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Abstract: Understanding the characteristics of tumors and breast cancer subtypes from gene expression data is crucial to aid in cancer

type identification, obtain a more accurate diagnosis, and promptly direct appropriate treatment. In this context, the objective of this

study is to apply machine learning and deep learning methods for the multi-class classification of genes associated with breast cancer,

considering gene expression datasets, and to evaluate the predictive performance of these methods. The dataset used is obtained from

The Cancer Genome Atlas repository and are preprocessed for data treatment and the application of dimensionality reduction techniques

due to the high number of variables. Initially, principal component analysis was used to reduce the dimensionality of the data. Next,

different traditional machine learning methods such as Logistic Regression, Support Vector Machine, and Random Forest are applied,

along with deep learning models such as Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN). To enhance the

performance of these models, the Optuna library is used for hyperparameter optimization, evaluating the performance of the algorithms

both with and without optimization. Performance comparison among the algorithms showed that Support Vector Machine achieved high

accuracy. However, the MLP and CNN models, especially when optimized with Optuna, also showed competitive results. Optimization

adjusted crucial parameters such as learning rate and number of layers, which resulted in significant performance improvements.

Although Random Forest was less affected by optimization, MLP and CNN showed substantial gains. The analysis highlighted that

hyperparameter optimization can be essential to improve the accuracy of the classifier. An analysis of feature importance was conducted

in order to study which genes have the greatest relevance in the classification task.
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1 Introduction

Breast cancer remains the most frequently diagnosed
cancer in women globally, representing approximately
24.5% of all cancers in women [20]. According to the
World Health Organization1, more than 2.3 million new
cases of breast cancer were recorded in 2020 alone, and it
continues to be a leading cause of cancer-related
mortality. Despite the availability of advanced screening
tools, survival rates still vary significantly in different
regions, particularly in low- and middle-income countries
where access to early detection and treatment options is
limited [4].

1 https://www.who.int/news-room/fact-sheets/detail/breast-

cancer

Early diagnosis is fundamental to improving survival
outcomes and reducing the overall healthcare burden,
highlighting the need for more precise diagnostic tools.
The stage in which cancer is diagnosed plays a critical
role in determining a patient’s prognosis and survival
outcomes [31]. Minimizing diagnosis delays is crucial to
ensure timely treatment and improve the likelihood of a
successful cure [12]. As such, understanding the nature of
breast tumors and differentiating between benign and
malignant types is the key to advancing breast cancer
detection and diagnosis [7]. This distinction is
fundamental in improving survival rates and the
effectiveness of treatment.

One of the emerging areas in breast cancer research is
the analysis of gene expression data, which provides a
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molecular-level understanding of the disease. Gene
expression profiling has allowed researchers to identify
different subtypes of breast cancer, each with unique
molecular signatures that influence prognosis and
response to treatment. However, analyzing these
high-dimensional datasets, often containing thousands of
genes, poses significant challenges due to the complex
relationships between gene expressions and cancer
phenotypes. This has led to the growing application of
machine learning (ML) and deep learning (DL)
techniques, which are capable of uncovering hidden
patterns and making accurate predictions based on large
volumes of data [30].

Machine learning methods, such as Support Vector
Machines (SVM), Decision Trees, Random Forests, and
Logistic Regression, have been extensively used to
classify breast cancer subtypes based on gene expression
profiles [38,16,32]. These models offer powerful
classification capabilities, particularly in scenarios
involving complex and multidimensional data. For
instance, SVM is known for its robustness in separating
classes with clear margins, while decision trees and
Random Forests provide interpretable models with a
focus on feature selection. Logistic Regression, on the
other hand, offers a probabilistic approach to binary
classification, making it an effective tool for
distinguishing between benign and malignant tumor
subtypes. The effectiveness of these models, however, is
often dependent on the careful tuning of hyperparameters
to optimize their performance.

Deep learning models, such as Multilayer Perceptrons
and Convolutional Neural Networks, can be understood
as a subset of machine learning techniques and have also
gained traction in breast cancer research [34]. MLPs,
which are fully connected neural networks, can model
complex nonlinear relationships in the data, while CNNs,
originally designed for image processing tasks, have been
adapted for analyzing high-dimensional gene expression
data [23]. These models excel at feature extraction,
automatically learning hierarchical representations from
the data, which can lead to more accurate classifications.
Furthermore, deep learning techniques have shown great
potential in reducing the need for manual feature
engineering, a key advantage when working with gene
expression datasets [30,27].

Given the complexity of breast cancer subtypes and
the volume of gene expression data, optimizing model
performance becomes critical. Hyperparameter
optimization techniques, such as those provided by
algorithms like Optuna, allow for systematic tuning of
model parameters, improving the accuracy and
generalization of ML and DL models. In addition to
optimization, feature importance analysis is another
valuable aspect of this study, as it helps to identify key
genes or molecular features that are most predictive of
cancer subtypes. This not only enhances model
interpretability but also provides biological insights that

can guide future research into cancer treatment and
prevention strategies.

Faced to this context, the objective of this study is to
apply both machine learning (Support Vector Machines,
Random Forest and Logistic Regression) and deep
learning (Multilayer Perceptron and Convolutional Neural
Network) methods to classify breast cancer subtypes -
labeled as Luminal A (LumA), Luminal B (LumB), Her2,
Basal and Normal (no cancer) - using gene expression
data, from The Cancer Genome Atlas (TCGA)2

repository. The study aims to optimize the performance of
these models through hyperparameter tuning and assess
their effectiveness in accurately distinguishing between
different subtypes of breast cancer.

By leveraging advanced machine learning and deep
learning techniques, this study seeks to contribute to the
development of more precise diagnostic tools and
personalized treatment strategies in breast cancer care.
The integration of gene expression data into classification
models has the potential to revolutionize early detection
and improve survival rates, particularly in regions where
access to specialized medical resources is limited.
Ultimately, the findings of this research may serve as a
foundation for future work aimed at enhancing the
understanding of breast cancer subtypes and guiding the
development of targeted therapies.

2 Literature Review

Recent research on cancer classification, particularly
breast cancer and other types, has intensively employed
machine learning (ML) techniques and
bioinformatics-inspired algorithms to improve accuracy
in disease detection and prognosis. These approaches
focus on optimizing feature selection and developing
robust predictive models, which are challenging due to
the high dimensionality of gene expression data [5,
9].This approach is essential for analyzing large-scale
multi-omics data, as demonstrated by DeepProg, a deep
learning tool designed to predict patient survival subtypes
across various cancers. DeepProg shows promising
results in risk stratification and association with genomic
signatures [26].

For instance, triple-negative breast cancer (TNBC)
classification underscores the importance of identifying
subtypes based on immune signatures to stratify patients
who may respond to immunotherapy. Using both
supervised and unsupervised machine learning methods,
researchers identified three TNBC immune
subtypes—Immunity-H, Immunity-M, and Immunity-L—
each with distinct signaling pathway activities and
survival prognoses. These subtypes highlight the
relevance of the immune environment in cancer
classification and treatment [15].

2 https://www.cancer.gov/ccg/research/genome-

sequencing/tcga
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World Health Organization (WHO) data emphasize
breast cancer’s global prevalence as the most common
cancer type, with a high mortality rate reported in 2020.
Breast cancer accounted for approximately 12% of all
diagnosed cases worldwide, affecting more than 2.3
million women and resulting in 685,000 deaths. Such
statistics underscore the importance of enhancing
diagnostic and stratification techniques [35], according to
the use of supervised and optimized techniques [9,26,15,
35,29,10] .

In this context, ML-based predictive techniques like
Support Vector Machine (SVM), Logistic Regression
(LR), K-Nearest Neighbors (KNN), and Ensemble
Classifiers (EC) have been tested to improve breast cancer
diagnostic accuracy, utilizing datasets such as the
Wisconsin Diagnostic Breast Cancer (WDBC) and Breast
Cancer Coimbra Dataset (BCCD). These techniques,
implemented with standard performance metrics like
confusion matrices and cross-validation, achieved high
levels of accuracy and efficiency, notably with SVM,
which reached 99.3% accuracy [29].

Further studies highlight the application of algorithms
like XGBoost, random forest, and KNN, with key
evaluation metrics including recall, precision, and
F1-score. Recall is particularly relevant for identifying
malignant cancer cells. Hierarchical sampling techniques
to address class imbalance were also notable, with
XGBoost achieving superior results over other
approaches, demonstrating high accuracy and sensitivity
in diagnostic applications [10].

Collectively, these studies underscore the potential of
artificial intelligence and machine learning techniques to
revolutionize medical practice by providing more
accurate and personalized diagnostics, which can guide
clinical decision-making and improve outcomes for
cancer patients.

3 Methodology

This section presents the methodology proposed in this
work to perform the classification multiclass breast
cancer-related gene expression data, as well as the dataset
decription, preprocessing and the learning methods
adopted for the classification task.

3.1 Methodological path

Figure 1 shows the methodological workflow employed in
this study, outlining each step from data preparation and
preprocessing to the application of classification models
and the final evaluation of the results obtained.

Fig. 1: The methodological approach of the study

3.2 Data description and preprocessing

This section details the steps for acquiring, preprocessing,
and reducing the dimensionality of the datasets, which is
necessary due to the large number of features involved.
The raw data from TCGA repository includes key
information, such as the number of rows and columns,
classification type, and class labels. The columns
represent the descriptor variables, which serve as input
features for the classification task.

The TCGA databases, which are well-established
repositories of gene expression data, apply specific
criteria to identify breast cancer samples using array
expression profiling techniques. These databases are the
result of collaborative projects aimed at comprehensively
characterizing genomic alterations across various cancer
types. The data is real and publicly available, enabling
researchers worldwide to leverage it for advancing
research across different fields. Data extraction was
performed using the Python library “GEOparse”,
followed by data integration and organization of the
columns.

The dataset used contains 935 samples (rows) and
14,410 features (columns). The final column includes five
output classes representing the subtypes of breast cancer:
Basal, Her2, LumA, LumB, and Normal (no cancer),
making this a multiclass classification task.

Following data acquisition, the preprocessing phase
was initiated. This involved handling missing data and
performing a data cleaning process, which revealed
outliers and values outside the expected range, thus
requiring data normalization through z-score scaling [18].
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This step prevents variables with significantly higher
values from disproportionately influencing the analysis,
ensuring the dataset is properly prepared for the modeling
phase.

Additionally, due to the high dimensionality typical of
gene expression data (where there are more columns than
rows), it was necessary to apply a dimensionality
reduction technique, such as Principal Component
Analysis (PCA) [28,33]. PCA generates uncorrelated
principal components that capture most of the variance in
the original data. This method is valuable for identifying
and interpreting relationships between variables, as well
as exploring potential connections between samples [17].
In this study, PCA not only aids in understanding the data
but also enhances the performance of statistical models
and classification algorithms.

3.3 Classification Models: learning algorithms

This section describes the machine learning and deep
learning techniques employed for the multiclass
classification task outlined in this study. The core stages
of applying supervised classification methods are
highlighted. Given that the dataset contains five output
classes—Basal, Her2, LumA, LumB, and Normal (no
cancer)—representing genes associated with breast
cancer, this task involves a multiclass classification
challenge.

The supervised models used for breast cancer subtype
classification in this study include Support Vector
Machine, Logistic Regression, and Random Forest [1].
SVM is notable for identifying an optimal decision
hyperplane to effectively separate different classes within
a multidimensional space [19]. Logistic Regression, on
the other hand, is a statistical method that models the
relationship between a binary or multiclass dependent
variable and its independent variables [13]. Random
Forest [8] is based on constructing multiple decision
trees, where each tree is built from a random sample of
features, and the final classification is determined by a
majority vote from all trees.

These models were selected based on their
demonstrated effectiveness in the literature, offering
robust performance across various scenarios and
applications. Their proven track record, relevance to the
domain, and resource availability made them ideal
choices for this study [6].

Additionally, a Multilayer Perceptron was utilized,
which is a type of feedforward neural network composed
of an input layer, multiple hidden layers, and an output
layer. Each neuron in one layer is fully connected to every
neuron in the following layer, forming a dense network
[1]. The MLP is trained using the backpropagation
algorithm. The input layer consists of neurons
representing features from the gene expression data,
while hidden layers apply weighted sums and activation
functions like ReLU, sigmoid, or tanh to capture complex

patterns within the data. For breast cancer subtype
classification, a softmax activation function is typically
applied in the output layer to normalize the results into
probabilities that sum to one, facilitating interpretation.
MLPs are well-suited to identifying and classifying
intricate patterns in gene expression data, making them
effective for breast cancer subtype classification based on
molecular profiles.

Convolutional Neural Networks were also used,
consisting of multiple layers where each layer performs
localized processing of neighboring features, resulting in
more abstract representations as data progresses toward
the output layer [1]. CNNs, widely regarded as the first
successful deep learning architecture that leverages prior
knowledge [21,22], have sparse weight spaces, with each
neuron in a layer receiving input from only a subset of
neurons in lower layers. This study leverages the local
connectivity and weight-sharing characteristics of CNNs
to identify complex patterns and interactions among gene
expressions associated with different breast cancer
subtypes.

At the core of CNNs are the convolutional layers,
which apply filters (or kernels) over the input data to
extract meaningful features. These filters slide across the
input, generating feature maps that highlight specific
patterns [21,11]. Following the convolution operations,
an activation function, such as ReLU, is applied to
introduce non-linearity, allowing the model to learn more
complex patterns [22].

As the network progresses, dense layers are used to
perform high-level reasoning. These layers connect every
neuron in the flattened output from earlier layers to
neurons in subsequent layers, helping to integrate the
learned features for classification or prediction [11]. The
final output layer, typically a dense layer, contains a
neuron for each output class. A softmax activation
function is used here to convert the model’s raw output
into probabilities, indicating the likelihood of each class.

3.4 Hyperparameter Optimization

The performance of classification models is significantly
influenced by hyperparameters, making hyperparameter
tuning an essential step in enhancing the efficiency of
learning algorithms [36,37]. To optimize this process, a
framework called “Optuna” was introduced [2]. Optuna is
an open-source tool designed for hyperparameter
optimization, offering flexibility through define-by-run
programming, efficient sampling methods, and pruning
mechanisms that enhance adaptability and ease of
configuration.

In this study, Optuna was utilized to fine-tune the
hyperparameters of the machine and deep learning
models. By systematically exploring the hyperparameter
space, Optuna identifies the best set of hyperparameters to
improve model performance. It uses the Tree-structured
Parzen Estimator (TPE) algorithm, which efficiently
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navigates the hyperparameter landscape by constructing
probabilistic models of promising configurations.
Additionally, Optuna supports pruning, which halts trials
that show low potential early on, speeding up the
optimization process.

For the MLP model, the following hyperparameters
were optimized: the number of hidden layers (ranging
from 1 to 5), the number of neurons per layer (between 32
and 256), learning rate (from 0.0001 to 0.1), batch size
(from 16 to 128), and dropout rate (ranging from 0.0 to
0.5 to prevent overfitting). Similarly, for the CNN model,
Optuna optimized the number of convolutional layers
(from 1 to 4), the number of filters (ranging from 32 to
256), kernel size, learning rate (from 0.0001 to 0.1), batch
size (from 16 to 128), and dropout rate (between 0.0 and
0.5).

For the SVM model, the hyperparameters optimized
included the regularization parameter C explored on a log
scale from 10−5 to 102, and the kernel type, selected from
linear, polynomial, radial basis function (RBF), and
sigmoid. Similarly, for the CNN model, the regularization
parameter C he regularization parameter newton-cg,
lbfgs, liblinear, and saga.

In the case of the Random Forest model, the process
focused on tuning the number of estimators (ranging from
50 to 200), the maximum depth of the trees (from 10 to
50), and the minimum number of samples required to split
an internal node (from 2 to 20).

The optimization process was conducted through
multiple trials for each model, exploring various
combinations of hyperparameters to identify those that
maximize model performance. After 10 trials, Optuna
returned the best set of parameters for each model,
resulting in configurations that achieved the highest
average accuracy across cross-validation folds.

3.5 Analysis and Validation

3.5.1 Evaluation Metrics

To train and evaluate the models’ performance, the
datasets were split into training and testing sets, with 80%
allocated for training and 20% for testing, following the
Pareto distribution. After the split, the k-fold
cross-validation method with k=10 folds was applied [1].
Cross-validation provides a more reliable assessment of
model performance on unseen data by using multiple data
splits, which minimizes the influence of a single train-test
division. During each fold, the selected evaluation metrics
were calculated, and after 10 iterations, the average
performance of the model was estimated based on these
values.

The models’ performance was evaluated using
well-known metrics, including the confusion matrix [25],
accuracy and cross-validation [1,6]. Python version 3.11
was chosen for this study due to its efficiency and high
performance. All analyses were conducted with a

significance level fixed at 5%. The Python scripts used for
this analysis are available on GitHub, accessible through
the following link3.

3.5.2 Feature Importance Analysis

The feature importance analysis was conducted using the
SHAP library4, a widely used tool in Python to interpret
the output of machine learning models. Based on Shapley
values, derived from cooperative game theory, the library
accurately quantifies the contribution of each input
variable to the model’s prediction, providing a reliable
interpretation even for highly complex models [24].

The main features of SHAP (SHapley Additive
exPlanations) include variable importance plots,
dependence analysis, and prediction decomposition.
These tools help to better understand the inner workings
of models such as decision trees, neural networks, and
other complex algorithms, providing a clear view of both
the global and local effects of each variable on the final
output.

SHAP unifies different explanation methods under a
coherent approach, assigning an importance value to each
feature based on its individual impact on the model’s
prediction. This method calculates the expected
prediction by considering various combinations of
features, allowing a precise identification of how each
feature influences model performance, both locally and
globally [24].

4 Results and Discussion

This section presents the findings of the study,
highlighting the performance of classification models
when applied to datasets from the TCGA repository. A
comparative performance analysis is also provided,
utilizing statistical metrics for evaluation, the classifiers
were evaluated both without hyperparameter optimization
and with the application of optimization techniques.

The original dataset contains 935 samples and 14,408
variables corresponding to gene expression. Due to the
high dimensionality of the data, the PCA technique was
applied, resulting in a reduction to 184 variables.

4.1 Results Without Hyperparameter

Optimization

Table 1 presents the results of the models without any
hyperparameter tuning. The results are shown for each of
the five output classes, which represent different breast
cancer subtypes: LumA, LumB, Basal, Her2 and Normal.

3 https://github.com/anabev/breastcancer-classification
4 Available at: https://shap.readthedocs.io/en/latest/
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Table 1: Classification model performance

The classifiers were evaluated with and without
hyperparameter optimization. Logistic Regression was
configured with max iter = 6500. to ensure model
convergence. For SVM, the RBF kernel was used without
additional adjustments, and Random Forest was
employed with its default settings. The MLP used an
architecture with four hidden layers containing 100, 75,
50, and 25 neurons, respectively. It employed ReLU
activation in the hidden layers, softmax in the output
layer, and was trained for up to 500 iterations using the
Adam optimizer. Cross-validation was performed using
StratifiedKFold with 10 folds.

The CNN was configured with two Conv1D layers
(with 32 and 64 filters), followed by pooling layers, a
dense layer with 64 neurons, ReLU activation, and a
dropout of 0.5. The output layer used softmax to classify
the 5 classes. The model was trained using the Adam
optimizer for 25 epochs, with 5-fold cross-validation
(KFold).

To further analyze the classifiers’ performance, a
confusion matrix was also considered. Figure 2 provides a
visual representation of the confusion matrix performance
of all the classification models used, showing that the
highest values are located along the diagonal of the
matrix, indicating correct classifications on the test set. In
the confusion matrix, the breast cancer subtypes are
denoted as LumA (0), LumB (1), Basal (2), Her2 (3) and
Normal (4).

To gain a deeper understanding of the feature
importance in the classification process, Figure 3
illustrates the SHAP values for the following models: (a)
SVM, (b) Logistic Regression, (c) Random Forest, and
(d) MLP. These visualizations highlight the contribution
of each principal component, derived from PCA, to the
prediction of each sample. It is noted that, despite
differences in the algorithms, certain principal
components exhibit high relevance across various models.

Fig. 2: Confusion matrix

Table 2: Optimized classification model performance

4.2 Results With Hyperparameter Optimization

The results of the classification models, now with
hyperparameter optimization, are presented in Table 2.
For each classifier, the optimal hyperparameters were
determined and applied.
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Fig. 3: Feature importance analysis

For the Logistic Regression model, the best value for C

was set to 4.43∗10−5, with the solver configured as saga.
The SVM model was optimized with C set to 83.57 and
the RBF kernel. In the Random Forest classifier, the best
parameters includesde 196 trees, a maximum depth of 22,
and a minimum of 15 samples required for a node to split.

The MLP was configured with an architecture of three
hidden layers containing 138, 97, and 25 neurons,
respectively. The activation function used was ReLU, the

solver was adam, and the initial learning rate was set to
0.0074. Additionally, the regularization parameter alpha
was adjusted to 0.0431. The CNN was optimized with
three convolutional layers, one dense layer, 36 filters, a
kernel size of 4, a pooling size of 3, and 127 units in the
dense layer. A dropout rate of 0.231 was applied to
prevent overfitting, and the model was trained for 12
epochs.
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Fig. 4: Confusion matrix with hyperparameter optimization

Cross-validation for the Logistic Regression, SVM,
Random Forest, and MLP models was performed using
StratifiedKFold with 10 folds. For the CNN,
cross-validation was conducted using KFold with 5 folds,
due to the higher computational cost of training and
evaluating convolutional neural networks.

Figure 4 illustrates the confusion matrix performance
of the classification models with hyperparameter
optimization. As before, in the confusion matrix, the
breast cancer subtypes are denoted as LumA (0), LumB
(1), Basal (2), Her2 (3) and Normal (4).

To further analyze variable importance after
hyperparameter optimization with Optuna, Figure 5
shows the contributions of the principal components in
the adjusted models: (a) SVM, (b) Logistic Regression,
(c) Random Forest, and (d) MLP. It is important to note
that “components” refers to the principal components
obtained from the PCA method. The SHAP technique
was once again employed to assign importance values to
the variables reduced via PCA. The optimization process
further refined the identification of relevant variables,
with some variables showing higher consistency across
different models, suggesting a positive impact on
classifiers performance.

4.3 General Comparison of Results

The evaluation of the classification models’ effectiveness
is crucial for assessing their generalization capabilities
and practical applicability. Notable differences in
classifier performance were observed when comparing
results with and without hyperparameter optimization
using Optuna.

Without optimization, the CNN classifier showed
acceptable but inferior results in terms of accuracy,
precision, recall, and F1-score, suggesting that the initial
parameters—such as learning rate, number of neurons,
and network depth—were not optimally configured,
which hindered the model’s performance.

After applying Optuna, most classifiers showed
significant improvements in performance metrics. For
instance, Optuna optimized the learning rate and number
of hidden layers in the MLP, leading to faster convergence
and higher accuracy. In the case of the CNN, optimization
was critical for adjusting parameters like the number of
filters, kernel sizes, and dropout rates, improving its
ability to capture meaningful patterns in the gene
expression data.

Interestingly, the Random Forest classifier behaved
unexpectedly. This method achieved an accuracy of
0.7005 without optimization and a slightly lower accuracy
of 0.6952 after optimization. This can be explained by the
inherent robustness of Random Forest, which is less
sensitive to hyperparameter tuning compared to more
complex models like MLP and CNN. Moreover, the
search space defined by Optuna may not have explored
the parameters that could improve Random Forest’s
performance efficiently. In some cases, optimization may
not yield noticeable improvements, and this does not
necessarily indicate a failure, as the model might already
be well tuned without optimization.

The confusion matrix revealed that the most correct
classifications were concentrated along the main diagonal,
indicating good overall model performance. However,
classification errors persisted in certain categories,
particularly in distinguishing between the LumA and
LumB subtypes. The difficulty in differentiating these two
classes suggests they share similar characteristics, which
makes it challenging for the models to distinguish
between them, even after optimization.

The analysis of variable importance using SHAP
provided additional information on which principal
components had the most significant impact on the
classifiers’ predictions. Without hyperparameter
optimization, principal component 2 emerged as the most
relevant across all models, suggesting it captures critical
information for data variation. Component 0 was also
consistently important, especially in the Logistic
Regression and MLP models, highlighting its relevance in
the analysis.

After optimization, some classifiers showed changes
in variable importance. In SVM, for example, component
0 became one of the most influential, alongside
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Fig. 5: Feature importance analysis with hyperparameter optimization

component 9, which had already been significant before
optimization and gained more importance. In Logistic
Regression, component 2 remained the most important,
but component 7, previously not in the top five, became
more prominent. For Random Forest, the importance
pattern remained stable, with component 2 remaining the
most crucial before and after optimization, indicating that
hyperparameter tuning had little effect on this model.

The SHAP analysis results indicate that while models
like MLP and SVM benefited more from optimization in
terms of performance and variable importance refinement,
Random Forest showed less sensitivity to hyperparameter
adjustments, reflecting its robustness across various
configurations but limiting the potential gains from
optimization.

It is important to highlight that, for the deep learning
CNN model, it was not possible to apply the SHAP
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library due to a dimension incompatibility error, as SHAP
is generally designed to work with vectorized input
formats [24]. This difference leads to incompatibilities
since complex data must be properly transformed to be
compatible with interpretation methods, which would
likely make it incomparable with the other applied
methods. Additionally, due to the architecture of CNNs,
which includes multiple convolutional layers and
nonlinear functions [14], not all SHAP methods are
suitable for interpreting this type of model [3]. This error
may indicate that the selected method is not appropriate
for capturing the modeling of convolutional network
layers, making SHAP optimization unfeasible.

5 Conclusion

This study demonstrated the effective use of machine
learning and deep learning methods in classifying breast
cancer subtypes based on gene expression data. The
application of techniques such as SVM, Random Forest,
MLP, and CNN, combined with hyperparameter
optimization using Optuna, significantly improved model
accuracy, especially in deep learning models.

The results obtained represent important
advancements, highlighting specific methods that excel in
certain datasets, underscoring the importance of selecting
appropriate analytical approaches for each context.
Notably, the analysis of feature importance allowed for
the identification of variables with greater influence on
classification, providing not only an improvement in
model accuracy but also a deeper understanding.

This work reinforces the importance of combining
model optimization and feature analysis to enhance
diagnostic tools and potentially guide the development of
more personalized treatment strategies.
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