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Abstract: The class of contingency 2×2 tables is an important tool for checking the association between two qualitative variables.

Among the several measures of association, the odds ratio is perhaps the most prominent due to its elegant mathematical properties.

A common Bayesian model for the odds ratio uses the Beta-Binomial model, which is conjugate, in the sense that the posterior

distribution is also a Beta distribution. Although the posterior inferences are exact, the Beta distribution could be replaced by other

distributions within the interval (0,1), such as the Kumaraswamy, which has been extensively used in the past few decades. However,

the Kumaraswamy-Binomial model is not conjugate, which would require the use of approximate methods. In this work, we show that

we can obtain the posterior inferences for the odds ratio in an exact form; that is, we provide explicit and computable forms for the

posterior distribution and its quantities. An application is provided comparing cancer screening tests.
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1 Introduction

The 2×2 contingency tables are important for assessing
the relationship between two categorical variables. To
quantify this association, there are several measures
available: the odds ratio, contingency coefficient, φ
coefficient, etc. However, the odds ratio is one of the most
important measures of association due to its friendly
mathematical properties. For instance, in logistic
regression, it is naturally derived from the regression
coefficients. In Bayesian analysis, the most commonly
used model for addressing 2×2 tables is the
Beta-Binomial model, primarily due to its conjugacy

property. That is, given a random sample from a Bernoulli
distribution with parameter θ , where θ ∼ Beta(a,b) (with
a,b as hyperparameters), the posterior distribution of θ is
also a Beta distribution, allowing posterior quantities to
be obtained in exact form. Due to this conjugacy, several
quantities can be derived. [1] provided the posterior
distribution of the risk ratio, [11] obtained the exact
posterior distribution of the odds ratio, and [2] provided
estimates for several measures of association.

While the Beta-Binomial model offers great
convenience, it comes with the limitation that only the
Beta distribution can be used. In cases where this

restriction is unsuitable, approximate methods such as
MCMC, Laplace approximation, and variational Bayes,
among others, must be employed. We should not be
constrained to a single family of distributions, as the prior
information should represent some relevant and genuine
knowledge about the parameter of interest. However, also
convenient, the use of exact posterior distributions can
make inferences much more straightforward, eliminating
the need for simulation algorithms.

An approach that seeks to combine the benefits of
exact computation with the flexibility of choosing a wide
range of prior distributions was proposed by [6]. They
used the theory of special functions to derive the exact
form of the posterior distribution of a scale parameter in
non-conjugate models. In other words, the posterior
distribution and its quantities (moments, predictions, etc.)
are explicitly written in a computable form. Their work
also considered more complex models involving location
and location-scale structures ([7,8]). Additionally, [4]
provided the exact form of all posterior quantities for the
Kumaraswamy-Binomial model, a non-conjugate model.
[9] provided exact inferences for the risk ratio of
2×2 contingency tables modeled as
Kumaraswamy-Binomial. In this work, we use the same
model to provide exact posterior inferences for the odds
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ratio. Note that this introduces additional complexity, as
the odds ratio is a ratio of the odds of the parameters,
whereas the odds themselves are, in general, probability
ratios involving one single parameter.

In Section 2, we provide some preliminary definitions
and results useful for the theory. In Section 3, the exact
posterior is presented. An illustrative example is given in
Section 4, where we compare the results with those
obtained by MCMC. A few general comments are made
in Section 5.

2 Preliminaries

Consider the Kumaraswamy–Binomial model
{

y1, ...,yn|θ ∼ Ber(θ ) iid

θ ∼ Kum(α,β ),

where 0 < θ < 1 is the parameter of interest, α,β are
hyperparameters and Kum(α,β ) stands for the

Kumaraswamydistribution p(θ ) = αβ θ α−1(1− θ α)β−1.
[4] gives an exact expression for the unnormalized

posterior moment of order r, given by

Iy(r) = αβΓ (β )Γ (n− y+ 1)×
∞

∑
h=0

(−1)hΓ (r+ y+α(h+ 1))

h!Γ (r+ n+α(h+ 1)+ 1)Γ(β − h)
, (1)

where α > 1 and y = ∑i yi.
An important integral is given by the following lemma.

Lemma 1.For δ ∈ R, 0 < t < 1 and α,γ,β > 0, the

following integral can be expressed in terms of infinity

series.

I =

∫ t

0

wα−1

(1+β wγ)δ+1
dw =

∞

∑
h=0

(δ + 1)h

h!

(−β )htα+γh

α + γh
,

(2)
where (δ + 1)h is the Pochhammer notation (δ + 1)h =
(δ + 1)(δ + 2) . . .(δ + h) = Γ (h+ δ + 1)/Γ (δ + 1).

Proof.Let θ =−β wγ , then

I =
1

γ

(

−1

β

)α/γ ∫ −β tγ

0
θ

α
γ −1 1

(1−θ )δ+1
dθ ,

applying the Binomial Theorem, we have that

(1− θ )−(δ+1) = ∑∞
h=0 θ h(δ + 1)h/h!. The result follows

by solving the integral and simplifying the terms.

3 Posterior distribution of the odds ratio

In general, the basic structure of a 2×2 table considers an
experiment where n1 and n2 subjects are randomly
allocated into the groups 1 and 2, say treatment 1 and 2,
the responses to the treatments are marked as
“Success/Failure” (1/0), thus we have

Group Response
1 0

Treat. 1 θ1 1−θ1

Treat. 2 θ2 1−θ2

which is modeled as











x1, . . . ,xn1
|θ1 ∼ Ber(θ1) iid

y1, . . . ,yn2
|θ2 ∼ Ber(θ2) iid

θ j ∼ Kum(α j,β j), j = 1,2

. (3)

Considering the probabilities of success within each
group are P(Xi = 1|θ1) = θ1 (i = 1, · · · ,n1) and
P(Yj = 1|θ2) = θ2 ( j = 1, · · · ,n2), we model the table
above as (3). Note that (Xi,X j) are independent, hence
(θ1,θ2) as well. Also, α j,β j are hyperparameters for the
Kumaraswamydistribution

p j(θ j) = α jβ jθ
α j−1(1− θ α j )β j−1 ( j = 1,2). The kernel

of the posterior distribution is given by

p(θ1,θ2|x,y) ∝ L(θ1,θ2)p1(θ1)p2(θ2)

∝ θ x
1 (1−θ1)

n1−x p1(θ1)×

×θ y
2(1−θ2)

n2−y p2(θ2), (4)

where x = ∑i xi, y = ∑i yi and L(θ1,θ2) is the likelihood
function. Note that the marginal posterior distributions
will not be in the Kumaraswamyfamily, as the likelihood
and prior distribution will not combine their kernels. The
odds ratio is defined as ψ = θ1(1− θ2)/θ2(1− θ1), thus
the posterior inferences of the odds ratio should be based
on the posterior distribution (4).

As shown by [9], the unnormalized moment of order r

and s can be used to obtain the normalizing constant, that
is

Ix,y(r,s) =

∫ 1

0

∫ 1

0
θ r

1θ s
2 p(θ1,θ2|x,y)dθ1dθ2

=

∫ 1

0
θ x+r

1 (1−θ1)
n1−x p1(θ1)dθ1×

∫ 1

0
θ y+s

2 (1−θ2)
n2−y p2(θ2)dθ2 =: Ix(r)Iy(s),

where Ix(r) and Iy(s) are given by (1), replacing α and β
by α j, and β j ( j = 1,2), respectively. As a consequence,
the posterior normalizing constant is
Ix,y(0,0) = Ix(0)Iy(0), hence the exact posterior
distribution is obtained dividing (4) by Ix,y(0,0),

p(θ1,θ2|x,y) =
α1β1α2β2

Ix(0)Iy(0)

n1−x

∑
j=0

n2−y

∑
ℓ=0

(

n1 − x

j

)(

n2 − y

ℓ

)

×

× (−1) j+ℓθ x+α1+ j−1
1 θ y+α2+ℓ−1

2 ×

× (1−θ α1
1 )β1−1(1−θ α2

2 )β2−1. (5)

Note that for the convenience of simplifying the
forthcoming integrals, we wrote the joint posterior
distribution in terms of the binomial theorem.
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Before obtaining the posterior distribution of ψ , we
firstly obtain the joint distributions of the odds
ti = θi/(1−θi) (i = 1,2). This is straightforward by using
the Jacobian theorem in (5), thus

p(t1, t2|x,y) =
α1β1α2β2

Ix(0)Iy(0)

n1−x

∑
j=0

n2−y

∑
ℓ=0

(

n1 − x

j

)(

n2 − y

ℓ

)

×

× (−1) j+ℓ

(

t1

1+ t1

)x+α1+ j−1
1

(1+ t1)2
×

×

(

1−

(

t1

1+ t1

)α1
)β1−1(

t2

1+ t2

)y+α2+ℓ−1

×

×
1

(1+ t2)2

(

1−

(

t2

1+ t2

)α2
)β2−1

=: p(t1|x)p(t2|y). (6)

It follows that the odds ratio is given by ψ = t1/t2. As a
consequence, we obtain the following posterior quantities.

Theorem 1(Cumulative posterior distribution of the
odds ratio). Let ψ = t1/t2 be the odds ratio. Considering

(6), the cumulative posterior distribution of ψ is given by

(i) For 0 < ψ0 < 1:

P(ψ < ψ0|x,y) = k⋆p

n1−x

∑
j=0

n2−y

∑
ℓ=0

∞

∑
h=0

∞

∑
u=0

∞

∑
v=0

(

n1 − x

j

)

×

×

(

n2 − y

ℓ

)

ψx+α1+ j+α1h
0

(x+α1 + j+α1h)
×

× (1−ψ0)
v2−η1

(β1 − 1)h(β2 − 1)u

h!v!u!η1

×

× (x+α1 + j+α1h)v, (7)

where k⋆p =
α1β1α2β2

Ix(0)Iy(0)
and η1 = x+α1+ j+α1h+y+α2+

ℓ+α2u+ v.

(ii) for ψ0 > 1:

P(ψ < ψ0|x,y) = 1− k⋆p

n1−x

∑
j=0

n2−y

∑
ℓ=0

∞

∑
h=0

∞

∑
u=0

∞

∑
v=0

(

n1 − x

j

)

×

×

(

n2 − y

ℓ

)

ψ
−(y+α2+ℓ+α2h+v)
0 ×

×
(β2 − 1)h(β1 − 1)u

h!u!v!(y+α2+ ℓ+α2h)
×

×
(ψ0 − 1)v2η2(y+α2 + ℓ+α2h)v

η2

, (8)

where k⋆p =
α1β1α2β2

Ix(0)Iy(0)
and η2 = y+α2+ ℓ+α2h+x+α1+

j+α1u+ v.

Proof.(i) For 0 < ψ0 < 1: Let ψ = t1/t2 and t2 = t2, using
(6),

P(ψ < ψ0|x,y) = P(t1 < ψ0t2|x,y) =

∫ 1

0
p(t2|x)×

×
∫ ψ0t2

0
p(t1|y)dt1dt2. (9)

Considering the integral in t1, let w = t1/(1+ t1), then

A(t2) =

∫ ψ0t2/(1+ψ0t2)

0
wx+α1+ j−1(1−wα1 )β1−1dw

=
∞

∑
h=0

(β1 −1)h

h!

ψx+α1+ j+α1h

(x+α1 + j+α1h)

[

t2

1+ψ0t2

]x+α1+ j+α1h

,

the latest identity used the binomial theorem for expanding

(1−wα1)β1−1 = ∑∞
h=0(β1 − 1)hwα1h/h!.

Thus, replacing A(t2) in (9) and considering the
integral in t2, we have

B =
∫ 1

0

[

t2

1+ψ0t2

]x+α1+ j+α1h(
t2

1+ t2

)y+α2+ℓ−1

×

×
1

(1+ t2)2

(

1−

(

t2

1+ t2

)α2
)β2−1

dt2

=

∫ 1/2

0

wx+α1+ j+α1h+y+α2+ℓ−1(1−wα2)β2−1

(1− (1−ψ0)w)x+α1+ j+α1h
dw

=
∞

∑
u=0

∞

∑
v=0

(β2 − 1)u

u!

(x+α1 + j+α1h)v

v!
(1−ψ0)

v 2−η

η

The second identity follows by letting w = t2/(1 + t2),

then we expand (1−wα2)β2−1 = ∑∞
u=0(β1 − 1)uwα2u/u!,

and finally, we use (2).

(ii) For ψ0 > 1: Note that P(ψ < ψ0|x,y) = 1− P(ψ >
1/ψ1|x,y), where ψ1 = 1/ψ0, hence 0 < ψ1 < 1, then we
consider

P(ψ > 1/ψ1|x,y) = P(t2 < ψ1t1|x,y) =

∫ 1

0
p(t2|y)×

×

∫ ψ1t1

0
p(t1|x)dt2dt1. (10)

The result follows by the same strategy as before, that is,
replacing ψ1 = 1/ψ0 and using
P(ψ < ψ0|x,y) = 1−P(ψ > ψ0|x,y).

Corollary 1(Posterior density of the odds ratio).
Considering Theorem 1, the posterior distribution of the

odds ratio is given by

(i) For 0 < ψ < 1:

p(ψ |x,y) = k⋆p

n1−x

∑
j=0

n2−y

∑
ℓ=0

∞

∑
h=0

∞

∑
u=0

∞

∑
v=0

(

n1 − x

j

)(

n2 − y

ℓ

)

×

×
(−1) j+ℓ

(x+α1 + j+α1h)
×

×
[

(x+α1 + j+α1h)(ψ − 1)v ψx+α1+ j+α1h−1+

+ψx+α1+ j+α1hv(1−ψ)v−1
]

×

×
(β1 − 1)h(β2 − 1)u(x+α1 + j+α1h)v2−η1

h!v!u!η1(x+α1 + j+α1h+ v)
,
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where k⋆p =
α1β1α2β2

Ix(0)Iy(0)
and η1 = x+α1+ j+α1h+y+α2+

ℓ+α2u+ v.

(ii) For ψ > 1:

p(ψ |x,y) = k⋆p

n1−x

∑
j=0

n2−y

∑
ℓ=0

∞

∑
h=0

∞

∑
u=0

∞

∑
v=0

(

n1 − x

j

)(

n2 − y

ℓ

)

×

× (−1) j+ℓ×

× [(y+α2 + ℓ+α2h+ v)(1−ψ)v×

×ψy+α2+ℓ+α2h+v−1+

+ψ−(y+α2+ℓ+α2h+v) (1−ψ)v−1
v
]

×

×
(−β2 + 1)h(−β1 + 1)u

h!u!v!(y+α2+ ℓ+α2h)
×

×
2η2(y+α2 + ℓ+α2h)v

η2

. (11)

where k⋆p =
α1β1α2β2

Ix(0)Iy(0)
and η2 = y+α2+ ℓ+α2h+x+α1+

j+α1u+ v.

Proof.Straightforward by differentiating the (7) and (8)
with respect to ψ0.

Corollary 2(Posterior moments of the odds ratio).
Considering Corollary (1), the posterior moment of order

r ∈ Z of ψ is given by

E[ψr|x,y] = k⋆p

n1−x

∑
j=0

n2−y

∑
ℓ=0

∞

∑
h=0

∞

∑
u=0

∞

∑
v=0

[

A jℓhuv

(x+α1 + j+α1h)
+

+
B jℓhuv

(y+α2 + ℓ+α2h)

]

,

(12)

where

A jℓhuv =

(

n1 − x

j

)(

n2 − y

ℓ

)

(−1) j+ℓ2−η1×

×
(β1 − 1)h(β2 − 1)u(x+α1 + j+α1h)v

h!v!u!η1

×

×

[

1

r
−

Γ (x+α1 + j+α1h+ 1)Γ (v+ 1)

Γ (x+α1 + j+α1h+ v+ 2)

]

,

B jℓhuv =

(

n1 − x

j

)(

n2 − y

ℓ

)

(−1) j+ℓ2η2×

×
(β2 − 1)h(β1 − 1)u(y+α2 + ℓ+α2h)v

h!u!v!η2

×

×
Γ (y+α2 + ℓ+α2h+ r− 2)Γ (v+ 1)

Γ (y+α2 + ℓ+α2h+ r+ v− 1)
,

k⋆p =
α1β1α2β2

Ix(0)Iy(0)
, η1 = x+α1+ j+α1h+y+α2+ℓ+α2u+v,

and η2 = y+α2 + ℓ+α2h+ x+α1+ j+α1u+ v.

Proof.Letting F1(ψ) be (7) and F2(ψ) be (8), it follows that

E[ψr|x,y] =

∫ 1

0
ψr−1(1−F1(ψ))dψ+

+

∫ ∞

1
ψr−1(1−F2(ψ))dψ ,

the result follows by nothing that the first integral is a
particular case of the integral of a Beta distribution, as
well as the second integral after transforming, say
ξ = 1/ψ .

4 Application

As an illustration of the theory, we consider a study given
by [3], about the Diagnosis of 187 Suspected Tumors by
2D Mammography and 3D Tomosynthesis. In the study
the objective is to compare the rate of diagnostic of the
two exams, that is, are the two screening tests similar with

respect to the diagnosis?. The data are summarized in the
following 2×2 contingency table, we also provide a table
with the respective probabilities.

Mammography Tomosynthesis
Benign Malignant

Benign 54 68
Malignant 14 51

which gives the structure

Mammography Tomosynthesis
Benign Malignant

Benign θ1 1−θ1

Malignant θ2 1−θ2

Here θ1 = P(Response = Yes|“Benign”) and
θ2 = P(Response = Yes|“Malignant”) are the parameters
that will be used to estimate the odds ratio. We apply
Model (3), noting that n1 = 122, x = 54, n2 = 65 and
y = 14.

It follows that the unnormalized marginal posterior
moment of order r of θi (i = 1,2) is given by (1). We
assigned the same (flat) prior distribution
θi ∼ Kum(α = 1.1,β = 1.1) (i = 1,2). We compared the
results with those obtained by MCMC through the
R2OpenBugs R package, which took some efforts to
achieve convergence, due to highly correlated Markov
chains. To overcome this difficulty, we simulated 10
independent chains of 30,000 length, discarding the first
20,000 samples, then discarding 50 values between cycles
in every chain.

The exact posterior quantities can be obtained through
the Maplesoft software (see the code in Appendix A).
The expectation and variance of the odds ratio are given
by (12) with r = 1 and r = 2, the summations provided a
good precision with 100, this took about 2 minutes; and
the cumulative distribution (given by (8)) took a little than
4 minutes to sum up 10 terms. Note that the way the sum
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Fig. 1: Exact and approximated posterior density of the
odds ratio ψ .

were made can be improved by some different language
and computational algorithm. A 95% credible interval is
obtained by searching for values (ψL,ψU) such that P(ψ <
ψL|x) = 0.025 P(ψ > ψU |x) = 0.025, the search for these
values took more than 40 minutes, however the codes for
computing the sums could me improved.

In Table 1, note that the these estimates are close to
their respective estimates obtained from the MCMC
method. Notice that the Mammography test gives
ψ̂ = 2.982 times more benign results than the
Tomosynthesis test. In addition, Figure 1 shows the
closeness of the posterior densities from the exact and
from the MCMC methods, the values ψ < 1 were not
present in the simulation due to very low probability in
this interval.

Table 1: Comparison of the exact posterior estimates with
their equivalent obtained by MCMC

Posterior Estimates

Quantity MCMC Exact

E[ψ|x,y] 2.9820 2.9332

Var[ψ|x,y] 1.1578 0.8875

P(ψ ≤ 2.0|x,y) 0.1486 0.1507

95% CI (ψL,ψU ) (1.434, 5.665) (1.29,5.3)

Further inference could involve hypothesis testing,
although this type of inference is not commonly used in
practical Bayesian analysis. However, one can use the
posterior CDF to compute probabilities in the context of
hypothesis testing. In general, we compare two
hypotheses, say H0 : ψ ∈ Ψ1 versus H1 : ψ ∈ Ψ2, where
Ψ1 ∩Ψ2 = /0. We then compare either the probabilities
P(H0|x) and P(H1|x), or the posterior expected loss of

some suitable loss function. See [10] for details on how to
apply hypothesis testing for decision support.

5 Concluding remarks

The most used measures of association for 2 × 2
contingency tables are the risk ratio and the odds ratio.
Considering the Kumaraswamy-Binomial model, [9]
provide exact inferences for the risk ratio, now
complemented by exact inferences for the odds ratio. This
is noteworthy, as the odds ratio is often preferred by
analysts due to its favorable mathematical properties.

The Beta and Kumaraswamydistributions are good
alternatives for modeling variables within the (0,1)
interval. Both allow a wide range of shapes, which is
essential when incorporating prior information, as the
prior distribution should reflect genuine, relevant prior
knowledge, making flexible distributions preferable. The
Kumaraswamydistribution, however, has advantageous
mathematical properties, as key quantities like the
cumulative distribution function (CDF) and moments are
analytically tractable. [11] provide exact inferences for
the odds ratio in a Beta-Binomial model, which relies on
generalized hypergeometric functions (see [12]). The
Beta-Binomial model is relatively simpler (due to
conjugacy) compared to the Kumaraswamy-Binomial
model. In this work, we address a more complex structure
without conjugacy, yet exact inferences are still obtained.

Future work will focus on improving the
computational algorithms for summing up the series, as
thedeveloping exact models for the odds ratio, extending
the methodology to broader classes of distributions, such
as the unit-gamma and triangular distributions. These
more complex models are expected to also enable exact
inferences.
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A Computer code

Digits := 50: # number of precision digits:

# Data:

n1 := 122;

x := 54;

n2 := 65;

y := 14;

# Prior hyperparameters:

alpha1 := 1.1;

beta1 := 1.1;

alpha2 := 1.1;

beta2 := 1.1;

# Unnormalized moments:

Ir := (r, z, n, alpha, beta, upto) ->

alpha*beta*GAMMA(beta)*GAMMA(n - z + 1)*
sum(GAMMA(r + z + alpha*(h + 1))*(-1)ˆh/

(h!*GAMMA(r + n + alpha*(h + 1) + 1)*
GAMMA(beta - h)), h = 0 .. upto);

Ix0 := evalf(Ir(0, x, n1, alpha1, beta1, 100));

Iy0 := evalf(Ir(0, y, n2, alpha1, beta1, 100));

kp_st := alpha1*beta1*alpha2*beta2/(Ix0*Iy0);

# Cumulative posteriori distribution:

## For rho<1:

Sigma1 := (j, l, psi0) -> Sum(Sum(Sum(

psi0ˆ(x + alpha1 + j + alpha1*h)*
pochhammer(beta1 - 1, h)*
pochhammer(beta2 - 1, u)*
pochhammer(x + alpha1 + j + alpha1*h, v)*
(1 - psi0)ˆv*2ˆ(-x - alpha1 - j - alpha1*
h - y - alpha2 - l - alpha2*u - v)/(h!*
(x + alpha1 + j + alpha1*h)*u!*v!*
(x + alpha1 + j + alpha1*h + y + alpha2 + l

+ alpha2*u + v))

, u = 0 .. 10), h = 0 .. 10), v = 0 .. 10):

F1 := psi0 -> kp_st*Sum(binomial(n1 - x, j)

*Sum(binomial(n2 - y, l)*(-1)ˆ(j+l)*
Sigma1(j, l, psi0), l = 0 .. n2 - y),

j = 0 .. n1 - x):

## for rho>1:

Sigma2 := (j, l, psi0) -> Sum(Sum(Sum(

psi0ˆ(-y - alpha2 - l - alpha2*h - v)*
pochhammer(beta2 - 1, h)*pochhammer(

beta1 - 1, u)*pochhammer(y + alpha2 + l

+ alpha2*h, v)*2ˆ(-y - alpha2 - l -

alpha2*h - x - alpha1 - j - alpha1*u - v)

*(psi0 - 1)ˆv/(h!*(y + alpha2 + l +

alpha2*h)*u!*v!*(y + alpha2 + l + alpha2*h +

x + alpha1 + j + alpha1*u + v)),
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u = 0 .. 10), h = 0 .. 10), v = 0 .. 10):

F2 := psi0 -> 1 - kp_st*Sum(binomial(n1 - x, j)*
Sum(binomial(n2 - y, l)*(-1)ˆ(j+l)*
Sigma2(j, l, psi0), l = 0 .. n2 - y),

j = 0 .. n1 - x)

## Odds Ratios posterior moments:

A := (alpha1, beta1, alpha2, beta2, h, j, l)

-> beta1*alpha1*beta2*GAMMA(beta2)*
binomial(n1 - x, j)*binomial(n2 - y, l)*
(-1)ˆ(j + l)*GAMMA(1 - beta1 + h)*
GAMMA((y + l + x + j + alpha1 + alpha2

+ alpha2*h)/alpha2)/(Ix0*Iy0*GAMMA(1 - beta1)*
h!*GAMMA((y + l + x + j + alpha1 +

alpha2 + alpha2*beta2 + alpha1*h)/alpha2)):

B := (alpha1, beta1, alpha2, beta2, h, j, l)

-> alpha2*beta1*beta2*GAMMA(beta1)*
binomial(n1 - x, j)*binomial(n2 - y, l)

*(-1)ˆ(j + l)*GAMMA(1 - beta2 + h)*
GAMMA((y + l + x + j + alpha2 + alpha1

+ alpha2*h)/alpha1)/(Ix0*Iy0*
GAMMA(1 - beta2)*h!*GAMMA((y + l + x + j

+ alpha1 + alpha2 + beta1*
alpha1 + alpha2*h)/alpha1)):

# this gives the moments of order r,

# "upto" is the number of summations

# terms we want to sum:

mom := (r, alpha1, beta1, alpha2, beta2, upto)

-> sum(sum(sum(A(alpha1, beta1,

alpha2, beta2, h, j, l)/(x + j + alpha1*
h + r + alpha1) + B(alpha1, beta1, alpha2,

beta2, h, j, l)/(y + l + alpha2*r - r + alpha2)

, h = 0 .. upto), j = 0 .. n1 - x),

l = 0 .. n2 - y):
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