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Abstract: This article explores the estimation of parameters and lifetime indices of the extended Gompertz distribution under

progressively Type-II censored schemes. The study employs maximum likelihood, Bayes, and two parametric bootstrap methods for

parameter estimation, alongside the computation of reliability and hazard rate functions. Additionally, approximate confidence

intervals and an asymptotic variance-covariance matrix are derived. The Markov chain Monte Carlo technique, specifically the Gibbs

sampler within the Metropolis-Hastings algorithm, is utilized to generate samples from posterior density functions. Bayesian estimates

are computed using both symmetric and asymmetric loss functions. Through Monte Carlo simulations, the efficacy of these methods is

evaluated using metrics such as mean squared errors, average interval lengths, and coverage probabilities. Finally, a real dataset is

analyzed to demonstrate the practical application of the developed inferential procedures.
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1 Introduction

Censored data plays a crucial role in various industries, especially in reliability and engineering contexts. Censoring
occurs when the full observation of a variable is not available or is incomplete, either due to limitations in measurement
capabilities, time constraints, or ethical considerations. There are two primary types of censored data: right-censored and
left-censored. Right-censored data indicates that the observation is known to be above a certain threshold but not precisely
quantifiable beyond that point. Conversely, left-censored data suggests that the observation is below a known threshold. In
industries such as manufacturing, where testing destructive to the product might be costly or impractical, right-censored
data allows for the estimation of product lifetimes or failure rates without the full destruction of every unit. In reliability
engineering, censored data allows for the modeling of survival times or failure rates of components that may not have
failed by the end of a study period. This is crucial for predicting maintenance schedules and ensuring product reliability
over its lifecycle.

Moreover, in clinical trials and epidemiology, censoring plays a critical role in longitudinal studies where subjects
may drop out or where the study may end before all events (e.g., deaths or disease progression) have occurred. Statistical
methods like Kaplan-Meier estimators and Cox proportional hazards models are employed to analyze censored data,
providing insights into time-to-event outcomes without complete data observation. The reliability and engineering sectors
rely heavily on accurate interpretation of censored data to make informed decisions about product design, maintenance
strategies, and safety protocols. Advanced statistical techniques continue to evolve to handle various forms of censoring,
ensuring that industries can derive reliable predictions and optimize their processes effectively. Thus, understanding and
appropriately analyzing censored data are indispensable for maintaining high standards of quality and safety across diverse
industrial applications.

Due to losing of the object of interest in industrial life testing and reliability studies, it’s preferable to obtain
statistical inferences based on censored samples. The obtained sample is called a censored sample (an incomplete
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sample). Censoring schemes are used to reduce both the cost and time of the experiment. Besides accelerating the
performance of the design. In lifetime and reliability analysis, we are concerned with obtaining results that allow us to
make inferences about the processes or populations involved. The two common censoring schemes that are used in
reliability and life testing are Type-I censoring schemes and Type-II censoring schemes. In Type-I censoring schemes,
the experiment is terminated at a pre-fixed time T, whereas in Type-II censoring schemes, the experiment is terminated at
pre-fixed number of failures. But both Type-I and Type-II censoring schemes do not support the removal of units at
points except the terminal point of the experiment. Therefore,we will use a more general censoring called progressive
Type-II censoring (PT2C). Which allows to eliminate survival units from the experiment at different stages due to a
pre-fixed time or pre-fixed number of failures.

PT2C can be described as follows: Consider that we have n independent components that are placed in a life test
experiment with continuous identically distributed failure times Y1,Y2, ...,Yn and m ≤ n failures are observed with a
prefixed censoring scheme R = R1,R2, ...,Rm. When the 1st failure time Y1:m:n occurs, the surviving components R1 are
randomly removed from the remaining (n − 1) surviving components. At the 2nd failure time Y2:m:n, R2 survival
components are randomly removed from the remaining (n− R1 − 2) surviving components. Similarly, untill the mth

failure (Ym:m:n) has occured, the remaining rm survival components are removed from the remaining (n−m−∑m−1
i=1 Ri)

surviving components.
As a result, Y1:m:n ≤ Y2:m:n ≤ ·· · ≤ Ym:m:n with the censoring scheme R = R1,R2, ...,Rm are called PT2C samples.

Several authors have examined inference under PT2C with various lifespan distributions see, for instance Chacko and
Mohan [1], Qin and Gui [2], Kumar et al. [3], EL-Sagheer et al. [4], Alotaibi et al. [5], Alotaibi et al. [6], Almetwally et
al. [7] and Maiti and Kayal [8]. The outstanding review article and a comprehensive discussion of the topic of progressive
censoring are provided in Balakrishnan [9]. An algorithm was created by Aggarwala and Balakrishnan [10] to simulate
general PT2C samples from the uniform distribution or any other continuous distribution. The likelihood function can be
written as:

L(y1,y2, ...,ym) =C
m

∏
i=1

f (yi)[1−F(yi)]
Ri , (1)

with C = n(n− 1−R1)(n− 2−R1 −R2) · · · (n−∑m−1
i=1 (Ri + 1)) being regular constants. The Gompertz distribution is

widely used in various fields, primarily in reliability engineering and actuarial sciences. It describes the distribution of
lifetimes for items that experience an increasing hazard rate over time, making it suitable for modeling aging processes
and mortality rates. In reliability engineering, the Gompertz distribution helps predict failure rates for components that
are more likely to fail as they age. It also finds application in demography to analyze mortality patterns in populations.
Actuaries use the Gompertz distribution to model human mortality, aiding in the development of life insurance policies and
pension plans. Its flexibility and ability to capture the increasing risk of failure over time make the Gompertz distribution
a valuable tool in understanding and managing risks associated with aging and mortality. In recent years, researchers have
been more interested in the idea of generating new extended distributions from classical distributions, one of which we
will use in our study is the extended Gompertz distribution (EGD), which was proposed by Eliwa et al. [11].

The EGD expands upon the traditional Gompertz model by introducing additional shape parameter to enhance its
flexibility in modeling survival data. This distribution is particularly useful in fields such as biomedical sciences and
economics, where complex aging processes and survival analysis are studied. It accommodates scenarios where the hazard
rate might not increase exponentially with age but may instead vary in more nuanced ways. In biomedical research, the
EGD is employed to analyze disease progression and survival times in clinical trials, providing insights into treatment
effectiveness and patient prognosis. Economists use it to study longevity risk in pension planning and insurance, helping
to estimate future liabilities based on mortality trends. On the opposite side, for low levels of infant mortality, the Gompertz
distribution force of mortality is extended across the entire life span of populations, and no observed mortality slowing
is noted, see Vaupel [12]. EGD’s versatility in capturing diverse hazard rate patterns makes the EGD a powerful tool
for understanding and predicting survival outcomes across various disciplines. A random variable Y has an EGD if its
probability density function (PDF) and the corresponding cumulative distribution function (CDF) are given by

F(y) = 1− e
− λ

β
(eβy−1)θ

,y > 0,λ ,θ ,β > 0, (2)

and

f (y) = λ θ (eβ y − 1)θ−1eβ ye
− λ

β
(eβy−1)θ

,y > 0,λ ,θ ,β > 0, (3)

while its reliability and hazard functions are given by

S(y) = e
− λ

β
(eβy−1)θ

,y > 0,λ ,θ ,β > 0, (4)
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h(y) = λ θ (eβ y − 1)θ−1eβ y,y > 0,λ ,θ ,β > 0, (5)

One can easily show that, the hazard rate function of EGD is increasing function for θ ≥ 1 whereas bathtub-shaped
when θ < 1. To illustrate that, we plot the hazard rate function of EGD in Figure 2. Figure 2 shows that the hazard
rate function can be take different shapes. The EGD with parameters λ , β and θ denoted by EGD(λ ,β ,θ ) tends to the
exponential model when the parameter β tends to zero and the parameter θ = 1. Figure 1 shows the pdf for various values
of the parameters. The pdf can be taken unimodal or decreasing-shaped.

Fig. 1: The PDF for EGD with different parameters values

Fig. 2: The hazard rate function of EGD with various parameters values

Frequently probability models are applied, such as the exponential, Gompertz, Weibull, Gumbel, etc., to analyze the
lifetime data. Therefore, in order to describe a variety of phenomena in many of fields, researchers have been developing
various univariate and bivariate extensions of these distributions. See for example, Hamid et al. [13], Ali et al. [14],
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El-Gohary et al. [15], Khan et al. [16], El-Bassiouny et al. [17], Haitham et al. [18], El-Bassiouny and El-Morshedy
[19], El-Morshedy et al. [20], Mohamed et al. [21], Eliwa et al. [22,23], Jehhan et al. [24], El-Morshedy and Eliwa
[25], Alizadeh et al. [26], Eliwa and El-Morshedy [27], Salah et al. [28], among others. A bathtub-shaped hazard rate
function, such as that seen in machine life cycles, cannot be utilized to model lifetime data when the hazard function of
the probability distribution is constant, increasing, or decreasing. Therefore, we suggested in this study an extension of
the Gompertz distribution with three parameters, which we refer to as the EGD.

The main aim of this paper is to investigate parameter estimation for the EGD. Maximum likelihood estimates of these
parameters are computed via the Newton-Raphson iteration method to solve non-linear equations. Hazard and reliability
functions are among the parameters estimated. To establish approximate confidence intervals for these parameters as well
as reliability and hazard and functions, we employ the parametric bootstrap technique. Furthermore, Bayesian estimation
is explored using Markov chain Monte Carlo methods. The reliability and hazard functions, along with Bayesian parameter
estimates, are derived using the Metropolis algorithm within the Gibbs sampler framework. Throughout, these estimation
methodologies are demonstrated with the analysis of a real-world dataset.

The remainder of this paper is structured as follows. Section 2 focuses on the maximum likelihood estimation and
asymptotic confidence intervals. Section 3 introduces two parametric bootstrap approaches. Bayesian estimation using
the MCMC technique is detailed in Section 4. In Section 5, a simulation study is carried out to assess and compare the
effectiveness of these estimation methodologies. Section 6 includes the presentation of a real-world dataset to exemplify
the application of the proposed inference procedures. Lastly, Section 7 provides a concise conclusion to summarize the
findings and contributions of this research.

2 Parameters Estimation

Maximum likelihood estimation (MLE) is a powerful statistical method used to estimate the parameters of a probability
distribution. The core idea behind MLE is to find the set of parameter values that maximize the likelihood function,
which measures how likely the observed data are under the given distributional assumptions. One of the key properties
of MLE is consistency, meaning that as the sample size increases, the estimates converge to the true parameter values.
Additionally, MLE tends to be asymptotically efficient, meaning that the estimated parameters have the smallest possible
variance among all consistent estimators.

Advantages of maximum likelihood estimation include its simplicity in implementation, especially when compared
to other methods like Bayesian estimation, and its robustness when the sample size is large. MLE does not require prior
information about the parameters, making it particularly useful in situations where prior knowledge is limited or
unavailable. Moreover, MLE provides a framework for hypothesis testing and model selection, enabling researchers to
assess the goodness of fit of their models rigorously. Overall, MLE is widely used in fields ranging from biology to
economics due to its solid theoretical foundation and practical applicability.

As a sort of model complexity, we have extended the EGD with three parameters in order to achieve high accuracy
and improved data fitting. Additionally, we compute the estimate and the approximate confidence intervals for the survival
function and hazard rate function, which have, to the best of our knowledge, not discussed a lot in the literature. Suppose
that Y1 < Y2 < · · ·< Ym are PT2C sample drawn from EGD with the censoring scheme R = (R1,R2, ...,Rm). From (1), (2)
and (3), the likelihood function is given by

L(λ ,β ,θ |y
¯
) =Cλ mθ m

m

∏
i=1

(eβ y − 1)θ−1
m

∏
i=1

e
β y− λ

β
(eβy−1)θ m

∏
i=1

e
−Ri

λ
β
(eβy−1)θ

. (6)

Ignoring the constant term, The log-likelihood function ℓ= logL(λ ,β ,θ |y) is obtained from (6) as

ℓ= m logλ +m logθ +(θ − 1)
m

∑
i=1

log
(

eβ yi − 1
)

+β
m

∑
i=1

yi −
m

∑
i=1

(
λ

β
(eβ y − 1)θ )−

m

∑
i=1

Ri(
λ

β
(eβ y − 1)θ ). (7)

2.1 Point estimation

Upon differentiating (7) w.r.t λ , β and θ and equating each to zero, the MLEs of λ , β and θ can be obtained from the
following

∂ℓ

∂λ
=

m

λ
−

m

∑
i=1

Ri

β

(

eβ yi − 1
)θ

, (8)
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∂ℓ

∂β
= (θ − 1)

m

∑
i=1

yie
β yi

eβ yi − 1
+

m

∑
i=1

yi −
m

∑
i=1

[

−λ

β 2

(

eβ yi − 1
)θ

+
λ

β
θ
(

eβ yi − 1
)θ−1

yie
β yi

]

−
m

∑
i=1

Ri

[

−λ

β 2

(

eβ yi − 1
)θ

+
λ

β
θ
(

eβ yi − 1
)θ−1

yie
β yi

]

, (9)

and

∂ℓ

∂θ
=

m

θ
+

m

∑
i=1

log(eβ yi − 1)−
m

∑
i=1

[

λ

β

(

eβ yi − 1
)θ

log(eβ yi − 1)

]

−
m

∑
i=1

[

Ri

λ

β
(eβ yi − 1)θ log(eβ yi − 1)

]

. (10)

From (8) we obtain the MLE of λ as

λ̂ = m

[

m

∑
i=1

(

Ri

β̂

)

(

eβ̂yi − 1
)θ̂

]−1

, (11)

there are no closed forms for (9) and (10) thus, the Newton–Raphson iteration method is used to obtain the estimates, see
EL-sagheer [29]. The algorithm is described as follows:

1.Use the method of moments or any other methods to estimate the parameters λ , β and θ as starting point of iteration,
denote the estimates as (λ0,β0,θ0) and set k = 0.

2.Calculate ( ∂ l
∂λ ,

∂ l
∂β ,

∂ l
∂θ )(λk, βk, θk)

and the observed Fisher Information matrix I−1(λ ,β ,θ ), given in the next paragraph.

3.Update (λ ,β ,θ ) as

(λk+1,βk+1,θk+1) = (λk,βk,θk)+ (
∂ l

∂λ
,

∂ l

∂β
,

∂ l

∂θ
)(λk, βk, θk)× I−1(λ ,β ,θ ). (12)

4.Set k = k+ 1 and then go back to Step 1.
5.Continue the iterative steps until |(λk+1,βk+1,θk+1)−(λk,βk,θk)| is smaller than a threshold value. The final estimates

of (λ ,β ,θ ) are the MLE of the parameters, denoted as (λ̂ , β̂ , θ̂ ).

Moreover, using the invariance property of MLEs, the MLEs of S(t) and h(t) can be obtained after replacing λ , β and

θ by λ̂ , β̂ and θ̂ as

Ŝ(t) = e
− λ̂

β̂
(eβ̂ y−1)θ̂

, ĥ(t) = λ̂ θ̂ (eβ̂y − 1)θ̂−1eβ̂y. (13)

2.2 Asymptotic confidence intervals

The asymptotic normal distribution of the MLEs is the most popular way to make confidence bounds for the parameters,

according to Vander Wiel and Meeker [30]. The approximate asymptotic variance–covariance matrix of the MLEs, λ̂ ,

β̂ and θ̂ can be obtained through the entries of the inverse of the Fisher information matrix as Ii j = E[−∂ 2l(Φ)
∂ϕi∂ϕ j

] where

i, j = 1,2,3 and Φ = (ϕ1,ϕ2,ϕ3) = (λ ,β ,θ ). Unfortunately, it can be difficult to find the exact closed forms for the
expectations mentioned above. Thus, by removing the expectation operator E, we may derive the asymptotic variance-
covariance matrix for the maximum likelihood estimators. For further details see Cohen [31]. The entries in the observed
Fisher information matrix are second partial derivatives of the log-likelihood function, which are easily calculated. As a
result, the observed information matrix is denoted by

Î(λ ,β ,θ ) =









− ∂ 2l
∂λ 2 − ∂ 2l

∂λ ∂β − ∂ 2l
∂λ ∂θ

− ∂ 2l
∂β ∂λ − ∂ 2l

∂β 2 − ∂ 2l
∂β ∂θ

− ∂ 2l
∂θ∂λ − ∂ 2l

∂θ∂β − ∂ 2l
∂θ 2









(λ=λ̂ ,β=β̂ ,θ=θ̂)

. (14)
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As a result, inverting the observed information matrix Î(λ ,β ,θ ) yields the asymptotic variance-covariance matrix [V̂ ]
for the MLEs.

[V̂ ] = Î−1(λ ,β ,θ ) =







v̂ar(λ ) cov(λ ,β ) cov(λ ,θ )

cov(β ,λ ) v̂ar(β ) cov(β ,θ )

cov(θ ,λ ) cov(θ ,β ) v̂ar(θ )







↓(λ̂ ,β̂ ,θ̂)

. (15)

It is known that (λ̂ , β̂ , θ̂ ) is approximately distributed as multivariate normal with mean (λ ,β ,θ ) and covariance
matrix I−1(λ ,β ,θ ) under some conditions, see Lawless [32]. Consequently, the approximate confidence intervals (ACIs)
of (1− γ)100% For λ , β and θ can obtained by

(λ̂ ±Zγ/2

√

v̂ar(λ )), (β̂ ±Zγ/2

√

v̂ar(β )), (θ̂ ±Zγ/2

√

v̂ar(θ )), (16)

where Zγ/2 is the percentile of the standard normal distribution with right-tail probability γ/2. The variances of the
reliability and hazard functions must also be determined in order to create the ACIs for each. We apply the delta method

described in Greene [33] to obtain the approximate estimates of the variance of Ŝ(t) and ĥ(t). The variance of Ŝ(t) and

ĥ(t), can be approximated, respectively by

σ̂2
Ŝ(t)

= [∇Ŝ(t)]T [V̂ ][∇Ŝ(t)], σ̂2
ĥ(t)

= [∇ĥ(t)]T [V̂ ][∇ĥ(t)], (17)

where Ŝ(t)and ĥ(t) are the gradient of Ŝ(t) and ĥ(t), respectively, with respect to λ ,β and θ . Thus, the (1− γ)100% ACIs
for S(t) and h(t) can obtained by:

(Ŝ(t)±Zγ/2

√

σ̂2
Ŝ(t)

), (ĥ(t)±Zγ/2

√

σ̂2
ĥ(t)

), (18)

The main issue with (1− γ)100% ACI is that it could return a negative value in the lower bound for a positive
parameter. It is simple to confirm that the computed confidence intervals have a lower bound with a positive value if
one of the computed confidence intervals has a negative lower bound, then this value is replaced by zero. The normal
approximation can be used for the log-transformed MLE, suggested by Meeker and Escobar [34]. Therefore, A two-sided
(1− γ)100% ACIs for Ω = (λ ,β ,θ ,S(t),h(t)) are provided as






Ω̂ .exp{−

Zγ/2

√

̂
var(Ω̂)

Ω̂
},Ω̂ .exp{−

Zγ/2

√

̂
var(Ω̂)

Ω̂
}






. (19)

where Ω̂ =(λ̂ , β̂ , θ̂ , Ŝ(t), ĥ(t)).

3 Bootstrap Confidence Intervals

Bootstrap estimation is a resampling technique used to estimate the sampling distribution of a statistic by drawing
repeated samples with replacement from the original data. The fundamental idea is to simulate new datasets that
resemble the original dataset to assess variability and uncertainty in statistical estimates. One of the key properties of
bootstrap estimation is its simplicity and versatility it can be applied to a wide range of statistical problems without
relying on complex theoretical assumptions. Bootstrap estimates are often robust and provide reliable confidence
intervals and standard errors, especially when the underlying distribution of the data is unknown or non-normal.
Moreover, bootstrap methods are computationally feasible with modern computing power, making them accessible for
practical use in data analysis and inference. By generating numerous resamples, bootstrap estimation captures the
variability inherent in the data, offering advantages over traditional methods like parametric assumptions or asymptotic
approximations, particularly in smaller sample sizes or when data distributions are non-standard. To calculate the
bootstrap confidence intervals of λ ,β ,θ ,S(t) and h(t), two parametric bootstrap algorithms are offered. The first is based
on Efron’s [35] concept of the percentile bootstrap (Boot-p) confidence interval method. The second is the bootstrap-t
(Boot-t) confidence interval method, proposed by Hall [36]. An estimator of the variance of the MLE of λ ,β ,θ ,S(t) and
h(t) is needed for Boot-t, which was developed based on a studentized ”pivot.”.
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3.1 Parametric boot-p

1.Based on the original data y
¯
= y1:m:n,y2:m:n, ...,ym:m:n obtain λ̂ , β̂ and θ̂ by maximizing Eqs. (8)–(11).

2.Based on the pre-specified progressive censoring scheme (R1,R2, ...,Rm) generate a Type-II progressive censoring

sample y
¯

∗ = y∗1:m:n,y
∗
2:m:n, ...,y

∗
m:m:n from the EGD with parameters λ̂ , β̂ and θ̂ , using the algorithm described in

Balakrishnan and Sandhu [37].
3.Obtain the MLEs based on the bootstrap sample and denote this bootstrap estimate by ψ̂∗(in our case ψ could be

λ ,β ,θ , S(t) or h(t).

4.Repeat Steps (2) and (3) Nboot times, and obtain. ψ̂∗
1 , ψ̂

∗
2 , ..., ψ̂

∗
Nboot , where ψ̂∗

i = (λ̂ ∗
i , β̂

∗
i , θ̂

∗
i , Ŝ

∗
i (t), ĥ

∗
i (t)),

i = 1,2,3, ...,Nboot.
5.Arrange ψ̂∗

i , i = 1,2,3, ...,Nboot in ascending orders and obtain ψ̂∗
1 , ψ̂

∗
2 , ..., ψ̂

∗
Nboot .

Let G1(z) = P(ψ̂∗ ≤ z) be the cumulative distribution function of ψ̂∗. Define ψ̂boot−p = G−1
1 (z) for given z. The

approximate bootstrap-p (1− γ)100% CI of ψ̂ , is obtained by

[

ψ̂boot−p(
γ

2
), ψ̂boot−p(1−

γ

2
)
]

. (20)

3.2 Parametric boot-t

(1)–(3)The same as the parametric Boot-p.
(4)Based on the asymptotic variance–covariance matrix (15) and delta method (17), respectively, compute the variance–

covariance matrix I−1∗(λ̂ ∗, β̂ ∗, θ̂ ∗) and the approximate estimates of the variance Ŝ∗(t) and ĥ∗(t).
(5)Compute the T ∗ψ statistic defined as

T ∗ψ =
(ψ̂∗− ψ̂)
√

̂var(ψ̂∗)

.

(6)Repeat Steps 2–5, NBoot times and obtain T
∗ψ

1 ,T
∗ψ

2 , ...,T
∗ψ

NBoot .

(7)Sort T
∗ψ

1 ,T
∗ψ

2 , ...,T
∗ψ

NBoot in ascending orders and obtain the ordered sequences T
∗ψ
(1) ,T

∗ψ
(2) , ...,T

∗ψ
(NBoot)

Let G2(z) = P(T ∗ ≤ z) be the cumulative distribution function of T ∗ for a given z, define

ψ̂boot−t = ψ̂ +G−1
2 (z)

√

̂var(ψ̂∗).

Then, the approximate bootstrap-t (1− γ)100% CI of ψ̂ = (λ̂ , β̂ , θ̂ , Ŝ(t)orĥ(t)), is denoted by

[

ψ̂boot−t(
γ

2
), ψ̂boot−t(1−

γ

2
)
]

. (21)

4 Bayes Estimation Using MCMC

Bayesian estimation hinges on the principle of updating beliefs about parameters in light of observed data. Central to
this approach is the use of prior distributions, which encapsulate existing knowledge or assumptions about the parameters
before any data is observed. These priors can be informative, reflecting strong prior beliefs, or uninformative, allowing
the data to dominate. Through Bayes’ theorem, the prior is combined with the likelihood function, representing the data’s
probability given the parameters, to produce the posterior distribution. This posterior distribution synthesizes prior beliefs
with current data, providing a refined estimate of the parameters of interest. Bayesian estimation thus offers a coherent
framework for incorporating both subjective beliefs and empirical evidence, allowing for robust inference and decision-
making under uncertainty. This approach contrasts with frequentist methods by explicitly quantifying uncertainty and
providing a probabilistic interpretation of parameters. By iteratively updating beliefs as more data becomes available,
Bayesian estimation offers a flexible and powerful tool for a wide range of statistical applications.

The priors of the parameters must be chosen appropriately for the Bayesian deduction. According to Arnold and Press
[38], there is definitely no way to conclude that one prior is superior to another from a strictly Bayesian viewpoint. One
must presumably accept the lumps and bumps of one’s subjective past and live with it. However, it is preferable to employ
the informative prior(s), which may be chosen over all other options, if we have sufficient information on the parameter(s).
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If not, using ambiguous or non-informative priors might be appropriate; refer to Upadhyay et al. [39]. As can be shown in
Kundu and Howlader [40], the family of gamma distributions is recognized to be sufficiently adaptable to accommodate
a wide range of prior assumptions held by the experimenter. Thus, we consider that the unknown parameters λ , β , and θ
are stochastically independently distributed with a conjugate gamma prior distributions as follows

π1(λ ) =
b

a1
1

⌈(a1)
λ (a1−1)e−b1λ , λ ,a1,b1 > 0,

π2(β ) =
b

a2
2

⌈(a2)
β (a2−1)e−b2β , β ,a2,b2 > 0,

π3(θ ) =
b

a3
3

⌈(a3)
θ (a3−1)e−b3θ , θ ,a3,b3 > 0,

where, ai and bi, i = 1,2,3 are assumed to be known and non-negative. The joint prior function of the parameters λ ,β ,
and θ is defined as

π(λ ,β ,θ ) =
b

a1
1 b

a2
2 b

a3
3

⌈(a1)⌈(a2)⌈(a3)
λ (a1−1)β (a2−1)θ (a3−1)e−b1λ−b2β−b3θ (22)

The Bayes’ theorem is created by multiplying the likelihood function(6) with the joint prior distribution (23). Thus,
the posterior density function of λ ,β and θ is defined using Bayes’ theorem as follows:

π∗(λ ,β ,θ |y) =
L(y;λ ,β ,θ )×π(λ ,β ,θ )

∞
∫

0

∞
∫

0

∞
∫

0

L(y;λ ,β ,θ )×π(λ ,β ,θ )dλ dβ dθ

= λ m+a1−1θ m+a3−1β a2−1
m

∏
i=1

[

(eβ yi − 1)θ−1eβ yie
− λ

β
(eβyi−1)θ

×e
−Ri

λ
β
(eβyi−1)θ

e−b1λ−b2β−b3θ

]

= π∗
1

(

λ |β ,θ ,y
)

π∗
2

(

β |λ ,θ ,y
)

π∗
3

(

θ |λ ,β ,y
)

, (23)

where,

π∗
1

(

λ |β ,θ ,y
)

∝ λ m+a1−1e
−λ

[

b1+
1
β ∑(eβyi−1)

θ
(1+Ri)

]

, (24)

π∗
2

(

β |λ ,θ ,y
)

∝ β a2−1e
−β [b2−∑yi ]+(θ−1)∑ log(eβyi−1)− λ

β ∑(eβy−1)
θ
(1+Ri), (25)

π∗
3

(

θ |λ ,β ,y
)

∝ θ m+a3−1e
−θ [b3−∑ log(eβy−1)]− λ

β ∑(eβy−1)
θ
(1+Ri). (26)

Fig. 3: The posterior density function π∗
2

(

β |λ ,θ ,y
)

of β
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Fig. 4: The posterior density function π∗
3

(

θ |λ ,β ,y
)

of θ

It’s clear that the conditional posterior densities of λ given in (25) is gamma density with shape parameter(m+ a1)

and scale parameter (b1 +
1
β ∑(eβ y − 1)θ (1+Ri)). As a result, samples of λ can be easily generated using any gamma

generating routine. Additionally, since β and θ in (26) and (27) do not give standard forms, but the plot of both of
them indicates that they are similar to the normal distribution, see Figs. 3 and 4. Gibbs sampling is not an appropriate
option. Using the Metropolis-Hasting (M-H) sampler is the most practical choice for the use of the MCMC methodology
which is suggested by Metropolis [41]. Below is a hybrid algorithm that updates the parameter λ using Gibbs sampling

steps and updates β and θ using M-H steps. We used the MLEs of λ̂ , β̂ and θ̂ to execute the Gibbs sampler algorithm.
If a systematic pattern of convergence wasn’t obtained, we took samples from each of the full conditionals, in turn, using
the most recent values for all other conditioning variables. The following steps show the Gibbs sampling method’s use of
the Metropolis-Hastings algorithm, see Tierney [42]:

Step1:Start with (λ (0),β (0),θ (0)) = (λ̂ , β̂ , θ̂ ).
step2:Set j = 1.

step3:Generate λ ( j) from Gamma(m+ a1, b1 +
1
β ∑(eβ y − 1)θ (1+Ri)).

step4:Using the following M-H algorithm, generate β ( j) and θ ( j) from π∗
1 (β ( j−1)|λ ( j),θ ( j−1),y) and π∗

2

(θ ( j−1)|β ( j),λ ( j),y) with the normal proposal distributions N(β ( j−1),var(β )) and N(θ ( j−1),var(θ )).

(i)Generate a proposal β ∗ from N(β ( j−1),var(β )) and θ ∗ from N(θ ( j−1),var(θ )).
(ii)Evaluate the acceptance probabilities:

ηβ = min

[

1,
π∗

2 (β
∗|λ j,θ j−1,y

¯
)

π∗
2 (β

j−1|λ j,θ j−1,y
¯
)

]

, ηθ = min

[

1,
π∗

3 (θ
∗|λ j,β j,y

¯
)

π∗
3 (θ

j−1|λ j,β j,y
¯
)

]

. (27)

(iii)Generate a u1 and u2 from a Uniform (0,1).

(iv)If u1 < ηβ , accept the proposal and set β ( j) = β ∗, else set β ( j) = β ( j−1).

(v)If u2 < ηθ , accept the proposal and set θ ( j) = θ ∗, else set θ ( j) = θ ( j−1).
step5:Compute the reliability function, hazard function and coefficient of variation as

S j(t) = e
− λ j

β j (e
β j t−1)θ j

, t > 0

h j(t) = λ jθ j(eβ jt − 1)θ j−1eβ jt , t > 0 (28)

step6:Set j = j+ 1.
step7:Repeat Steps (3)–(6) N times.

The first M simulated variants are deleted in order to ensure convergence and eliminate the affection of initial value

selection. The chosen sample thus includes λ ( j),β ( j),θ ( j),S( j)(t) and h( j)(t), j = M + 1, ...,N, for sufficiently large N,
this sample provides an approximate posterior sample that may be used to develop the Bayes estimates of φ = λ ,β ,θ ,S(t)
or h(t) as:

φ̂MC =
1

N −M

N

∑
j=M+1

φ j .
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To determine the reliable intervals of λ , β , θ , S(t) and h(t), order λ ( j),β ( j),θ ( j),S( j)(t) and h( j)(t), i = 1, ...,N as

{λ (1) < · · · < λ (N)}, {β (1) < · · · < β (N)}, {θ (1) < · · · < θ (N)}, {S(1)(t) < · · · < S(N)(t)} and {h(1)(t) < · · · < h(N)(t)}.
Therefore, the 100(1− γ)% CRIs of φ = λ ,β ,θ ,S(t) or h(t) become

[

φ(Nγ/2) , φ(N(1−γ/2))

]

. (29)

5 Simulation Study

We provide a simulation study in this section in order to compare the performance of the estimates and confidence intervals
created in the previous sections using various techniques. Here, we present the outcomes of the simulation in the case of
(λ ,β ,θ ) = (0.22,1,2). Consequently, the actual values of S(t) and h(t) at time t = 0.4 are evaluated to be 0.94818 and
0.32284, respectively. The mean square error (MSE), is used to evaluate the performance of estimators which calculated
as:

MSE =
1

1000

1000

∑
i=1

(

ϕ̂ i
k −ϕk

)2
,

where, k = 1,2, ...,5, ϕ1 = λ ,ϕ2 = β ,ϕ3 = θ ,ϕ4 = S(t),and ϕ5 = h(t) for the point estimates, additionally, for interval

estimations, average lengths (ALs) and coverage probability (CPs), which are calculated as the number of CIs that covered
the true values divided by 1000. Based on M = 12 000 MCMC samples, Bayes estimates and the highest posterior density
CRIs are calculated, and the first values, M◦ = 2000, are discarded as burn-in. Additionally, we consider the informative
gamma priors for λ , β , and θ that is, when the hyperparameters are ai = 2 and bi = 2, i = 1,2,3. Furthermore, for every
simulated sample, 95% CRIs were calculated. We take into consideration various sample sizes (n = 30, 50, and 80) in our
study. The censoring schemes (SCs) are as follows:

SC1:R1 = n−m, Ri = 0 for i 6= 1.

SC2:
R(m+1)/2 = n−m,Ri = 0 for i 6= (m+ 1)/2 if m odd,

Rm/2 = n−m,Ri = 0 for i 6= m/2 if m even.

SC3:Rm = n−m, Ri = 0 for i 6= m.

Tables 1−6 show the outcomes of the means, MSEs, ALs, and CPs of the estimates. Based on the results, we note the
following:

–As expected, tables 1− 6 shown that: as sample size n increases, the MSEs and ALs decrease.

–Because Bayes estimates have the least MSEs and ALs for all parameters and reliability characteristics, they perform
better than MLEs and bootstrap methods.

–In terms of MSEs and ALs, bootstrap methods outperform the ML method. In terms of MSEs and ALs, BT outperforms
BP as well.

–The maximum posterior density credible intervals and coverage probability of the asymptotic confidence intervals are
all close to the target level of 0.95.
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Table 1: MSE of estimates for the parameters λ and β .

λ β
(n,m) CSs ML Boot-p Boot-t Bayes ML Boot-p Boot-t Bayes

(30,15) SC1 0.0174 0.0157 0.0123 0.0099 0.2354 0.2147 0.1925 0.1655

SC2 0.0196 0.0185 0.0146 0.0112 0.2792 0.2564 0.2258 0.1892

SC3 0.0235 0.0214 0.0178 0.0135 0.3157 0.2841 0.2543 0.2144

(30,20) SC1 0.0144 0.0128 0.0106 0.0082 0.1925 0.1905 0.1622 0.1347

SC2 0.0165 0.0151 0.0123 0.0101 0.2254 0.2247 0.1936 0.1599

SC3 0.0194 0.0186 0.0160 0.0119 0.2584 0.2598 0.2243 0.1797

(50,25) SC1 0.0112 0.0102 0.0088 0.0075 0.1699 0.1689 0.1357 0.1148

SC2 0.0132 0.0133 0.0109 0.0086 0.1865 0.1798 0.1479 0.1301

SC3 0.0149 0.0147 0.0118 0.0093 0.1996 0.1992 0.1693 0.1497

(50,35) SC1 0.0102 0.0093 0.0079 0.0066 0.1235 0.1199 0.0996 0.0887

SC2 0.0117 0.0111 0.0087 0.0072 0.1456 0.1398 0.1191 0.0953

SC3 0.0132 0.0129 0.0098 0.0087 0.1763 0.1752 0.1465 0.1199

(80,40) SC1 0.0092 0.0085 0.0065 0.0051 0.1055 0.1101 0.0854 0.0768

SC2 0.0102 0.0094 0.0071 0.0062 0.1245 0.1246 0.0935 0.0832

SC3 0.0125 0.0123 0.0087 0.0074 0.1512 0.1523 0.1169 0.0961

(80,50) SC1 0.0083 0.0081 0.0054 0.0044 0.0975 0.0971 0.0778 0.0625

SC2 0.0091 0.0089 0.0065 0.0057 0.1112 0.1124 0.0834 0.0714

SC3 0.0105 0.0104 0.0076 0.0068 0.1299 0.1289 0.0947 0.0835

Table 2: MSE of estimates for the parameter θ and S(t = 0.4).

θ S(t = 0.4)
(n,m) CSs ML Boot-p Boot-t Bayes ML Boot-p Boot-t Bayes

(30,15) SC1 0.4772 0.4563 0.3965 0.3377 0.0245 0.0227 0.0199 0.0179

SC2 0.5247 0.5224 0.4367 0.3783 0.0276 0.0265 0.0223 0.0199

SC3 0.5974 0.5836 0.4863 0.4112 0.0299 0.0286 0.0265 0.0227

(30,20) SC1 0.3875 0.3799 0.3247 0.2647 0.0187 0.0185 0.0156 0.0132

SC2 0.4125 0.4116 0.3665 0.2961 0.0199 0.0196 0.0174 0.0153

SC3 0.4566 0.4561 0.3947 0.3299 0.0215 0.0211 0.0196 0.0174

(50,25) SC1 0.2978 0.2972 0.2564 0.1998 0.0147 0.0142 0.0125 0.0109

SC2 0.3214 0.3215 0.2765 0.2211 0.0168 0.0165 0.0146 0.0125

SC3 0.3561 0.3566 0.3001 0.2504 0.0191 0.0189 0.0170 0.0151

(50,35) SC1 0.2532 0.2530 0.1987 0.1647 0.0112 0.0110 0.0099 0.0087

SC2 0.2863 0.2859 0.2346 0.1899 0.0136 0.0136 0.0111 0.0095

SC3 0.3145 0.3151 0.2658 0.2183 0.0156 0.0151 0.0139 0.0112

(80,40) SC1 0.2139 0.2137 0.1697 0.1359 0.0092 0.0091 0.0088 0.0079

SC2 0.2458 0.2449 0.1963 0.1596 0.0106 0.0104 0.0093 0.0084

SC3 0.2766 0.2699 0.2237 0.1895 0.0121 0.0119 0.0096 0.0089

(80,50) SC1 0.1684 0.1677 0.1263 0.0997 0.0085 0.0085 0.0078 0.0071

SC2 0.1855 0.1842 0.1501 0.1285 0.0092 0.0091 0.0083 0.0077

SC3 0.2151 0.2143 0.1765 0.1491 0.0101 0.0099 0.0089 0.0083

6 Real Data Application

To illustrate the computation of methods proposed in this paper, we cover an example of real life data set. Considering the
real data set of sample size 88 observed failure times of windshields reported in Murthy et al. [43], who have obtained it
from Blischke and Murthy [44] and used in EL-Sagheer et al. [45], given in Table 7. We have computed the Kolmogorov-
Smirnov (KS) distance between the empirical and the fitted distribution functions. It is 0.0829 and the associated p-value
is 0.5809. Since the p- value is quite high, we cannot reject the null hypothesis that the data is coming from the EGD. In
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Table 3: MSE of estimates for h(t = 0.4).

(n,m) CSs ML Boot-p Boot-t Bayes

(30,15) SC1 0.0074 0.0072 0.0069 0.0061

SC2 0.0079 0.0077 0.0073 0.0064

SC3 0.0082 0.0081 0.0077 0.0069

(30,20) SC1 0.0063 0.0061 0.0056 0.0051

SC2 0.0066 0.0065 0.0059 0.0055

SC3 0.0073 0.0073 0.0063 0.0058

(50,25) SC1 0.0051 0.0052 0.0047 0.0042

SC2 0.0056 0.0055 0.0049 0.0044

SC3 0.0059 0.0059 0.0052 0.0047

(50,35) SC1 0.0045 0.0044 0.0038 0.0032

SC2 0.0048 0.0048 0.0042 0.0036

SC3 0.0053 0.0052 0.0047 0.0039

(80,40) SC1 0.0038 0.0038 0.0031 0.0026

SC2 0.0042 0.0041 0.0035 0.0029

SC3 0.0045 0.0044 0.0039 0.0033

(80,50) SC1 0.0033 0.0032 0.0026 0.0021

SC2 0.0036 0.0036 0.0029 0.0024

SC3 0.0039 0.0038 0.0033 0.0028

Table 4: ALs (first row) and PCs (second row) of 95% ACIs for λ and β .

λ β
(n,m) CSs MLE Bootstrap MCMC MLE Bootstrap MCMC

ACIs boot-p boot-t CRIs ACI boot-p boot-t CRIs

(30,15) SC1 1.0124 1.0564 1.0045 0.9953 2.3641 2.2578 2.1473 1.7865

0.924 0.932 0.934 0.947 0.932 0.947 0.954 0.956

SC2 1.1356 1.1284 1.0967 1.0364 2.4156 2.3572 2.1689 1.8278

0.935 0.944 0.939 0.951 0.942 0.934 0.946 0.942

SC3 1.2365 1.2121 1.1325 1.0993 2.5478 2.4791 2.2397 1.8897

0.927 0.921 0.928 0.932 0.931 0.922 0.951 0.943

(30,20) SC1 0.9524 0.9147 0.8832 0.8146 1.9647 1.8547 1.6978 1.4958

0.938 0.941 0.942 0.953 0.941 0.937 0.949 0.954

SC2 1.0956 1.0899 0.9564 0.8769 2.1254 1.9684 1.7628 1.5536

0.937 0.951 0.947 0.945 0.928 0.954 0.941 0.953

SC3 1.1325 1.1014 1.0963 0.9463 2.2367 2.1479 1.8345 1.6347

0.932 0.947 0.957 0.961 0.935 0.937 0.919 0.928

(50,25) SC1 0.9135 0.9055 0.7967 0.7201 1.5789 1.5536 1.3478 0.9998

0.952 0.947 0.957 0.947 0.951 0.948 0.938 0.944

SC2 0.9632 0.9499 0.8456 0.7732 1.7473 1.6954 1.5768 1.1973

0.947 0.959 0.953 0.951 0.941 0.936 0.951 0.957

SC3 1.0587 0.0124 0.9136 0.8554 1.8997 1.8755 1.6845 1.3014

0.939 0.945 0.929 0.948 0.923 0.948 0.957 0.929

(50,35) SC1 0.8635 0.8555 0.7217 0.6648 1.3258 1.3147 1.0478 0.8756

0.947 0.942 0.938 0.960 0.919 0.927 0.953 0.961

SC2 0.9258 0.9097 0.7684 0.6999 1.4982 1.5011 1.2347 0.9957

0.953 0.943 0.954 0.957 0.947 0.937 0.945 0.955

SC3 0.9638 0.9499 0.8153 0.7456 1.6235 1.5997 1.3451 1.1249

0.942 0.947 0.961 0.955 0.929 0.951 0.938 0.942

(80,40) SC1 0.7833 0.7745 0.6221 0.5896 1.1254 1.0354 0.8899 0.7264

0.939 0.945 0.954 0.951 0.951 0.949 0.938 0.945

SC2 0.8377 0.8256 0.6791 0.6337 1.3217 1.2789 0.9347 0.7945

0.942 0.937 0.941 0.946 0.945 0.941 0.937 0.951

SC3 0.8799 0.8767 0.7144 0.6823 1.4386 1.3997 1.1243 0.8596

0.948 0.947 0.951 0.939 0.927 0.928 0.933 0.941

(80,50) SC1 0.6956 0.7021 0.5792 0.4999 0.9948 0.9275 0.7514 0.6347

0.936 0.941 0.939 0.942 0.938 0.947 0.954 0.938

SC2 0.7462 0.7369 0.6247 0.5438 1.1214 1.0998 0.8947 0.7734

0.941 0.938 0.942 0.956 0.942 0.937 0.951 0.942

SC3 0.7861 0.7794 0.6695 0.5923 1.2536 1.1974 0.9635 0.8347

0.944 0.952 0.947 0.949 0.925 0.931 0.929 0.938
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Table 5: ALs (first row) and PCs (second row) of 95% ACIs for θ and S(t = 0.4).

θ S(t = 0.4)
(n,m) CSs MLE Bootstrap MCMC MLE Bootstrap MCMC

ACIs boot-p boot-t CRIs ACI boot-p boot-t CRIs

(30,15) SC1 3.5546 3.4478 3.2144 2.6245 0.3365 0.3258 0.2786 0.2247

0.921 0.919 0.927 0.949 0.929 0.949 0.951 0.939

SC2 3.6471 3.5481 3.3692 2.7633 0.3564 0.3482 0.2963 0.2495

0.936 0.942 0.939 0.951 0.939 0.945 0.942 0.939

SC3 3.7894 3.6892 3.4389 2.8641 0.3741 0.3599 0.3214 0.2763

0.941 0.933 0.942 0.950 0.942 0.938 0.947 0.951

(30,20) SC1 3.1458 3.0587 2.8762 2.5746 0.2978 0.2964 0.2345 0.1865

0.947 0.951 0.939 0.939 0.941 0.939 0.951 0.953

SC2 3.3124 3.2542 2.9945 2.6341 0.3158 0.3214 0.2539 0.1994

0.943 0.945 0.952 0.942 0.929 0.926 0.937 0.948

SC3 3.5642 3.4571 3.1255 2.8012 0.3451 0.3399 0.2785 0.2211

0.938 0.936 0.928 0.947 0.941 0.948 0.958 0.939

(50,25) SC1 2.7944 2.6548 2.3147 1.9948 0.2566 0.2497 0.1998 0.1599

0.947 0.934 0.937 0.923 0.941 0.919 0.928 0.942

SC2 2.8974 2.7999 2.5463 2.2657 2.7652 0.2745 0.2098 0.1674

0.928 0.941 0.933 0.936 0.919 0.921 0.938 0.952

SC3 3.1247 3.0658 2.6994 2.3996 0.2886 0.2877 0.2258 0.1799

0.931 0.925 0.943 0.945 0.928 0.918 0.936 0.939

(50,35) SC1 2.4582 2.3044 1.9889 1.7659 0.2158 0.2098 0.1768 0.1397

0.917 0.919 0.928 0.928 0.942 0.951 0.924 0.938

SC2 2.5993 2.5576 2.1589 1.8734 0.2369 0.2366 0.1876 0.1496

0.923 0.941 0.936 0.941 0.943 0.933 0.938 0.952

SC3 2.6887 2.6542 2.2967 1.9777 0.2499 0.2491 0.2055 0.1594

0.929 0.927 0.947 0.953 0.942 0.938 0.951 0.947

(80,40) SC1 2.1799 2.1543 1.7983 1.4658 0.1954 0.1866 0.1536 0.1149

0.941 0.939 0.945 0.951 0.933 0.951 0.935 0.943

SC2 2.3657 2.3147 1.8576 1.5016 0.2145 0.2095 0.1736 0.1357

0.938 0.942 0.928 0.934 0.934 0.947 0.939 0.942

SC3 2.5643 2.4986 1.9654 1.6954 0.2364 0.2287 0.1896 0.1469

0.941 0.945 0.955 0.958 0.941 0.928 0.939 0.947

(80,50) SC1 1.8653 1.7965 1.5473 1.1369 0.1754 0.1698 0.1394 0.1009

0.946 0.947 0.939 0.948 0.939 0.947 0.943 0.951

SC2 1.9965 1.9877 1.6985 1.3012 0.1965 0.1894 0.1547 0.1237

0.938 0.939 0.941 0.944 0.942 0.941 0.939 0.951

SC3 2.1354 2.0584 1.7564 1.4583 0.2047 0.1999 0.1756 0.1366

0.946 0.949 0.951 0.947 0.947 0.939 0.951 0.948

addition, we plot both the empirical survival function (ESF) and the estimated survival functions in Figure 5 and we found
that the EGD fits the data very well.

Under the previous data, a progressively censored sample generated from the real data is sample of size m = 40 taken
from sample size n = 88 with censoring scheme R =(10, 7, 4, 5, 0, 4,5, 0, 3, 0, 0, 2, 0, 2, 0, 0, 1, 0,1, 0, 0, 1, 0, 1, 0, 0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). A progressively censored sample generated from the real data is:

0.04 0.301 0.309 0.557 0.943 1.07 1.124 1.248 1.281 1.281
1.303 1.432 1.48 1.505 1.506 1.568 1.615 1.619 1.652 1.652
1.757 1.795 1.866 1.876 1.899 1.911 2.085 2.097 2.135 2.964
3.000 3.103 3.114 3.117 4.035 4.121 4.167 4.24 4.255 4.694
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Table 6: ALs (first row) and PCs (second row) of 95% ACIs for h(t = 0.4).

(n,m) CSs MLE Bootstrap MCMC

ACI boot-p boot-t CRIs

(30,15) SC1 0.2314 0.2305 0.2147 0.1468

0.939 0.952 0.949 0.951

SC2 0.2468 0.2463 0.2236 0.1587

0.943 0.959 0.947 0.948

SC3 0.2631 0.2597 0.2314 0.1601

0.929 0.939 0.945 0.941

(30,20) SC1 0.1835 0.1792 0.1347 0.1125

0.951 0.940 0.942 0.952

SC2 0.1955 0.1893 0.1462 0.1301

0.929 0.939 0.953 0.961

SC3 0.2102 0.2107 0.1536 0.1399

0.947 0.951 0.948 0.949

(50,25) SC1 0.1534 0.1498 0.1026 0.0956

0.957 0.952 0.948 0.961

SC2 0.1674 0.1536 0.1235 0.1128

0.933 0.929 0.947 0.937

SC3 0.1801 0.1797 0.1401 0.1265

0.943 0.924 0.957 0.951

(50,35) SC1 0.1265 0.1199 0.0997 0.0821

0.953 0.947 0.954 0.956

SC2 0.1368 0.1294 0.1167 0.0999

0.946 0.941 0.933 0.942

SC3 0.1523 0.1475 0.1296 0.1102

0.947 0.951 0.939 0.938

(80,40) SC1 0.1058 0.1044 0.0814 0.0735

0.931 0.929 0.927 0.954

SC2 0.1167 0.1155 0.0934 0.0819

0.945 0.939 0.947 0.955

SC3 0.1310 0.1305 0.1099 0.0928

0.947 0.942 0.957 0.947

(80,50) SC1 0.0987 0.0976 0.0864 0.0699

0.951 0.941 0.928 0.960

SC2 0.1025 0.1011 0.0947 0.0754

0.937 0.939 0.951 0.942

SC3 0.1201 0.1189 0.1051 0.0835

0.946 0.937 0.947 0.953

We derive the point estimates (ML, BP, and BT) as well as the corresponding 95% ACIs of λ , β , θ , S(t) and h(t). The
results are showed in Table 9 and 10. The MCMC results of the posterior mean, median, mode, standard deviation (SD)
and skewness (Ske) of λ , β , θ , S(t) and h(t) are represented in Table 11.
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Table 7: Real life data of failure times of windsheild.

0.040 0.301 0.309 0.557 0.943 1.070 1.124 1.248 1.281 1.281 1.303

1.432 1.480 1.505 1.506 1.568 1.615 1.619 1.652 1.652 1.757 1.795

1.866 1.876 1.899 1.911 1.912 1.914 1.981 2.010 2.038 2.085 2.085

2.097 2.135 2.154 2.190 2.194 2.223 2.224 2.229 2.300 2.324 2.349

2.385 2.481 2.610 2.625 2.632 2.646 2.661 2.688 2.823 2.890 2.902

2.934 2.962 2.964 3.000 3.103 3.114 3.117 3.166 3.344 3.376 3.385

3.443 3.467 3.478 3.578 3.595 3.699 3.779 3.924 4.035 4.121 4.167

4.240 4.255 4.278 4.305 4.376 4.449 4.485 4.570 4.602 4.663 4.694

Table 8: The KS, p-value and estimates of the EGD’s parameters.

Distribution β̂ λ̂ θ̂ KS Statistics p-value

EGD 0.4855 0.0946 1.3577 0.0829 0.5809

Table 9: 95% Confidence intervals for parameters λ ,β ,θ ,S(t) and h(t).

Method λ β θ

ML {0.0235, 9.4821} {0.0091, 3.3219} {0.8295, 2.5807}
Boot-p {0.1598, 2.454} {0.0248, 0.7469} {0.9347, 1.9525}
Boot-t {0.1217, 2.401} {0.0285, 0.9643} {0.7798, 2.018}
MCMC {0.0834, 0.2388} {0.3974, 0.9522} {0.7599, 1.3326}

Method S(t) h(t)
ML {0.8907, 0.9971} {0.0828, 0.3545}

Boot-p {0.8837, 0.9788} {0.1056, 0.3898}
Boot-t {0.892, 0.9812} {0.0993, 0.3786}

MCMC {0.8002, 0.9855} {0.0543, 0.3142}

Table 10: ML, bootstrap and Bayes estimates

Parameter MLE Bootstrap Bayesian

BP BT SE

λ 0.4716 0.7912 0.7618 0.1506

β 0.1737 0.2163 0.2476 0.6462

θ 1.4631 1.4557 1.432 1.0213

S(t) 0.9439 0.94 0.9396 0.9269

h(t) 0.2186 0.2235 0.2222 0.1751

Table 11: MCMC results for λ , β , θ , S(t) and h(t).

Parameters Mean Median Mode SD Ske

λ 0.1506 0.1467 0.1389 0.0398 0.6028

β 0.6462 0.6418 0.6329 0.1408 0.3372

θ 1.0213 1.0179 1.0112 0.1444 0.2827

S(t) 0.9269 0.938 0.96 0.0503 -3.0475

h(t) 0.1751 0.1708 0.1621 0.0693 4.1016
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Fig. 5: The empirical and fitted survival functions for the real data.

7 Conclusion

In this study, we developed multiple techniques for estimating and constructing confidence intervals for parameters, the
hazard function, and the reliability function of the extended Gompertz distribution under progressively Type-II censored
samples. Maximum likelihood estimators are computed for the unknown parameters, and several confidence intervals are
proposed using asymptotic distributions and parametric bootstrap methods. Bayesian estimation methods are also
explored, revealing that explicit Bayes estimators are challenging to derive but can be obtained via numerical integration
methods like Markov chain Monte Carlo . Notably, informative priors significantly enhance the performance of Bayes
estimates in this context. Furthermore, balanced loss functions are employed for Bayes estimation. The theoretical
findings are exemplified through a numerical example, and a simulation study is conducted to evaluate and compare the
methodologies across various sample sizes (n,m) and censoring schemes (I, II, III). The findings show the following:

1.Tables 1, 2, and 3 show that as sample size increases, MSEs decrease, with Bayes estimates having the smallest MSEs
for λ ,β ,θ ,S(t) and h(t). As a result, Bayesian estimates outperform MLEs and bootstrap methods in all cases.

2.From Tables 1, 2, and 3. Bootstrap-t outperforms percentile bootstrap and MLEs, because bootstrap-t have the MSEs
smaller than MSEs in percentile bootstrap and MLEs for λ ,β ,θ ,S(t) and h(t).
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Fig. 6: Traceplots of λ ,β ,θ ,S(t) and h(t) obtained from MCMC.

3.For fixed values of the sample n and failure time sizes m, scheme I outperforms schemes II and III in terms of
smaller MSEs.

4.From Tables 4, 5, and 6. It can be noticed that the MCMC CRIs produce more accurate results than the approximate
CIs and bootstrap CIs since the lengths of the former are less than the lengths of the latter, for various sample sizes,
observed failures and schemes.

5.The bootstrap-t CIs is better than the percentile bootstrap CIs and ACIs regarding to have smaller widths.
6.From Table 9, we notice that:

(a)ML estimates have the widest confidence intervals, reflecting high uncertainty.
(b)Bootstrap methods (Boot-p, Boot-t) reduce variability, offering more stable estimates compared to ML.
(c)MCMC provides the narrowest intervals, suggesting Bayesian estimation is more confident and less variable.
(d)For S(t) and h(t), MCMC tends to be more conservative, allowing for lower survival probabilities and hazard rates.

7.From Table 10. It can be noticed that:

(a)MLE and Bootstrap estimates are relatively close, indicating good agreement.
(b)Bayesian estimates tend to be lower than the MLE and bootstrap estimates, particularly for λ , θ , and h(t).
(c)The Bayesian estimate for β is much higher, which may indicate sensitivity to prior assumptions.
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Fig. 7: Histograms of λ , β , θ , S(t) and h(t) obtained from MCMC.

8.Based on Table 11 and Figures 6 and 7, we can conclude the following:

(a)The parameters λ , β , and θ have nearly symmetric distributions, with slight positive skewness and low variability.
(b)S(t) is highly negatively skewed, meaning most estimates are high but with some much lower values.
(c)h(t) is highly positively skewed, meaning most estimates are low but with some much higher values.
(d)The standard deviation is small for all parameters, indicating stable estimates from the MCMC method.
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