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Abstract: The synchronization of discrete simple and extended Duffing oscillators in three-layer network is investigated in this paper.

Discrete simple and extended one-dimensional Duffing oscillators are characterized to determine the control parameters inducing

chaotic behaviors. The effects of the fractional derivative on the bifurcation diagrams of these discrete oscillators are also analyzed.

In addition, the coupling domain of interlayer forces leading to synchronization in the three-layer network is determined numerically.

Finally, chaos synchronization in three-layer network of discrete simple and extended Duffing oscillators is used for chaotic message

cryptography.
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1 Introduction

In the field of nonlinear physics, synchronization is a
crucial phenomenon that is the subject of numerous
studies. It can be found in various fields such as
engineering [1], fundamental physics [2] and biology [3].
Given the applications it offers, the synchronization of
networks of layered chaotic oscillators is of great interest
[4]. When several oscillators interact, various dynamic
states can occur. These dynamic states depend on the
number of oscillators and the type and strength of the
coupling [5]. In complex networks, synchronization can
be partial [6], complete [7] or by relay [8,9]. In order to
account for these different levels of interaction in
complex systems, the concept of multi-layer networks
was developed during the previous decade[10,11,12]. A
multilayer network is made up of several interacting
sub-networks, a sub-network being a layer of the larger

network. For the past decade, synchronization phenomena
have been studied in multilayer networks [13,14,15,16,
17]. A mathematical formulation for the study of
multilayer networks was presented in [18]. Rybalova et al
[19] found complete relaying and synchronization in
heterogeneous multiplex networks. Inter-layer
synchronization in non-identical multilayer networks was
presented in [20]. This study showed that the divergence
of interlayer synchronization depends on the strength of
the coupling.

The application of chaos to telecommunication
systems has been possible ever since the synchronization
of chaotic systems came into being. Chaotic
synchronization, with its inherent non-linearity and
dependence on initial conditions, is of great interest for
secure communications [21,22,23,24], where data
security and integrity cannot be compromised at any cost.
Several schemes for encoding and decoding a message
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using chaotic signals have been proposed in the literature
[25,26,27,28], including encryption/decryption based on
multilayer network synchronization [29,30,31,32], which
is currently attracting particular attention from
researchers.

In the present work, motivated by the opportunity
offered by the synchronization of the referenced works,
we analyze the dynamic behavior and synchronization in
a three-layer network of coupled simple Duffing, then
coupled extended Duffing discrete oscillators considering
also the effects of the fractional derivative. The effects of
coupling strength on the synchronization of these three
layers are analyzed. We then apply this synchronization
of coupled simple Duffing oscillators to chaotic
cryptography for information masking.

The sections of this paper are as follows. Section 2
presents the characterization of the simple and extended
Duffing discrete oscillators in their control parameters
planes. In section 3, the effects of the fractional derivative
is considered. In Section 4, the synchronization of simple
and extended Duffing discrete oscillators in a 3-layer
network is analyzed. In Section 5, the chaotic single and
extended Duffing states of the network are used in chaotic
cryptography for information hiding. Section 6 is the
conclusion.

2 Characterization of the simple Duffing

discrete oscillator and the extended Duffing

discrete oscillator

2.1 Characterization of the simple Duffing

discrete oscillator

The discrete Duffing oscillator is described by equation
(1)[33].

{

x(n+ 1) = y(n)

y(n+ 1) =−β x(n)+αy(n)− y(n)3 (1)

where y and x are real observables, n is the discrete
time. β and α are the system coefficients. We have
characterized the dynamical behaviour of the Duffing
oscillator in the (α,β ) parameters space. This appears in
Fig. 1 where the blue hatched area indicates the pairs of
parameters (α,β ) leading to chaos while the white area
corresponds to the domain where the discrete Duffing
oscillator generates periodic sequences and
non-oscillatory constant states. One finds an almost
triangular domain where chaos is present.

In Figure 2, we plot a representative of the bifurcation
diagram versus the parameter α . This is accompanied by
the corresponding variation of the Lyapunov exponent.
One finds that a periodic state is present for small values
of the parameter α comprises between 2.35 and 2.4. A
series of period doubling bifurcation takes place and ends

Fig. 1: Bifurcation diagram in the (α,β ) plane for the discrete

Duffing oscillator. The blue region corresponds to domain of

control parameters leading to chaos.

Fig. 2: Bifurcation diagram versus α (a) and Lyapunov exponent

(b) of the Duffing map for β =0.2.

at approximately α=2.663 and chaos takes place. This
transition to chaos is ascertained by the variation of the
Lyapunov exponent which becomes positive when chaos
is present.

To highlight more the dynamical states appearing in
Figures 1 and 2, we have also plotted some time traces. The
periodic state is present in Fig. 3(a) for α=2.39 and β =0.1.
For α=2.75 and β =0.2, we observe a totally chaotic state
as shown in Fig. 3 (b). Fig. 4 presents the phase portrait
for α=2.75 and β =0.2 for which chaos is present.
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Fig. 3: Time-histories of the discrete Duffing oscillator when

α=2.39 and β=0.1 (a); α=2.75 and β=0.2 (b).

Fig. 4: Phase portrait when α=2.75 and β=0.2.

2.2 Characterization of the extended Duffing

discrete oscillator

We have introduced additional terms into equation 1 to
include more complex physical effects such as
higher-order nonlinearities (y5) and a new control
parameter (d). The extended Duffing equation becomes:

{

x(n+ 1) = y(n)

y(n+ 1) =−β x(n)+αy(n)− y(n)3+ dy(n)5
(2)

We have characterized the dynamic behavior of the
extended Duffing oscillator (equation 2) in (d,β )
parameter space. Figure 5 presents the results where the
blue hatched area indicates the (d,β ) parameter pairs that
lead to chaos, while the white area presents the region
where the discrete Duffing oscillator produces periodic
sequences and constant non-periodic states. We observe
an almost triangular area where chaos manifests itself and
also when d grows, the chaotic domain following β
decreases until disappearing for d around 0.09.

Figure 6 shows a bifurcation diagram as a function of
parameter d, together with the associated variation in the

Fig. 5: Bifurcation diagram in the (d,β ) plane with a=2.75.

Fig. 6: Bifurcation diagram versus d (a) and Lyapunov exponent

(b) of the Duffing map for α=2.75 and β=0.2.

Lyapunov exponent. It can be seen that the chaotic zone is
represented on the interval from 0 to 0. 0.033. Then a
series of period division takes place leading to periodic
oscillation for d values between 0.0329 and 0.1. This
transition to periodic or oscillatory states is evidenced by
the change in sign of the Lyapunov exponent, which turns
out to be negative.

3 The fractional order discrete Duffing

extended oscillators

In order to extend the characterization of the discrete
Duffing oscillators, our analysis has considered their
fractional order forms. The Grünwald-Letnikov
formulation [34] has been used. In particular, this section
focuses on how the dynamical behavior and the
appearance of chaotic attractors in the simple and
extended Duffing maps are influenced by the introduction
of fractional orders.
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3.1 Development in fractional order

The Grünwald-Letnikov difference of fractional order is
given by the relation 3 [34].

∆ γ x(n) =
n

∑
j=0

(−1) j

(

γ

j

)

x(n− j) (3)

Where γ ∈ R is the fractional order and the binomial
coefficient is defined as follows:

(

γ

j

)

=

{

0 if j = 0
γ(γ−1)(γ−2)...(γ− j+1)

j!
si j > 0

(4)

By extending the previous fractional order difference,
we obtain the following relationship:

∆ γ x(n+1) = x(n+1)−xγ(n)+
n+1

∑
j=2

(−1) j

(

γ

j

)

x(n− j+1)

(5)

In order to simplify equation 5, we put m = j− 1, and
it becomes

∆ γ x(n+1) = x(n+1)− γx(n)+
n

∑
m=1

(−1)m+1

(

γ

m+1

)

x(n−m)

(6)

Let’s put Cm = (−1)m+1
(

γ
m+1

)

, then the fractional
order difference is given in equation 7 [35]:

∆ γx(n+ 1) = x(n+ 1)− γx(n)+
n

∑
m=1

Cmx(n−m) (7)

By applying fractional order difference to the system
of discrete integers such as : x(k+1) = f(x(k)) where f is
a non-linear function, we obtain equation [34].

∆ γ x(n+ 1) = x(n+ 1)− x(n) (8)

Equation 5 and equation 7 give the general formula 9:

x(n+ 1) = f (x(n))+ (γ − 1)x(n)−
n

∑
m=1

Cmx(n−m) (9)

As established in references [36,37], as n increases,
Cm decreases. This makes computations less efficient and
the number of states becomes a difficult number to store,
since the actual memory of machines is limited. To solve
this problem, we use a finite approximation to study a
discrete-time system of fractional order. Considering L as
the finite approximation, equation 9 becomes :

x(n+ 1) = f (x(n))+ (γ − 1)x(n)−
L

∑
m=1

Cmx(n−m) (10)

Fig. 7: Simple Duffing bifurcation diagram with fractional order

with β=0.2 and γ=0.94.

Applying this formula to the simple and extended
Duffing equations, we obtain equations 11 and 12
respectively:











xn+1 = y(n)

yn+1 =−β x(n)+αy(n)− y(n)3+(γ − 1)y(n)−

∑L
m=1 Cmy(n−m)

(11)











xn+1 = y(n)

yn+1 =−β x(n)+αy(n)− y(n)3+ dy(n)5 +(γ − 1)y(n)

−∑L
m=1 Cmy(n−m)

(12)

3.2 Analysis of the influence of the fractional

derivative on simple Duffing bifurcation

diagrams

We illustrate the bifurcation diagrams of the simple
Duffing system at fractional order for fractional
coefficients of 0.94 and 0.98 respectively in Fig.s 7 and 8.
Comparing this result with the simple Duffing bifurcation
diagram without the fractional derivative in Fig. 2, we
note that when the fractional order is small the area of the
chaos zone is reduced. When the fractional order
coefficient is slightly large, the size of the chaotic regions
almost approaches that of simple Duffing without
fractional order. However, the locations of the periodic
windows are adjusted. More explicitly, Fig. 8, which
illustrates the bifurcation of simple Duffing with a
fractional derivative (γ=0.98), shows that the interval 2.4
to 2.683 exhibits periodic states. Beyond this interval,
chaos sets in, with a first periodic window when α =
2.688, followed by further periodic windows (α=2.698,
α=2.745).
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Fig. 8: Simple Duffing bifurcation diagram with fractional order

with β=0.2 and γ=0.98.

Fig. 9: Expanded Duffing bifurcation diagram with fractional

order with α=2.75,β=0.2 and γ=0.94.

3.3 Analysis of the influence of the fractional

derivative on extended Duffing bifurcation

diagrams

Fig.s 9 and 10 shows the bifurcation diagram of the
fractional-order extended Duffing system for fractional
order coefficients of 0.94 and 0.98 respectively. If we
compare these Fig.s with the bifurcation diagram of
extended Duffing without fractional order (Fig. 6), we see
that a small fractional order reduces the surface area in
the chaotic zone. When the fractional order coefficient is
slightly large, the size of the chaotic zones is almost the
same as that of the extended Duffing without fractional
order. However, the positions of the periodic windows
change. More clearly, in Fig. 10, which shows the
bifurcation of extended Duffing with fractional derivative
(γ=0.98), the chaotic interval is repeated from 0 to 0.026.
Over this interval, the first periodic window is observed
when d= 0.0017, followed by other periodic windows
(d=0.0077, d=0.00207, d=0.024). An inverse period
doubling is observed beyond d= 0.026. This doubling
disappears as the value of d increases, down to a single
period when d= 0.095.

Comparing the above results with other works in the
literature, it is noted that the behaviors observed on the
fractional-order simple and extended Duffing maps are
almost identical to those observed on the fractional-order
Ueda map [38] and the logistic map [35]. Indeed in these
mentioned references, it is known that the fractional order
coefficient modifies the domains for periodic and chaotic
dynamics. This corresponds to an additional control
parameter which can be useful for the control of chaos
and for the optimization for application to chaotic
cryptography [35].

Fig. 10: Expanded Duffing bifurcation diagram with fractional

order with α=2.75,β=0.2 and γ=0.98

4 Study of the synchronization of coupled

simple and extended Duffing oscillators in a

three-layer network

4.1 Study of the synchronization of coupled

single-duffing oscillators in a three-layer

network

In this part of the work, we study a network with three
distant layers of time-discrete Duffing oscillators. In each
layer, when there is no coupling, all the oscillators are in a
temporal chaotic state. We present scenarios for
synchronizing these three distant layers coupled by a
coupling force σml, and then discuss the transition
between coherent and incoherent domains in this 3-layer
network. The three coupled layers are described by
equations 13.







xm
i (n+1) = f m

x (xi,yi) = ym
i (n)

ym
i (n+1) = f m

y (xi,yi)+
σm

2Pm
∑

i+Pm

j=i−Pm

[

f m
y

(

x j,y j

)

− f m
y (xi,yi)

]

+∑3
l=1 σml

[

f l
y (xi,yi)− f m

y (xi,yi)
]

(13)

The superscript m = 1,2,3 corresponds to the number
or rank of the layer. PPPmmm is the non-local intra-layer

coupling related to the coupling radius rm = Pm
N
,σm is the

intra-layer coupling force. σml is the inter-layer coupling
force. The total number of oscillator is N = 300. The
value of PPPm is 90 . To study the synchronization between
two layers 1, m, the interlayer synchronization error Eml
will be used. It is defined by equation 14.

Eml = lim
T→∞

1

NT

T

∑
t=0

N

∑
i=1

∥

∥

∥
yl

i(n)− ym
i (n)

∥

∥

∥
(14)

Where ||−|| is the Euclidean norm and T is the number
of time steps. For synchronization, we need to measure
the synchronization error between the first and third layers
E13 and between the first and second layers E12. Thus,
global synchronization occurs when E13 = 0 and E12 = 0
[17].

To determine where the layers are synchronized, we
need to measure the synchronization error between the
first and second layers (E12) and the synchronization
error between the first and third layers (E13). Fig.11
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Fig. 11: Synchronization error between first and second layer

(E12) and between first and third layer (E13) as a function of

interlayer coupling strength σml.

Fig. 12: 3-layer desynchronization. n=40500, σml= 0,05, σm=

0,26, β=0.2 ,α=2.75, Pm=90 ,i=0 à N (with N=300) the initial

conditions are chosen randomly between 0 and 1.

shows that when the synchronization errors E12 and E13
are zero, the 3 layers are synchronized with each other; if
they are not zero, there will be no synchronization. To
confirm these measurements, we take two values of σml

(one when Eml is zero and one for Eml different from
zero) to plot the spatial traces yi as a function of i and the
temporal traces yi as a function of n.

For a value of σml = 0.05, the spatial traces (Fig. 12)
show that these three layers are not synchronized. This
can be seen in the dynamic behavior of each layer (yi1,
yi2 and yi3). Each layer has different dynamics. The
oscillators of each layer follow their own dynamics,
indicating desynchronization despite the low coupling
force applied. To confirm the scenarios in Fig. 12, time
traces are plotted in Fig. 13. The focus is on oscillator
no.150 of each layer. The oscillations shown in Fig. 13
(blue, black and red) exhibit chaos, reflecting independent
dynamic states between the layers.

In Fig.14, the results show that for a value of σml=0.25,
the three layers are synchronized with each other. This can
be seen in the dynamic behavior of each layer (yi1, yi2 and
yi3). The oscillators of these three layers produce the same
dynamic behavior showing complete synchronization. Fig.
15 confirms this synchronization when we take the time
traces of the 150th oscillator of each layer.

Fig. 13: Time-histories of the 150th oscillator of the first, second

and third layers when these layers are out of sync. i=150, σml=

0,05, σm= 0,26, β=0.2 ,α=2.75, Pm=90 , nmax=40500, the initial

conditions are chosen randomly between 0 and 1.

Fig. 14: Complete synchronization of 3 layers with n=40500,

σml= 0,25, σm= 0,26, β=0.2 ,α=2.75,Pm=90 ,i=0 to N (with

N=300) the initial conditions are chosen randomly between 0 and

1.

Fig. 15: Time-histories of the 150th oscillator of the first, second

and third layers when these layers are synchronized with i=150,

σml= 0,25, σm= 0,26, β=0.2 ,α=2.75,Pm=90 ,nmax=40500 and

the initial conditions are chosen randomly between 0 and 1.

4.2 Study of the synchronization of coupled

extended Duffing oscillators in a three-layer

network

We used equation 14 to measure the synchronization error
between layer 1 and layer 2 (E12) and between layer 1
and layer 3 (E13) of extended coupled Duffing oscillators
in a three-layer network (equation 13). Fig. 16 below
shows that when σml is between 0.02 and 0.14, the errors
between the layers are not equal to zero, so the 3 layers
are not synchronized. However, there is a zone where
layers 1 and 2 are synchronized with each other but not
with layer 3 (the red curve E12=0 and E13 different from
0 for σml = 0.13). On the other hand, when σml is between
0.145 and 0.355, the 3 layers are perfectly synchronized
(E12=E13=0). These different scenarios can be confirmed
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Fig. 16: Synchronization error between layer 1 and 2 : (E12) and

layer 1 and 3 : (E13).

Fig. 17: Partial synchronization of 3 layers with n=40500, σml=

0,13, σm= 0,26, β=0.2 ,α=2.75,Pm=90 , d=0.02,i=0 to N (with

N=300) the initial conditions are chosen randomly between 0 and

1.

Fig. 18: Time-histories during partial synchronization with σml=

0,13, σm= 0,26, β=0.2 ,α=2.75,Pm=90 , d=0.02,i=0 to N (with

N=300) the initial conditions are chosen randomly between 0 and

1.

by plotting the spatial and temporal trace curves in Fig.s
17,18, taking a few values of σml.

When σml = 0.13, synchronization between the first
and second layers is observed (E12=0 curve in blue and
red on Fig. 16). All the oscillators in these two layers
behave in the same way (see Fig. 17). However, when we
take the 200th oscillator of layer 3 (yi3), we notice that it
is not synchronized with the other layers. We therefore
conclude that there is partial synchronization between the
layers.
Time-histories of the 150th oscillators (Fig. 18) of each
layer confirm this partial synchronization.

Fig.19 shows that when σml =0.25, full
synchronization is observed between the first and second
layers, as well as between the first and third layers
(E12=E13=0). This analysis is confirmed by the fact that
all 3-layer oscillators have the same behavior.

Fig. 19: Complete synchronization n of 3 layers with n=40500,

σml= 0,25, σm= 0,26, β=0.2, α=2.75, Pm=90 , d=0.02, i=0 to N

(with N=300) the initial conditions are chosen randomly between

0 and 1.

Fig. 20: Time-histories when complete synchronized with σml=

0,25, σm= 0,26, β=0.2, α=2.75, Pm=90 , d=0.02, i=0 to N (with

N=300) the initial conditions are chosen randomly between 0 and

1.

Time-histories traces of the 150th oscillator of each layer
in Fig. 20 confirm the complete synchronization.

5 Application of Simple Duffing and

Extended Duffing network synchronization

for information masking

5.1 Application of simple Duffing network

synchronization for information masking

In this section, we use chaotic state synchronization in
multilayer networks to demonstrate that a message sent
by the first layer and masked by its chaotic output can be
realized. In each layer, we have 300 oscillators where the
messages to be transmitted are sent by the various units
(oscillators) of the first layer and retrieved by units of the
second and third layers. The message transmitted by each
first-layer unit is the sum of the chaotic signal and the
actual message. Consequently, the way in which
messages are dynamically retrieved depends on the
synchronization of the layers. In other words, messages
cannot be retrieved if there is no synchronization between
the layers. The new coupling equations for the three
coupled layers are given by equations 15, 16 and 17.







x1
i (n+1) = f 1

x (xi,yi) = y1
i (n)

y1
i (n+1) = f 1

y (xi,yi)+
σm

2Pm
∑

i+Pm

j=i−Pm

[

f 1
y

(

x j,y j

)

− f 1
y (xi,yi)

]

+σml

[

f 2
y (xi,yi)−2 f 1

y (xi,yi)+ f 3
y (xi,yi)

]

(15)
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x2
i (n+1) = f 2

x (xi,yi) = y2
i (n)

y2
i (n+1) = f 2

y (xi,yi)+
σm

2Pm
∑

i+Pm

j=i−Pm

[

f 2
y

(

x j,y j

)

− f 2
y (xi,yi)

]

+σml

[

f 1
y (zi,yi)−2 f 2

y (xi,yi)+ f 3
y (xi,yi)

]

(16)











x3
i (n+1) = f 3

x (xi,yi) = y3
i (n)

y3
i (n+1) = f 3

y (xi,yi)+
σm

2Pm
∑

i+Pm

j=i−Pm

[

f 3
y

(

x j,y j

)

− f 3
y (xi,yi)

]

+σml

[

f 1
j (zi,yi)−2 f 3

y (xi,yi)+ f 2
y (xi,yi)

]

(17)

where zi(n) = xi(n) + m(n) represents the chaotic
signal of the first layer added to the message to be
transmitted. The messages recovered at the second and
third layers are given by relations 18 and 19 respectively.

z2
i (n) = y1

i (n)− y2
i (n)+m(n) (18)

z3
i (n) = y1

i (n)− y3
i (n)+m(n) (19)

Three example signals are used to test the sending and
retrieval of messages:

- A square-wave signal sent by the first layer through
all the oscillators and recovered by the 150th oscillator;

- A sinusoidal signal sent by the first layer through all
oscillators and recovered by the 150th oscillator;

- Two signals m1(n) and m2(n) with different
amplitudes sent respectively by the 200 th and 150 th
oscillator of the first layer and recovered by the same
oscillators of the second and third layers.

To analyze the 3 points mentioned above, we use a
value of σml leading to desynchronization of 3 layers (
Eml different from 0 ) and a value of σml leading to
complete synchronization of these layers (Eml = 0).

–Square signal

Fig. 21 (a) shows the square-wave signal m(n), while
Fig. 21 (b) shows the chaotic signal from the first layer
(150th oscillator). Fig. 21 (c) shows the chaotic signal
mixed with the real signal to be transmitted
(y1(150)(n) + m(n)). Using the value σml = 0.05, for
which the message-free system is not synchronized (Fig.
11), Figs. 21 (d) and (e) show what is recovered at the
second and third layers. The message is not recovered.
However, when the coupling value is chosen as that for
which the layers are synchronized, for example,
σml = 0.25 (as seen in Fig. 11), the message is recovered,
as shown in Fig. 22. The signal recovered by the second
and third layers corresponds to the original m(n) signal.
However, the recovered signal contains noise, which can
be reduced by using an appropriate filter [25].

–Sine signal

Fig. 21: Different types of Time-histories when there is no

synchronization between layers for an inter-layer coupling

strength σml = 0.05. (a) square-wave signal m(n) to be

transmitted by the first layer; (b) chaotic signal from the first

layer y1(150) (n); (c) chaotic signal added to the transmitted

signal y1(150) (n) +m(n); (d) information signal recovered by the

second layer z2 (150) (n) and (e) information signal recovered by

the third layer z3 (150) (n).

Fig. 22: Different types of Time-histories when there is

synchronization between the layers for an inter-layer coupling

strength σml = 0.25. (a) square-wave signal m(n) to be

transmitted by the first layer; (b) chaotic signal from the first

layer y1(150)(n); (c) chaotic signal added to the transmitted

signal y1(150)(n) +m(n); (d) information signal recovered by the

second layer z2 (150)(n) and (e) information signal recovered by

the third layer z3 (150)(n).

A second example is a sine message. We observe that,
as in the case of the square-wave signal, when there is no
synchronization of the three distant layers (σml= 0.05), we
are unable to recover the original signal. The signal is lost
on layer 2 chaos, for example (see Fig. 23). However, when
the coupling is appropriately chosen so as to have layer
synchronization σml= 0.25, the message is recovered at the
second and third layers as shown in Fig. 24.

–Two messages sent simultaneously with different
amplitudes

In this section, we sent two messages simultaneously
on the 200th and 150th oscillators of the first layer. We
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Fig. 23: Time-histories when there is no interlayer

synchronization for an interlayer coupling strength σml=

0.05. Message retrieved by the 150th oscillator Z2 (150).

Fig. 24: Time-histories trace when layers are synchronized for

an inter-layer coupling force σml= 0.25. Message retrieved by

the 150th oscillator Z2 (150) in red and message sent m(n) in

blue.

Fig. 25: Messages retrieved respectively by the 200th and

150th oscillator when there is interlayer synchronization for an

interlayer coupling strength with σml= 0.25.

can see that perfect recovery is achieved by the second
and third layers at a value of σml = 0.25 (Fig. 25). This is
because the 3 layers are perfectly synchronized. However,
when the layers are not synchronized, messages get
mixed up in the chaotic 2nd and 3rd layer when σml =
0.05 (Fig. 26).

5.2 Application of extended Duffing network

synchronization for information masking

Using the same principle as in the case of a simple
Duffing network, Fig. 27 (a) shows the square-wave

Fig. 26: Messages recovered by the 200th and 150th oscillators

respectively when there is no interlayer synchronization for an

interlayer coupling strength σml= 0.05

Fig. 27: Different types of time-histories when there is no

synchronization between layers for an inter-layer coupling

strength σml= 0.06. (a) square-wave signal m(n) to be transmitted

by the first layer; (b) chaotic signal added to the transmitted

signal y1(150)(n) +m(n); (c) information signal recovered by the

second layer z2 (150)(n) and (d) information signal recovered by

the third layer z3 (150)(n)..

signal m(n), while Fig. 27 (b) shows the chaotic signal
from the first layer (150th oscillator). Fig. 27 (c) shows
the chaotic signal mixed with the actual signal to be
transmitted ( y1(150)(n) + m(n)). Using the value
σml = 0.06 for which there is no synchronization (Fig.
16), Fig.s 27 (d) and (e) show what is recovered at the
second and third layers. The message is not recovered. It
is lost in the chaos of the system. On the other hand, when
the coupling value is chosen as that for which the layers
are partially synchronized, e.g. σml = 0.13 (as shown in
Fig. 16), the message is not fully recovered, as shown in
Fig. 28. We can still distinguish the message from the
chaos. On the other hand, when the coupling value is
chosen to obtain full synchronization, for example
σml = 0.25 (as shown in Fig. 16), the signal recovered by
the second and third layers corresponds well to the
original m(n) signal (see Fig. 29). However, the recovered
signal contains noise that can be reduced using a filter.
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Fig. 28: Different types of time-histories when there is partial

synchronization between layers for an inter-layer coupling

strength σml = 0.13. (a) square-wave signal m(n) to be

transmitted by the first layer; (b) chaotic signal added to the

transmitted signal y1(150) (n) +m(n); (c) information signal

recovered by the second layer z2 (150) (n) and (d) information

signal recovered by the third layer z3 (150) (n).

Fig. 29: Different types of time-histories when there is complete

synchronization between layers for an inter-layer coupling

strength σml = 0.25. (a) square-wave signal m(n) to be

transmitted by the first layer; (b) chaotic signal added to the

transmitted signal y1(150) (n) +m(n); (c) information signal

recovered by the second layer z2 (150) (n) and (d) information

signal recovered by the third layer z3 (150)(n).

6 Conclusion

The synchronization of coupled simple and extended
discrete Duffing oscillators in a 3-layer network was
numerically investigated in this paper. Initially, the
characterization of the one-dimensional simple Duffing
and one-dimensional extended Duffing discrete oscillator
has enabled us to find the values where the control
parameters give rise to chaos. It was then demonstrated
that synchronization phenomena can be observed in a
3-layer network of simple and extended Duffing discrete
oscillators for selected values of the coupling strength.
For the application to chaos cryptography, it was
demonstrated that when the three layers are not
synchronized, the transmitted message gets lost in the
chaotic signal of the first layer and can no longer be
decrypted by the second and third layers. On the other
hand, when the three distant layers are synchronized, the
message can be recovered by the second and third layers.
A study of the influence of fractional derivation on the
discrete oscillator of simple Duffing and extended Duffing

was presented. The study showed that a small fractional
order reduced the area in the chaotic zone.
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