eq. (51) can be simplified as:
1 s s+1—s 1
— _ (v=1 NN=————o—— - (v=1 1)= 52
009 = (3 - oy ) O DD = o O e D= 6D

Taking the inverse of DL-ARAT to Eq. (52), we get the solution of Eq. (50):

1
u(x,t) =L 'G! L} =¢*
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5.4 Application 5.4

Consider the following Volterra integro-partial differential equation:

du(x,t) n du(x,r)

=—1+e'+e +e "+
ox ot

/tu(x—p,t—r)dpdf (53)
0

S

with the initial condition u(x,0) = ¢* and boundary condition u(0,7) = ¢'.

By substituting the values of functions H = Vl—l, G= ﬁ, F=—
general form in Eq. (35), we obtain:

+ i e ooy and W= | in the

1
v v(s—1)

O(v,s) = — (54)
Eq. (54) can be simplified as:

Qs) = (vs(fjls)z&—i)) (sv2 +Ssv2v— 1) T (- f)v(s— ) 43

Applying the inverse of DL-ARAT to Eq. (55), then the solution of Eq. (53) is:

X+t

u(x,t) =L 'G! [ =e

5.5 Application 5.5

Consider the following integro-partial differential equation:

9%u(x,1) B 9%u(x,1)
or? ox?

+u(x,f)+
x ot
//gx_p""’_ru(xprf‘L')dpdT=ex+l+xt€x+t (56)
0 JO

with the initial conditions u(x,0) = €%, u;(x,0) = ¢* and boundary conditions u(0,t) = €', u,(0,t) = ¢'.
Applying the Laplace transform to the initial conditions and the ARA transform to the boundary conditions, we have:

1
Hy =H,= , GiL=Gy= .
v—1 s—1
By substituting the values of functions Hy = H, = ﬁ, GI=Gy=,F= m + ﬁ and W = (Vz,ls)z(sz,])
in the general form in Eq. (42), we obtain:
s

- i 57
09 = e 57)

Applying the inverse of DL-ARAT to Eq. (57), then the solution of Eq. (56) is:

u(x,t) =L 'G! {(s—l)y(v—l)} —
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6 Results and Discussion

This study presents the Double Laplace-ARA Transform
(DL-ARAT), an innovative hybrid technique that
integrally combines the features of both the Laplace and
ARA transforms. DL-ARAT has demonstrated its ability
to simplify the process of solving integral and partial
differential  equations, offering both theoretical
improvements and practical advantages over traditional
approaches.

The fundamental mathematical properties of
DL-ARAT were rigorously established, including:

—Linearity

—Convolution properties

—Existence conditions

—Shifting properties

—Periodicity handling

—Response to the Heaviside unit step function
—Derivative behavior

These properties affirm the theoretical soundness and
high flexibility of the transform. To validate its practical
applicability, DL-ARAT was applied to a range of
problems, including:

—Volterra integral equations
—Integro-partial differential equations
—More complex integral systems

In all cases, DL-ARAT enabled the derivation of exact
closed-form solutions with notable efficiency. For
instance:

—Volterra integral equations were converted into
algebraic equations, significantly reducing
computational complexity
—Integro-partial differential equations were solved
through a simplified process

The illustrative examples provided highlight the
effectiveness and reliability of this approach, reinforcing
DL-ARAT as a powerful tool in mathematical physics.
Compared to conventional methods, it offers:

—Enhanced accuracy
—Computational ease

Future work is recommended to explore the extension
of DL-ARAT to:

—Nonlinear integral equations
—Partial differential equations

potentially expanding its applicability across diverse
scientific and engineering fields.

7 Conclusion

This paper presents a new double integral transform,
called the double Laplace-ARA transform, which is
constructed by combining the Laplace transform with the
ARA transform of order one. The basic properties of this
transform, involving:

—Linearity
—-Displacement
—Convolution
—Derivatives

are extracted and proven precisely.
We applied the DL-ARAT transforms to a variety of
illustrative examples including:

—Volterra integral equations
—Integral partial differential equations
—Volterra partial integrodifferential equations

The transformation successfully reduces these
equations to algebraic forms, allowing for accurate
solutions. Compared to existing double transforms, such
as:

—Double Laplace transform
—Double Sumudu transform

DL-ARAT demonstrates clear advantages in:

—Handling  boundary and initial  conditions
simultaneously

—Simplifying the overall solution process

These advantages are particularly evident in the fourth
section, where we explicitly solve complex equations and
verify the consistency of the results with the specified
properties. Thus, DL-ARAT can be considered a powerful
analytical tool for solving a wider class of:

—Integral equations
—Integro-differential equations

in physics and engineering mathematics.
Future research may extend this method to include:

—Fractional order systems
—Numerical approximations
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