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Abstract: In this paper, we propose efficient Bayesian methods to analyze longitudinal ordinal data with missing values using

multivariate probit models. Longitudinal ordinal data with substantial missing values are ubiquitous in many scientific fields.

Specifically, we develop the Markov chain Monte Carlo (MCMC) sampling methods based on the non-identifiable multivariate probit

models and further compare their performance with the one based on the identifiable multivariate probit models. We carried out our

investigation through simulation studies, which show that the proposed methods can handle substantial missing values and the method

with marginalizing the redundant parameters based on the non-identifiable model outperforms the others in the mixing and

convergences of the MCMC sampling components. We then present an application using data from the Russia Longitudinal

Monitoring Survey-Higher School of Economics (RLMS-HSE).
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1 Introduction

Longitudinal ordinal data are commonly served as primary or secondary outcome measures in many scientific fields,
such as anesthesiology, psychology, and various survey studies. However, considerable missing values are inevitable. For
example, in the Russia Longitudinal Monitoring Survey of the National Research University Higher School of Economics
(RLMS-HSE) [1] targeting the aspects related to job satisfaction, the main outcomes are longitudinal ordinal variables
with substantial dropout rates.

The random effects models have been widely employed to analyze longitudinal ordinal data, e.g., the mixed effect
models [2,3,4,5] and the multilevel models [6,7]. In contrast with the random effect models, the generalized estimating
equations (GEE) approach [8], being a marginal model, is generally implemented for various data structures, including
longitudinal ordinal data [9,10,11,12,13,14].

With the seminal work by Gelfand and Smith [15] for Gibbs sampling and the maturation of Markov chains theory
[16,17,18,19], the MCMC methods have become a general computation tool in Bayesian inference. The MCMC methods
have been developed for analyzing longitudinal ordinal data using random-effects models [20,21,22].

Following Ashford and Sowden [23], the multivariate probit models have been popularly utilized to develop MCMC
methods to analyze multivariate binary and ordinal data [24,25,26,27,28,29]. The multivariate probit models assume
that there is a multivariate normal variable underlying each multivariate binary or ordinal variable. However, the
identifiable multivariate probit models necessitate the covariance matrix for the underlying multivariate normal variable
to be a correlation matrix, which is usually sampled by a rigorous Metropolis-Hastings (MH) algorithm other than a
Gibbs sampler. Therefore, this restriction brings in complication to develop an efficient MCMC method.

Due to the ubiquitousness of missing data, it is a critical issue to develop a statistical method that can handle missing
values. Rubin [30] introduced the concept of missing data mechanisms, which can be categorized as missing completely at
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random (MCAR), missing at random (MAR), and missing not at random (MNAR). The MCAR means the missingness is
irrelevant to the variables included in the model; the MAR means the missingness is relevant to the observed values of the
variables included in the model; and the MNAR means the missingness is relevant to the unobserved values of the variables
included in the model. If the missingness is MCAR or MAR, and the parameters of the model and those of describing the
conditional distribution of the missingness given data are distinct, i.e., they have independent prior distributions, then the
missing mechanism is called ignorable. Under the assumption of ignorability, the statistical inference can be solely based
on the observed quantities. However, without ignorability, the statistical inference must take account of the unobserved
values, and the estimation can be sensitive to the assumption of the non-ignorable model, for which the data contains no
information [31,32,33].

Both the ignorable and nonignorable missing data mechanisms have been explored in longitudinal ordinal data.
Molenberghs et al. [34] investigated the nonignorable missingness using random effect models while Kaciroti et al. [35]
from a Bayesian perspective. Rana et al. [36] considered nonignorability using Monte Carlo expectation–maximization
(MCEM). GEE methods have been popularly explored for ignorable missingness, such as Silva et al. [37] and Ditlhong
et al. [38]. Bayesian methods have also been developed for ignorable missingness. Schafer [39] proposed a multiple
imputation method using expectation–maximization (EM) and data augmentation by assuming the multivariate ordinal
data follows a multivariate normal distribution; however, the normality assumption may bring undesired biases for
estimated quantities. Zhang et al. [40] proposed an MCMC sampling method to conduct multiple imputation using the
identifiable multivariate probit models, which entails an MH algorithm for sampling a correlation matrix and causes slow
convergence.

In this article, we develop MCMC methods to analyze longitudinal ordinal data with missing values based on the
non-identifiable multivariate probit models, which can circumvent a rigorous MH sampling for the correlation matrix by a
Gibbs sampling for the covariance matrix and therefore improve the mixing and convergence of the MCMC components.
We assume the ignorable missing data mechanism, which is the basis for multiple imputation [39,41,42,43,44] and can
provide useful information for possible analyses based on nonignorable missing data mechanisms [31,45].

The remainder of the article is organized as follows. In Section 2, we present the identifiable multivariate probit
model and propose a non-identifiable multivariate probit model for longitudinal ordinal data. We then develop the MCMC
sampling algorithms for longitudinal ordinal data with missing values in Section 3. We conduct simulation studies in
Section 4 and illustrate our methods using the RLMS-HSE study in Section 5. Then we provide a discussion in Section 6.

2 Multivariate probit models for longitudinal ordinal data

Let Yi be a univariate ordinal data with J categories for individual i for i = 1, · · · ,n. Then the univariate probit model
assumes that there is an underlying univariate normal variable Zi following N(Xiβ , σ2) with Xi being the covariate
matrix, β being the regression parameter vector, and σ2 being the variance of Zi. The relationship between Yi and Zi is
defined by:

Yi = l ⇔ γl−1 < Zi ≤ γl for l = 1, · · · ,J, (1)

where γ j = (γ0,γ1, · · · ,γJ) are the unknown cutpoints with γ0 =−∞ and γJ = ∞. In other words, this means:

P(Yi = l) = P(γl−1 < Zi ≤ γl) = P

(

γl−1 −Xiβ√
σ2

<
Zi −Xiβ√

σ2
≤ γl −Xiβ√

σ2

)

. (2)

It is noticeable that the model is non-identifiable due to γ j = (γ0,γ1, · · · ,γJ), β , and σ2 being unknown parameters.

The identifiable probit model usually sets γ1 = 0 and σ2 = 1 [46].

Now we extend the univariate probit model to a multivariate probit model by assuming each individual i for i= 1, · · · ,n
has a k×1 ordinal outcome vector Yi = {(Yi1, · · · ,Yik)}T and a k× p covariate matrix Xi = {(Xi1, · · · ,Xik)}T . Each Yi j has

J j ordinal categories for i = 1, · · · ,n and j = 1, · · · ,k. And Zi = {(Zi1, · · · ,Zik)}T is assumed to be the underlying latent
multivariate normal variable with:

Zi ∼ Nk(Xiβ , Σ),

where Xi is the covariate matrix, β is the regression parameter vector, and Σ is the covariance matrix. Then the
relationship between Yi and Zi is defined by:

Yi j = l ⇔ γ j,l−1 < Zi j ≤ γ j,l , for l = 1, · · · ,J j, (3)
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where γ j = (γ j,0,γ j,1, · · · ,γ j,J j
) are the unknown cutpoints with γ j,0 =−∞ and γJ j

= ∞. Specifically,

P(Yi j = l) = P
(

γ j,l−1 < Zi j ≤ γ j,l

)

= P

(

γ j,l−1 −XT
i j β√

σ j j

<
Zi j −XT

i j β√
σ j j

≤
γ j,l −XT

i j β√
σ j j

)

. (4)

Just as in the univariate probit model, the unknown parameters γ j = (γ j,0,γ j,1, · · · ,γ j,J j
), β , and Σ make the model

unidentifiable. The identifiable model sets γ j,1 = 0 and σ j j = 1 for j = 1, · · · ,k. This implies that the covariance matrix
Σ is in fact a correlation matrix [24]. However, sampling a correlation matrix instead of a covariance matrix usually
entails a rigorous MH algorithm, which hinders the development of an efficient MCMC sampling method to analyze the
multivariate probit model [24,25,26,27].

Comparing the identifiable models, the non-identifiable models usually make the MCMC sampling components
converge faster than the identifiable models [47]. Based on the non-identifiable models, Liu and Wu [48] proved that the
convergence of the MCMC sampler, called parameter-expanded data augmentation, is no slower than the original
MCMC sampler under mild conditions. Therefore, we propose a non-identifiable multivariate probit model to circumvent
an MH sampling for the correlation matrix and to improve the convergence of the MCMC sampling components.

The identifiable multivariate probit model assumes the latent multivariate normal variable:

Zi ∼ Nk(Xiβ , R),

where R is a correlation matrix. To make the identifiable model non-identifiable, we assume:

Zi ∼ Nk(D
−1/2Xiβ , R),

where D is the diagonal matrix with the diagonal elements being σ11, σ22, · · · ,σkk, and σ j j > 0 for j = 1, · · · ,k. As

can be seen, D makes the model unidentifiable. Let Wi = D1/2Zi, and it is evident that:

Wi ∼ Nk(Xiβ , D1/2RD1/2),

i.e.,

Wi ∼ Nk(Xiβ , Σ),

with Σ = D1/2RD1/2. Then we can define the multivariate probit model for longitudinal ordinal data based on Wi by:

Yi j = l ⇔ ζ j,l−1 <Wi j ≤ ζ j,l ,

for j = 1, · · · ,k and l = 1, · · · ,J j with ζ j,0 =−∞, ζ j,1 = 0, and ζJ j
= ∞. Equivalently,

P(Yi j = l) = P
(

ζ j,l−1 <Wi j ≤ ζ j,l

)

= P

(

ζ j,l−1 −XT
i j β√

σ j j

<
Wi j −XT

i j β√
σ j j

≤
ζ j,l −XT

i j β√
σ j j

)

. (5)

In the following section, we develop the MCMC sampling algorithms based on this non-identifiable model
comprehensively.

3 MCMC sampling algorithms for longitudinal ordinal data with missing values

Continuing with the notations in Section 2, we extend the ordinal outcome Yi = {(Yi1, · · · ,Yik)}T to have missing values
and use Yiobs to indicate the observed values and Yimiss the missing values for individual i. Then we can rewrite:

Yi = {(Yi1, · · · ,Yik)}T = {(Yi,obs,Yi,mis)}T .

Correspondingly, we can write:

Wi = {(Wi1, · · · ,Wik)}T = {(Wi,obs,Wi,mis)}T ,

where Wi,obs indicates the latent variables underlying Yi,obs and Wi,mis underlying Yi,mis. We assume that the priors of β ,ζ ,Σ
are independent, i.e.,

P(β ,ζ ,Σ) = P(β )×P(ζ )×P(Σ).
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Moreover, we assume the missing mechanism is ignorable, implying Bayesian inferences can be based on the observed
quantities, i.e., Yobs = {(Y1,obs, · · · ,Yk,obs)}T [30,31]. Therefore, we derive the joint posterior density of β ,ζ ,Σ and W

given Yobs as follows:

P(β ,ζ ,Σ ,W |Yobs) ∝

(

n

∏
i=1

Ii

)

×P(β )×P(ζ )×P(Σ)×|Σ |− n
2 × exp

[

−1

2

n

∑
i=1

(Wi −Xiβ )
T Σ−1(Wi −Xiβ )

]

, (6)

where Ii = ∏k
j=1 Ii j, and

Ii j =
J j

∑
t=1

1(Yi j ,obs=t)1(ζ j(t−1)<Wi j,obs≤ζ jt ),

indicating compatibility of the latent variable Wi j,obs ∈Wi,obs with the observed ordinal variable Yi j,obs ∈ Yi,obs.

MCMC Sampling Steps:

Step 3.1: Sampling β |Σ ,W,Yobs ∼ Nk(β̂ ,Vβ ), where:

Vβ =

(

n

∑
i=1

XT
i Σ−1Xi +C−1

)−1

,

β̂ =Vβ

(

n

∑
i=1

XT
i Σ−1Zi +C−1b

)

,

assuming the prior of β follows Np(b,C).

Step 3.2: Sampling Wi j|β ,ζ ,Σ ,Yobs,Wik,k 6= j, which has two cases: 1. If Yi j ∈ Yi,obs, then Wi j is sampled from a
truncated normal distribution constrained between cut-points ζ j,l−1 and ζ j,l . 2. If Yi j ∈ Yi,mis, then Wi j is sampled from an
univariate normal distribution without truncation.

Step 3.3: Sampling ζ j,l |β ,Σ ,W,Yobs,ζ j,k,k 6= l from a uniform distribution:

U(ζ j,l |max{max[Wi j : Yi j = l],ζ j,l−1},min{min[Wi j : Yi j = l + 1],ζ j,l+1}),

assuming a non-informative prior for ζ j,l .

Step 3.4: Sampling Σ |β ,ζ ,W,Yobs from an inverse-Wishart distribution:

Inverse-Wishartk

(

n

∑
i=1

(Wi −Xiβ )(Wi −Xiβ )
T +V,n+m+ k+ 1

)

,

assuming a conjugate prior P(Σ)∼ Inverse-Wishartk(V,m).

We term this sampling algorithm as the parameter-expanded Gibbs sampling (PX-GS) algorithm. Furthermore, we
introduce a refinement, the parameter-expanded Gibbs sampling with marginalization (PX-GSM) algorithm, to improve
MCMC efficiency by jointly sampling redundant parameters and latent variables [48]. Specifically, joint sampling
Wi j,D|β ,ζ ,R,Yobs,Wik,k 6= j, and then joint sampling β ,ζ ,R,D|W,Yobs. With D being in both sampling steps, the
redundant parameters in D are marginalized.

4 Simulation studies

To investigate the proposed PX-GS and PX-GSM algorithms (in Section 3) based on the non-identifiable multivariate
probit model (in Section 2) for longitudinal ordinal data with missing values, we conduct simulation studies based on the
RLMS-HSE study [1] and compare them with the PX-MH algorithm based on the identifiable multivariate probit model,
which entails a Metropolis-Hastings (MH) algorithm for sampling the correlation matrix [26,40].
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In this investigation, we concentrate on the longitudinal ordinal outcome—job satisfaction with primary employment
from 2010 to 2016 in the RLMS-HSE study. The job satisfaction variable is 4-categorical ordinal data with higher values
indicating stronger satisfaction. The considered covariates are gender, marital status, education, and age. We choose
individuals who have complete records in 2010 and 2011 for job satisfaction and the covariates, obtaining a total of 7337
individuals. The covariates Xi for each individual i are sampled from these 7337 individuals.

Based on Section 5.2, we set the regression parameters:

βββ = (β0,β1,β2,β3,β4)
T = (0.9,−0.044,0.075,0.252,0.0038)T,

the cut-points:
ζζζ = (−∞,0,0.72,2.2,∞),

for each of the 7-dimensional ordinal outcomes with four categories, and the correlation matrix R as follows:

R =



















1.00 0.47 0.41 0.34 0.30 0.39 0.42
0.47 1.00 0.48 0.39 0.39 0.39 0.39
0.41 0.48 1.00 0.46 0.42 0.39 0.36
0.34 0.39 0.46 1.00 0.50 0.43 0.41
0.30 0.39 0.42 0.50 1.00 0.53 0.47
0.39 0.39 0.39 0.43 0.53 1.00 0.54
0.42 0.39 0.36 0.41 0.47 0.54 1.00



















.

We generate the 7-dimensional latent multivariate normal variables from the multivariate normal distribution with
mean vector Xiβββ and covariance matrix R, and then use the cut-points ζζζ to obtain the 4-categorical longitudinal ordinal
data. For each scenario, we generate 100 simulated datasets with a sample size of 500.

We consider two missing data scenarios, generated using logistic regression for the indicators of missing values and
dropouts with covariates being gender, marital status, education, and age:

–M-15-15: 15% sporadically missing values and 15% dropouts.
–M-25-50: 25% sporadically missing values and 50% dropouts (similar to the RLMS-HSE study).

Regarding prior distributions, we assume non-informative priors for the regression parameters βββ and the cut-points ζζζ .
For the covariance matrix Σ , we assume two priors:

–ID Prior: Σ ∼ Inverse-Wishartk(I,m = 20) with I as the identity matrix.
–CS Prior: Σ ∼ Inverse-Wishartk(CS,m = 20) with CS being a compound symmetry matrix with equal correlations of
0.4.

We run each of the three algorithms (PX-GSM, PX-GS, and PX-MH) for 10,000 iterations with a burn-in of 2,000 and
check their convergence using the R package BOA [50].

4.1 Results

Table 1 presents the averaged posterior means and standard deviations for the regression parameters and the cut-points
under the ID prior. The PX-GS algorithm underestimates β0 and β3, while the PX-MH algorithm exhibits a larger standard
deviation for β0 compared to the others. Otherwise, the three algorithms provide similar estimates for the regression
parameters. The PX-GSM algorithm tends to yield larger estimated means for the cut-points than the PX-GS algorithm,
except for ζ51 and ζ52 in both missing data scenarios. The PX-MH algorithm produces some of the highest estimates,
particularly for ζ62 and ζ72. The PX-GS algorithm has the smallest standard deviations, whereas the PX-MH algorithm
has the largest.
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Table 1: Averaged posterior means and standard deviations for the regression parameters and the cut-points with the ID prior under

three data scenarios: Complete data, M-15-15 and M-25-50.

Parameters True Values Complete M-15-15 M-25-50

GSM GS MH GSM GS MH GSM GS MH

βββ 0 0.90 0.900 0.853 0.917 0.894 0.859 0.931 0.897 0.870 0.932

(0.14) (0.12) (0.17) (0.14) (0.13) (0.18) (0.15) (0.13) (0.18)

βββ 1 -0.044 -0.042 -0.039 -0.042 -0.043 -0.041 -0.044 -0.040 -0.039 -0.041

(0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

βββ 2 0.075 0.077 0.077 0.079 0.078 0.077 0.081 0.079 0.078 0.083

(0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

βββ 3 0.252 0.251 0.242 0.257 0.250 0.241 0.259 0.246 0.240 0.255

(0.07) (0.07) (0.08) (0.08) (0.07) (0.08) (0.08) (0.08) (0.08)

βββ 4 0.0038 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

(0.003) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

ζζζ 11 0.72 0.76 0.70 0.75 0.75 0.70 0.77 0.75 0.72 0.76

(0.08) (0.06) (0.12) (0.08) (0.06) (0.12) (0.08) (0.06) (0.11)

ζζζ 12 2.20 2.24 2.17 2.31 2.23 2.19 2.35 2.23 2.20 2.34

(0.18) (0.09) (0.32) (0.18) (0.09) (0.34) (0.18) (0.09) (0.32)

ζζζ 21 0.72 0.73 0.69 0.80 0.72 0.70 0.76 0.71 0.71 0.77

(0.08) (0.06) (0.12) (0.08) (0.06) (0.11) (0.08) (0.06) (0.11)

ζζζ 22 2.20 2.21 2.16 2.44 2.20 2.18 2.33 2.20 2.19 2.34

(0.18) (0.09) (0.35) (0.18) (0.09) (0.33) (0.19) (0.09) (0.32)

ζζζ 31 0.72 0.72 0.69 0.72 0.71 0.70 0.77 0.71 0.71 0.76

(0.08) (0.06) (0.11) (0.08) (0.06) (0.13) (0.09) (0.07) (0.12)

ζζζ 32 2.20 2.20 2.17 2.20 2.20 2.17 2.36 2.20 2.19 2.35

(0.19) (0.09) (0.29) (0.20) (0.10) (0.35) (0.23) (0.10) (0.33)

ζζζ 41 0.72 0.72 0.70 0.72 0.72 0.70 0.76 0.71 0.71 0.76

(0.08) (0.06) (0.09) (0.08) (0.07) (0.12) (0.10) (0.07) (0.12)

ζζζ 42 2.20 2.23 2.18 2.27 2.21 2.19 2.34 2.22 2.21 2.35

(0.19) (0.09) (0.30) (0.20) (0.10) (0.35) (0.24) (0.11) (0.34)

ζζζ 51 0.72 0.70 0.69 0.69 0.70 0.71 0.76 0.69 0.70 0.76

(0.08) (0.06) (0.09) (0.09) (0.07) (0.12) (0.11) (0.08) (0.13)

ζζζ 52 2.20 2.21 2.18 2.12 2.20 2.20 2.35 2.19 2.21 2.37

(0.19) (0.09) (0.28) (0.21) (0.10) (0.33) (0.27) (0.12) (0.34)

ζζζ 61 0.72 0.72 0.70 0.76 0.71 0.71 0.78 0.71 0.70 0.77

(0.08) (0.07) (0.12) (0.09) (0.07) (0.12) (0.11) (0.09) (0.13)

ζζζ 62 2.20 2.20 2.17 2.28 2.19 2.18 2.36 2.19 2.19 2.39

(0.19) (0.10) (0.35) (0.21) (0.10) (0.32) (0.28) (0.13) (0.35)

ζζζ 71 0.72 0.74 0.70 0.72 0.73 0.70 0.77 0.72 0.71 0.75

(0.08) (0.06) (0.11) (0.08) (0.07) (0.12) (0.11) (0.09) (0.13)

ζζζ 72 2.20 2.22 2.17 2.23 2.22 2.19 2.35 2.20 2.18 2.29

(0.18) (0.09) (0.30) (0.20) (0.10) (0.34) (0.27) (0.13) (0.33)

The posterior averaged biases and root mean squared errors (RMSE) for the regression parameters and cut-points are
given in Supplementary Table 1. Figure 1 presents boxplots of the averaged biases and RMSE for β1, β3, ζ41, and ζ42. The
PX-GSM and PX-GS algorithms show similar biases and RMSEs for β1 and β3, whereas the PX-MH algorithm indicates
slightly biased estimation, particularly for β3 under M-15-15. For ζ41 and ζ42, the PX-GSM algorithm has the smallest
biases, while the PX-MH algorithm has the largest. Regarding RMSEs, the PX-GSM algorithm yields the smallest RMSE
for ζ41, while the PX-MH algorithm produces the largest. The RMSEs for complete data are the smallest, while those for
M-25-50 are the largest.

The averaged posterior means and standard deviations for all 21 correlation parameters under both priors are
presented in Supplementary Tables 2 and 3. As an illustration, the averaged posterior means and standard deviations for
the correlation parameters r12,r46,r57, and r67 are presented in Table 2, and the boxplots for their biases and RMSE are
drawn in Fig. 2.

It can be seen from Table 2 that for each data scenario, the averaged means for the PX-GSM algorithm are the closest
to the true values, while those for the PX-MH algorithm are the opposite. The estimated standard deviations slightly
increase with the missing percentages for each algorithm. We notice that the CS prior, which is close to the true values,
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improves the estimated correlations, especially for the PX-GS and the PX-MH algorithms. Fig. 2 illustrates that the PX-
GSM algorithm produces the smallest biases and RMSE, while the PX-MH has the largest. Clearly, the CS prior improves
the biases and RMSE, especially for the PX-GS and PX-MH algorithms.

This suggests that the PX-GSM algorithm is robust to the prior specification in comparison with the PX-GS and PX-
MH algorithms. It is notable that the missing percentages seem to have a larger effect on the RMSE of the correlation
parameters, such as r46,r57, and r67, than those of the regression parameters and cut-points shown in Fig. 1, with the
M-25-50 producing the largest RMSE and the complete data the smallest.

Table 2: Averaged means and standard deviations for the correlation parameters r12, r46, r57, and r67 using the ID and CS priors under three data scenarios: Complete data,

M-15-15 and M-25-50.

Parameters True Values Complete M-15-15 M-25-50

GSM GS MH GSM GS MH GSM GS MH

r12 (ID) 0.47 0.46 0.45 0.43 0.46 0.45 0.44 0.46 0.45 0.44

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

r12 (CS) 0.47 0.46 0.46 0.47 0.47 0.46 0.47 0.47 0.46

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

r46 (ID) 0.43 0.41 0.40 0.37 0.41 0.40 0.38 0.41 0.39 0.35

(0.05) (0.04) (0.04) (0.05) (0.05) (0.05) (0.07) (0.07) (0.06)

r46 (CS) 0.42 0.42 0.41 0.43 0.42 0.42 0.43 0.41 0.41

(0.05) (0.04) (0.04) (0.05) (0.05) (0.05) (0.07) (0.06) (0.06)

r57 (ID) 0.47 0.47 0.45 0.44 0.46 0.45 0.43 0.47 0.45 0.42

(0.04) (0.04) (0.04) (0.05) (0.05) (0.05) (0.06) (0.07) (0.06)

r57 (CS) 0.48 0.47 0.47 0.47 0.47 0.46 0.49 0.47 0.47

(0.04) (0.04) (0.04) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06)

r67 (ID) 0.54 0.52 0.50 0.49 0.52 0.50 0.49 0.51 0.49 0.46

(0.04) (0.04) (0.04) (0.05) (0.04) (0.05) (0.06) (0.06) (0.06)

r67 (CS) 0.53 0.52 0.52 0.53 0.52 0.52 0.53 0.51 0.51

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.06) (0.06) (0.06)

Fig. 1: Averaged biases (first row) and RMSE (second row) for the regression parameters β1 and β3 and the cut-points ζ41 and ζ42

using the ID prior for complete data (black), M-15-15 (red), and M-25-50 (green).
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Table 3: Missing values and dropout rates for the RLMS-HSE study.

Years Total Missing Numbers (%) Dropout Numbers (%)

2012 1430 (19.49) 922 (12.57)

2013 2141 (29.18) 729 (9.94)

2014 3383 (46.11) 1174 (16.00)

2015 3694 (50.35) 504 (6.87)

2016 3852 (52.50) 523 (7.13)

Fig. 2: Bias (the first row for the ID prior and the second row for the CS prior) and RMSE (the third row for the ID prior and the fourth

row for the CS prior) for selected correlation parameters r12, r46, r57, and r67 using the ID and CS priors for complete data (black),

M-15-15 (red), and M-25-50 (green).

5 Application

The RLMS-HSE study [1] targets aspects related to satisfaction with primary and secondary employment. One of the
main outcomes is job satisfaction with primary employment, a 5-categorical ordinal variable with:

–1: Absolutely satisfied
–2: Mostly satisfied
–3: Neutral
–4: Not very satisfied
–5: Absolutely unsatisfied
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For our investigation, we focus on the longitudinal data from the years 2010 to 2016 for individuals. We include
gender (1 being male and 0 female), marital status (1 being in a registered marriage and 0 otherwise), education (1 having
a higher education diploma or more and 0 otherwise), and age as the covariates. We then choose those who have complete
records in the years 2010 and 2011 for job satisfaction as well as the covariates and obtain a total of 7337 individuals.

The missing values and dropout information for job satisfaction are presented in Table 3. As can be seen, the dropout
percentages are substantial and accumulate year by year. We then investigate the possible missing data mechanisms by
conducting logistic regression (or chi-squared test) for both the missing and dropout indicators on each covariate and
job satisfaction in the years 2010 and 2011. We find that the missing and dropout indicators are significantly related to
each covariate but are not significantly related to job satisfaction in years 2010 and 2011. This investigation serves as the
foundation for us to focus on the MAR missing mechanism and the design of simulation studies in Section 4.

We recode the 5-categorical job satisfaction variable as a 4-categorical ordinal variable with:

–0: Absolutely unsatisfied or Not very satisfied
–1: Neutral
–2: Mostly satisfied
–3: Absolutely satisfied

We then conduct a longitudinal data analysis for job satisfaction with the 7337 individuals using the PX-GSM, PX-GS,
and PX-MH algorithms by running 40,000 iterations with 20,000 burn-in. With a large sample size of 7337, we use non-
informative priors for the regression parameters, the cut-points, and the correlations. The results are presented in Table
4.

Table 4: Posterior means and standard deviations for the regression parameters, cut-points and correlations for the RLMS-HSE study

with 95% credible intervals for the regression parameters.

Parameters GSM GS MH Parameters GSM GS MH

β0 0.889 0.796 0.904 r12 0.47 0.43 0.44

(0.0694) (0.0343) (0.0331) (0.02) (0.01) (0.01)

β1 -0.036 -0.032 -0.036 r13 0.41 0.37 0.39

(0.0195) (0.0168) (0.0181) (0.02) (0.01) (0.01)

95% CI (-0.08, 0.001) (-0.07, 0.001) (-0.07, -0.001) r14 0.34 0.31 0.33

β2 0.070 0.066 0.070 (0.02) (0.02) (0.01)

(0.019) (0.0173) (0.0186) r15 0.30 0.27 0.29

95% CI (0.033, 0.107) (0.032, 0.100) (0.033, 0.106) (0.02) (0.02) (0.02)

β3 0.255 0.236 0.256 r16 0.29 0.26 0.28

(0.0258) (0.0185) (0.0194) (0.02) (0.02) (0.02)

95% CI (0.204, 0.305) (0.200, 0.272) (0.217, 0.294) r17 0.27 0.24 0.26

β4 0.004 0.003 0.003 (0.02) (0.02) (0.02)

(0.0008) (0.0007) (0.0007) r23 0.47 0.43 0.46

95% CI (0.002, 0.005) (0.002, 0.005) (0.002, 0.005) (0.02) (0.01) (0.01)

ζ11 0.74 0.61 0.73 r24 0.39 0.36 0.39

(0.06) (0.02) (0.01) (0.02) (0.02) (0.01)

ζ12 2.08 1.93 2.12 r25 0.39 0.34 0.39

(0.16) (0.03) (0.02) (0.02) (0.02) (0.02)

ζ21 0.72 0.65 0.74 r26 0.35 0.31 0.35

(0.05) (0.02) (0.01) (0.02) (0.02) (0.02)

ζ22 2.28 2.19 2.33 r27 0.34 0.30 0.34

(0.17) (0.03) (0.03) (0.02) (0.02) (0.02)

ζ31 0.73 0.68 0.73 r34 0.46 0.41 0.46

(0.07) (0.03) (0.01) (0.02) (0.02) (0.01)

ζ32 2.21 2.14 2.21 r35 0.42 0.37 0.42

(0.21) (0.04) (0.02) (0.02) (0.02) (0.02)

ζ41 0.79 0.75 0.79 r36 0.39 0.34 0.39

(0.08) (0.03) (0.02) (0.02) (0.02) (0.02)

ζ42 2.25 2.19 2.22 r37 0.36 0.31 0.37

(0.23) (0.04) (0.03) (0.02) (0.02) (0.02)

ζ51 0.72 0.68 0.74 r45 0.50 0.43 0.51

(0.09) (0.03) (0.02) (0.02) (0.02) (0.02)

ζ52 2.27 2.23 2.29 r46 0.43 0.38 0.44

(0.27) (0.04) (0.03) (0.02) (0.02) (0.02)

ζ61 0.76 0.72 0.79 r47 0.41 0.35 0.42

(0.09) (0.04) (0.02) (0.02) (0.02) (0.02)

ζ62 2.28 2.22 2.30 r56 0.53 0.46 0.54

(0.27) (0.05) (0.03) (0.02) (0.02) (0.02)

ζ71 0.77 0.69 0.74 r57 0.46 0.40 0.42

(0.09) (0.02) (0.02) (0.02) (0.02) (0.02)

ζ72 2.33 2.24 2.29 r67 0.53 0.47 0.48

(0.26) (0.05) (0.03) (0.02) (0.02) (0.01)

As can be seen, the 95% credible intervals for Gender (β1) include 0 for the PX-GSM and PX-GS algorithms, while
the PX-MH algorithm indicates that females tend to have higher satisfaction than males. This suggests that the PX-MH
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algorithm based on the identifiable model may have an advantage over those based on non-identifiable models regarding
inferences for the regression parameters.

These three algorithms have consistent 95% credible intervals for the other covariates:

–Marital status with a registered marriage produces higher satisfaction than other statuses.
–Higher education also has a positive effect on job satisfaction.
–Older individuals have higher satisfaction than younger individuals.

Fig. 3: Trace plots (the first three rows) for the cut-points (ζ41 and ζ42) and the correlations (r27 and r67) and the ACF plots (the last

row), with the solid lines representing the PX-GSM algorithm, the long dashes representing the PX-GS algorithm, and the dot-dash

lines representing the PX-MH algorithm.

Regarding the cut-points, Table 4 shows that job satisfaction has roughly the same cut-points for each year. The PX-
GS gives the smallest estimated values, while the PX-GSM algorithm has the largest standard deviations among the three
algorithms. The first two columns of Fig. 3 show the trace plots and the autocorrelation function (ACF) plots for the two
cut-points ζ41 and ζ42 for illustration.

As can be seen from the trace plots (the first three rows), the PX-GSM algorithm stabilizes around 5,000 iterations,
while the PX-GS algorithm stabilizes around 15,000 and the PX-MH algorithm around 10,000. The ACF plots (the last
row) show that the ACF values of the PX-GSM algorithm decrease much faster than those of the other two algorithms. It
is apparent that the PX-GSM algorithm has much better mixing than the PX-GS and PX-MH algorithms, and their ACF
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plots demonstrate the superiority of the PX-GSM algorithm. This explains why the much smaller standard deviations of
the PX-GS and PX-MH algorithms are due to slow mixing and convergence.

From Table 4, it may be seen that the correlation structure of the underlying multivariate normal variables for the
7-dimensional ordinal data is between an autoregressive AR(1) and compound symmetry. The PX-GS algorithm produces
the smallest estimated values for the correlation parameters among the three algorithms, but all three algorithms have
similar standard deviations.

The third and fourth columns in Fig. 3 show the trace plots and the ACF plots for the two correlation parameters r27

and r67 as an example. The trace plots (the first three rows) illustrate that the PX-GSM and PX-MH algorithms stabilize
much faster than the PX-GS algorithm, and the PX-GSM algorithm shows better mixing than the PX-MH algorithm,
whereas the PX-GS algorithm does not appear to stabilize even after 30,000 iterations for r27. The ACF plots (the last
row) indicate that the PX-GSM algorithm has the fastest decreasing ACF values, whereas the PX-GS algorithm has the
slowest. Overall, the PX-GSM algorithm demonstrates superior performance among the three algorithms.

6 Discussion

In this manuscript, we develop the PX-GSM and PX-GS algorithms for analyzing longitudinal ordinal data with missing
values using a non-identifiable multivariate probit model and compare their performances with the PX-MH algorithm
based on the identifiable model. The PX-GSM algorithm involves marginalization for the redundant parameters, while the
PX-GS algorithm does not include marginalization.

The simulation studies show that the PX-GSM algorithm outperforms the PX-GS and PX-MH algorithms overall.
Specifically, the PX-GSM algorithm produces less bias and smaller RMSE for the estimation of regression parameters,
cut-points, and correlations than the PX-GS and PX-MH algorithms. The PX-GSM algorithm also shows better mixing
and convergence than the other two algorithms. Good priors for correlation parameters significantly improve performance,
especially for the PX-GS and PX-MH algorithms, suggesting that the PX-GSM algorithm is robust to prior specification
in comparison with the other two algorithms. The effect of missing percentages within each algorithm for the correlation
parameters appears prominent (bias and RMSE) compared with that for the regression parameters and cut-points.

Furthermore, the application to the RLMS-HSE study shows that the PX-MH algorithm, based on the identifiable
model, produces a significant gender effect, whereas the PX-GSM and PX-GS algorithms, based on the non-identifiable
model, fail to do so. The PX-GSM algorithm outperforms the PX-GS and PX-MH algorithms in terms of mixing and
convergence for the cut-points and correlation parameters. Although the PX-GS algorithm based on the non-identifiable
model circumvents an MH algorithm for sampling the correlation matrix, the convergence for the correlations may still
be underperformed.

In summary, our investigation shows that the PX-GSM algorithm, based on the non-identifiable model with
marginalization of redundant parameters, outperforms the PX-GS algorithm (which is also based on the non-identifiable
model but without marginalization) and the PX-MH algorithm based on the identifiable model. This illustrates that
non-identifiable models with marginalization of redundant parameters should be considered in developing efficient
MCMC sampling methods.

We assume ignorable missing data mechanisms in both the simulation studies and the real application. A future
research direction may be to extend the non-identifiable multivariate probit model to multi-level models, which could
provide a possibility to consider non-ignorable missing data mechanisms.
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Table 5: Supplementary Table 1: Averaged biases and root mean square errors for the regression parameters and cut-points using the

ID prior based on 100 simulated datasets.

Parameters (True Values) Complete M-15-15 M-25-50

GSM GS MH GSM GS MH GSM GS MH

β0 (0.90) (mean) 0.000 -0.047 0.017 -0.006 -0.041 0.031 -0.003 -0.030 0.032

(RMSE) 0.014 0.015 0.019 0.014 0.014 0.023 0.014 0.015 0.018

β1 (-0.044) (mean) 0.002 0.005 0.002 0.001 0.003 0.000 0.004 0.005 0.003

(RMSE) 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.005

β2 (0.075) (Bias) 0.002 0.002 0.003 0.003 0.002 0.006 0.003 0.003 0.008

(RMSE) 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005

β3 (0.252) (Bias) -0.001 -0.010 0.005 0.002 -0.009 0.007 -0.006 -0.012 0.003

(RMSE) 0.005 0.005 0.006 0.005 0.005 0.006 0.005 0.005 0.006

β4 (0.0038) (Bias) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(RMSE) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ζ11 (0.72) (Bias) 0.043 -0.020 0.029 0.033 -0.015 0.046 0.032 -0.004 0.045

(RMSE) 0.005 0.004 0.006 0.005 0.004 0.010 0.004 0.004 0.007

ζ12 (2.2) (Bias) 0.044 -0.027 0.113 0.034 -0.014 0.145 0.032 -0.001 0.139

(RMSE) 0.008 0.008 0.047 0.007 0.008 0.068 0.007 0.008 0.053

ζ21 (0.72) (Bias) 0.006 -0.025 0.077 -0.002 -0.021 0.042 -0.005 -0.013 0.047

(RMSE) 0.003 0.004 0.014 0.003 0.004 0.008 0.003 0.003 0.010

ζ22 (2.2) (Bias) 0.008 -0.037 0.242 -0.000 -0.024 0.128 -0.004 -0.012 0.140

(RMSE) 0.005 0.008 0.113 0.005 0.007 0.057 0.006 0.007 0.056

ζ31 (0.72) (Bias) -0.003 -0.028 -0.002 -0.005 -0.022 0.050 -0.014 -0.017 0.044

(RMSE) 0.004 0.005 0.006 0.004 0.005 0.011 0.005 0.006 0.011

ζ32 (2.2) (Bias) 0.001 -0.031 0.004 -0.003 -0.025 0.157 -0.002 -0.006 0.149

(RMSE) 0.008 0.010 0.027 0.008 0.010 0.080 0.009 0.012 0.076

ζ41 (0.72) (Bias) 0.002 -0.023 0.004 -0.003 -0.018 0.035 -0.005 -0.014 0.035

(RMSE) 0.003 0.004 0.005 0.003 0.005 0.007 0.005 0.007 0.010

ζ42 (2.2) (Bias) 0.027 -0.018 0.065 0.019 -0.008 0.141 0.015 0.009 0.154

(RMSE) 0.008 0.009 0.030 0.007 0.009 0.055 0.008 0.010 0.063

ζ51 (0.72) (Bias) -0.021 -0.030 -0.034 -0.021 -0.015 0.043 -0.027 -0.015 0.045

(RMSE) 0.004 0.004 0.005 0.004 0.004 0.008 0.008 0.007 0.013

ζ52 (2.2) (Bias) 0.007 -0.018 -0.077 0.002 -0.003 0.146 -0.011 0.007 0.171

(RMSE) 0.006 0.007 0.025 0.007 0.008 0.052 0.012 0.014 0.081

ζ (0.72) (Bias) 0.001 -0.019 0.040 -0.005 -0.012 0.056 -0.015 -0.020 0.055

(RMSE) 0.003 0.003 0.007 0.003 0.004 0.011 0.005 0.007 0.013

ζ62 (2.2) (Bias) 0.004 -0.027 0.080 -0.009 -0.021 0.155 -0.008 -0.012 0.188

(RMSE) 0.004 0.005 0.034 0.004 0.005 0.067 0.008 0.012 0.081

ζ71 (0.72) (Bias) 0.022 -0.023 0.004 0.009 -0.017 0.047 0.005 -0.013 0.034

(RMSE) 0.003 0.004 0.005 0.003 0.005 0.011 0.006 0.008 0.011

ζ72 (2.2) (Bias) 0.024 -0.025 0.033 0.019 -0.012 0.155 -0.003 -0.022 0.093

(RMSE) 0.006 0.007 0.026 0.006 0.008 0.082 0.009 0.011 0.050
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Table 6: Supplementary Table 2: Averaged means and standard deviations for the correlation parameters using the ID prior based on

100 simulated datasets.

Para True Complete M-15-15 M25-50

GSM GS MH GSM GS MH GSM GS MH

r12 0.47 0.46 0.45 0.43 0.46 0.45 0.44 0.46 0.45 0.44

0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

r13 0.41 0.41 0.39 0.38 0.41 0.39 0.37 0.40 0.39 0.37

0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05

r14 0.34 0.34 0.32 0.31 0.33 0.32 0.30 0.33 0.32 0.30

0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05

r15 0.30 0.30 0.29 0.26 0.30 0.29 0.26 0.30 0.29 0.25

0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06

r15 0.30 0.30 0.29 0.26 0.30 0.29 0.26 0.30 0.29 0.25

0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06

r16 0.29 0.29 0.28 0.25 0.30 0.29 0.26 0.29 0.28 0.24

0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.07

r17 0.27 0.27 0.26 0.24 0.27 0.26 0.24 0.28 0.26 0.23

0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.07

r23 0.48 0.48 0.46 0.45 0.48 0.47 0.45 0.48 0.47 0.45

0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.04

r24 0.39 0.39 0.37 0.35 0.39 0.37 0.35 0.39 0.38 0.35

0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05

r25 0.39 0.39 0.37 0.35 0.39 0.38 0.35 0.38 0.37 0.33

0.05 0.05 0.04 0.05 0.05 0.05 0.06 0.06 0.05

r26 0.35 0.34 0.33 0.30 0.35 0.34 0.31 0.34 0.33 0.29

0.05 0.05 0.04 0.05 0.05 0.05 0.07 0.06 0.06

r27 0.34 0.34 0.32 0.30 0.33 0.32 0.30 0.34 0.33 0.29

0.05 0.05 0.04 0.05 0.05 0.05 0.07 0.06 0.06

r34 0.46 0.45 0.44 0.42 0.45 0.44 0.42 0.45 0.43 0.41

0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05

r35 0.42 0.42 0.40 0.37 0.41 0.40 0.38 0.42 0.40 0.36

0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06

r36 0.39 0.38 0.37 0.34 0.39 0.38 0.35 0.38 0.37 0.33

0.05 0.05 0.04 0.05 0.05 0.05 0.06 0.07 0.07

r37 0.36 0.36 0.35 0.32 0.35 0.34 0.32 0.36 0.35 0.31

0.05 0.05 0.04 0.05 0.05 0.05 0.07 0.07 0.07

r45 0.50 0.49 0.47 0.45 0.49 0.47 0.46 0.48 0.46 0.43

0.04 0.04 0.04 0.05 0.05 0.04 0.06 0.06 0.06

r46 0.43 0.41 0.40 0.37 0.41 0.40 0.38 0.41 0.39 0.35

0.05 0.04 0.04 0.05 0.05 0.05 0.07 0.07 0.06

r47 0.41 0.40 0.38 0.36 0.40 0.38 0.36 0.40 0.38 0.34

0.05 0.04 0.04 0.05 0.05 0.05 0.07 0.07 0.06

r56 0.53 0.51 0.49 0.48 0.51 0.49 0.48 0.50 0.48 0.45

0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.07 0.06

r57 0.47 0.47 0.45 0.44 0.46 0.45 0.43 0.47 0.45 0.42

0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.07 0.06

r67 0.54 0.52 0.50 0.49 0.52 0.50 0.49 0.51 0.49 0.46

0.04 0.04 0.04 0.05 0.04 0.05 0.06 0.06 0.06
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Table 7: Supplementary Table 3: Averaged means and standard deviations for the correlation parameters using the CS prior based on

100 simulated datasets.

Para True Complete M-15-15 M25-50

GSM GS MH GSM GS MH GSM GS MH

r12 0.47 0.47 0.46 0.46 0.47 0.47 0.46 0.47 0.47 0.46

0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

r13 0.41 0.42 0.41 0.41 0.42 0.41 0.40 0.42 0.41 0.40

0.04 0.04 0.04 0.05 0.05 0.04 0.05 0.05 0.05

r14 0.34 0.35 0.34 0.34 0.35 0.34 0.34 0.35 0.34 0.34

0.05 0.05 0.04 0.05 0.05 0.05 0.06 0.05 0.05

r15 0.30 0.31 0.31 0.30 0.31 0.31 0.30 0.31 0.31 0.30

0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06

r16 0.29 0.30 0.30 0.29 0.31 0.31 0.30 0.31 0.30 0.30

0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.06 0.06

r17 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.28

0.05 0.05 0.04 0.05 0.05 0.05 0.07 0.06 0.06

r23 0.48 0.49 0.48 0.48 0.49 0.48 0.48 0.49 0.48 0.48

0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.04

r24 0.39 0.40 0.39 0.39 0.40 0.39 0.39 0.40 0.39 0.39

0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05

r25 0.39 0.40 0.39 0.39 0.40 0.39 0.39 0.40 0.39 0.38

0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06

r26 0.35 0.35 0.35 0.34 0.36 0.35 0.35 0.36 0.35 0.35

0.05 0.05 0.04 0.05 0.05 0.05 0.06 0.06 0.06

r27 0.34 0.35 0.34 0.34 0.35 0.34 0.34 0.36 0.35 0.35

0.05 0.05 0.04 0.05 0.05 0.05 0.06 0.06 0.06

r34 0.46 0.46 0.45 0.45 0.46 0.45 0.45 0.46 0.45 0.45

0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.05 0.05

r35 0.42 0.43 0.42 0.41 0.43 0.42 0.41 0.43 0.42 0.42

0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06

r36 0.39 0.39 0.39 0.38 0.40 0.39 0.39 0.40 0.39 0.39

0.05 0.04 0.04 0.05 0.05 0.05 0.07 0.06 0.06

r37 0.36 0.37 0.36 0.36 0.37 0.36 0.36 0.38 0.37 0.37

0.05 0.05 0.04 0.05 0.05 0.05 0.07 0.07 0.06

r45 0.50 0.49 0.49 0.49 0.50 0.49 0.49 0.49 0.48 0.47

0.04 0.04 0.04 0.05 0.04 0.04 0.06 0.06 0.06

r46 0.43 0.42 0.42 0.41 0.43 0.42 0.42 0.43 0.41 0.41

0.05 0.04 0.04 0.05 0.05 0.05 0.07 0.06 0.06

r47 0.41 0.42 0.40 0.40 0.41 0.40 0.40 0.42 0.40 0.40

0.05 0.04 0.04 0.05 0.05 0.05 0.07 0.06 0.06

r56 0.53 0.52 0.51 0.51 0.52 0.51 0.51 0.52 0.50 0.49

0.04 0.04 0.04 0.05 0.04 0.04 0.06 0.06 0.06

r57 0.47 0.48 0.47 0.47 0.47 0.47 0.46 0.49 0.47 0.47

0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06

r67 0.54 0.53 0.52 0.52 0.53 0.52 0.52 0.53 0.51 0.51

0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06
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