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Abstract: In this paper, we propose a lightweight security scheme for IoT communications, optimized for resource-constrained

devices and integrated with the MQTT protocol to enhance secure data transmission. Nowadays, the encryption of Internet of

Things (IoT) traffic demands thorough performance analysis, driven by the inherent security challenges arising from the resource

limitations of IoT devices. Traditional security protocols are often too resource-intensive for these constrained nodes. To ensure

end-to-end and lightweight encryption, this paper proposes a lightweight security scheme using the Salsa20 encryption protocol to

provide confidentiality and the modern hashing algorithm Blake2b to ensure message integrity of the payload. The new scheme was

implemented and integrated with the MQTT protocol, which is considered the de facto standard for IoT communications. The publisher

represents a resource-constrained IoT device, which was the focus of all analyses conducted. The study presents a comprehensive

analysis of different implementations using 256-bit key and 128-bit key, if supported by the protocol. The following protocols

were included in the study: AES-EAX, AES-GCM, AES-CCM8, TinyAES-HMAC, ASCON, SIMON-HMAC, SPECK-HMAC, and

ChaCha20-Poly1305. The new scheme was compared against the included protocols in terms of CPU cycles, encryption time, and

throughput. The results demonstrate that the proposed scheme consumes fewer CPU cycles, indicating lower power usage, requires less

encryption time, reflecting faster processing, and achieves higher throughput, further highlighting its superior speed compared to other

protocols
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1 Introduction

The Internet of Things (IoT) ecosystems have
increasingly adopted the MQTT (Message Queue
Telemetry Transport) protocol as the de facto standard for
communication due to its lightweight nature and
efficiency in resource-constrained environments. MQTT
operates on a publisher-subscriber model, enabling
asynchronous communication between devices and
systems. While the MQTT standard includes support for
Transport Layer Security (TLS) to provide secure
communication, numerous research studies have
demonstrated that TLS is not well-suited for IoT
applications, primarily due to the significant overhead it
introduces to MQTT traffic.

For instance, Alharbi et al. [1] conducted a
comparative analysis of MQTT with TLS and MQTT
without TLS, highlighting that the addition of TLS
imposes considerable computational and memory burdens
on resource-constrained IoT nodes, thereby degrading
performance. These findings underscore the need for
alternative security mechanisms that maintain a balance
between robust encryption and resource efficiency.

In this context, this paper proposes a novel security
scheme designed to enhance the security of MQTT
communications while addressing the limitations
associated with IoT device resources constraints. The
proposed scheme leverages the lightweight and efficient
Salsa20 encryption algorithm to ensure data
confidentiality, complemented by the Blake2b hashing
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algorithm to provide data integrity and authentication. By
integrating these cryptographic techniques, the proposed
solution aims to achieve a secure, resource-optimized
approach suitable for IoT devices with constrained
computational capacities.

The main contributions of this article include the
implementation of an experimental setup to evaluate the
performance of different encryption protocols with
MQTT as the underlying M2M protocol. The article also
analyzes the performance overhead introduced by these
protocols in MQTT-based systems. Additionally, various
encryption protocols were implemented and integrated
into the publisher and subscriber components of MQTT.
Finally, a novel security scheme was presented, designed
to ensure data confidentiality and integrity while being
suitable for resource-constrained publishers.

The paper is organized as follows. Section II presents
the background of MQTT security, highlighting its
vulnerabilities and the Salsa20-Blake2b security scheme.
Section III reviews existing literature on security schemes
for MQTT in resource-constrained IoT environments.
Section IV discusses the research methodology, including
the testbed setup and performance evaluation of various
encryption protocols. Section V details the
implementation of the MQTT publisher and the proposed
Salsa20-Blake2b security scheme. Finally, Section VI
concludes the paper and suggests future research
directions for enhancing IoT security.

2 Theoretical Background

2.1 MQTT Security

MQTT (Message Queue Telemetry Transport) is a
lightweight messaging protocol widely [3] used in IoT
ecosystems for its efficiency and low resource
requirements. It operates on a publish-subscribe model,
the publisher send data to subscriber through a broker on
a particular topic, making it good fit for IoT environments
with limited resources. Its small footprint and simplicity
have made it a de facto standard for IoT communication.
However, MQTT has no security by default. By design, it
is a plain-text protocol [3], [4] that does not enforce any
encryption or authentication mechanisms, leaving
security implementation to vendors. While the MQTT
standard recommends using Transport Layer Security
(TLS) to protect data in transit, TLS introduces significant
overhead [1], making it unsuitable for many
resource-constrained IoT devices. Additionally, TLS does
not provide end-to-end encryption, as data is decrypted at
the broker, creating potential vulnerabilities. These
limitations make MQTT deployments susceptible to
various threats, including eavesdropping, data tampering,
and unauthorized access, underscoring the need for
lightweight and efficient security solutions tailored to
IoT’s unique constraints.

2.2 Security Scheme

Salsa20 is a symmetric key stream cipher designed by
Daniel J. Bernstein, known for its simplicity and
efficiency [2]. It is widely regarded as a fast and secure
algorithm suitable for environments with constrained
resources, such as IoT devices. Salsa20 operates on
256-bit keys (or 128-bit keys in the case of Salsa20/12)
and uses a 64-bit nonce for each encryption, ensuring the
uniqueness of the output stream for each encryption
operation. Salsa20 takes the input consisting of the key,
nonce, and a counter, and mixes these values using a
series of XOR operations, rotations, and modular
additions to generate the keystream. It has been
extensively analyzed and is considered secure against
differential and linear cryptanalysis. No significant
cryptographic weaknesses have been discovered, making
it an attractive option for secure communications.

Blake2b is a cryptographic hash function designed
[21] as a faster and more secure alternative to MD5 and
SHA-2. It belongs to the family of Blake cryptographic
functions, which were finalists in the SHA-3 competition.
Blake2b was designed to be fast in both hardware and
software, offering a high level of security with a
straightforward design.

3 Literature Review

Encryption is a critical component of IoT communication,
ensuring the protection of confidential data from
unauthorized access or tampering. As a result, numerous
research efforts have focused on addressing this challenge
and developing practical solutions for
resource-constrained IoT devices. A commonly used
method to secure MQTT-based IoT traffic is through the
TLS protocol. However, the resource limitations of IoT
MQTT publishers often lead to significant overhead when
using TLS. Additionally, the broker must decrypt
incoming messages, re-encrypt them, and forward them to
subscribers, which could introduce a potential security
risk if the broker is compromised [5]. To achieve the goal
of end-to-end encryption, many proposed new solutions
to encrypt the payload of the MQTT mainly using
symmetric protocols.

Numerous lightweight algorithms have been proposed
by researchers while accommodating the resource
constraints of IoT devices. Singh et al. [6] introduced the
SMQTT and SMQTT-SN security schemes, which
leverage Key/Ciphertext Policy-Attribute Based
Encryption (KP/CP-ABE) combined with lightweight
Elliptic Curve Cryptography. Their study included a
security analysis, demonstrating resilience against various
types of attacks. However, the performance evaluation fell
short, as it did not provide a comparison with other
protocols or a practical analysis on constrained nodes.
Consequently, the suitability of the proposed security
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scheme for resource-constrained IoT devices remains
unproven.

Similarly, Sadio et al. [7] proposed the use of the
ChaCha20-Poly1305 AEAD to secure communication
over MQTT/MQTT-SN in constrained environments.
ChaCha20, a lightweight stream cipher, and Poly1305, a
one-time authenticator, formed the basis of their security
scheme. The proposed solution was prototyped on
constrained devices like the Arduino UNO, and its
performance was primarily evaluated in terms of memory
footprint and execution time. The results indicated low
memory requirements and minimal processing overhead.
However, the evaluation was limited to only two
performance metrics: memory and payload size. This
limited scope, along with the absence of comparisons
with similar solutions, makes it difficult to fully assess the
scheme’s practicality and effectiveness for constrained
nodes. Pal et al. [8] and Wang et al. [9] proposed
encryption solutions based on Attribute-Based Encryption
(ABE) to ensure data confidentiality. However, these
approaches introduce significant overhead due to the use
of the ABE protocol, potentially rendering them
unsuitable for resource-constrained publishers.

Iqbal et al. [10] proposed a novel security scheme for
MQTT, employing the ARIA encryption algorithm for
securing the MQTT payload and MbedTLS for network
tunnel encryption. While the solution introduces a unique
approach, the study lacked any comparative analysis with
existing methods, leaving its relative performance and
applicability to IoT environments unexplored.

Hintaw et al [11] presented a new protocol derived
from the standard AES. RSS introduces a new design
architecture of the symmetric AES algorithm to encrypt
the MQTT payload called D-AES. Results revealed that
the proposed D-AES is more promising with
improvements than the standard AES algorithm. Other
researchers proposed similar solution derived from AES
that were integrated utilized to secure MQTT payload.
Another similar solution was presented by Bisne et al.
[13] Attribute-based Encryption (ABE) and Dynamic
S-Box Advanced Encryption Standard (AES) were
applied for payload encryption in MQTT. The various
modes of AES (GCM, EAX, CCM8) were compared with
the proposed security scheme, demonstrating that the new
scheme is more suitable for resource-constrained
publishers.

Wijayanto et al. [12] evaluated the effectiveness of
AES, Grain V1, and RC4 algorithms in countering
passive sniffing attacks and their performance in terms of
data processing time. The results demonstrated that all
three algorithms effectively mitigated passive sniffing
attacks. Additionally, the study examined the resistance of
these algorithms to cryptanalysis by comparing the time
required to break their keys. The findings indicated that

AES provided the highest level of resistance, making it
the most secure option compared to Grain V1 and RC4.
Performance testing was also conducted to measure the
encryption and decryption processing times of each
algorithm. RC4 emerged as the fastest for encryption,
with an average time of 20.4 microseconds, followed by
Grain V1 at 763.4 microseconds, and AES at 796.84
microseconds. Similarly, for decryption, RC4 achieved
the best performance with an average time of 0.13
microseconds, followed by Grain V1 at 0.18
microseconds, and AES at 1.16 microseconds.

Table 1 provides a comparative analysis of other
various security protocols designed for MQTT-based
Pub/Sub communication. The comparison highlights key
features, protocols used, drawbacks, primary services
offered, and their suitability for IoT-constrained nodes.
The proposed protocol using Salsa20 and Blake2B
demonstrates significant advantages for edge
environments, particularly in controlled settings. The
proposed protocol employs the lightweight encryption
algorithm Salsa20 for confidentiality and the hashing
algorithm Blake2B for integrity. It is specifically designed
for deployment in edge environments with physically
secure local brokers. Unlike computationally intensive
protocols such as CP-ABE or IBE, the proposed solution
minimizes computational overhead, making it highly
suitable for resource-constrained IoT devices. The
protocol avoids reliance on trusted third parties, such as
PKG or CA, and simplifies key management by
eliminating the need for complex schemes like secret
sharing or proxy re-encryption.

A review of the current literature reveals a wide
array of encryption solutions aimed at securing
MQTT-based IoT communication. Existing approaches
typically employ TLS for securing traffic or adopt various
symmetric encryption methods, such as lightweight
versions of AES, ChaCha20-Poly1305, ARIA, and even
attribute-based schemes like ABE. However, several
recurring challenges have emerged. Traditional TLS
introduces substantial computational and memory
overhead, particularly for IoT publishers with constrained
resources. Similarly, while approaches using ABE or
re-encryption at the broker (e.g., [5], [8], [9]) enhance
security, they often incur heavy processing costs and
complicate key management.

By leveraging Salsa20 and Blake2B, the protocol
avoids the computational intensity of schemes like
CP-ABE and IBE. This not only ensures better
performance on devices with limited processing power
but also simplifies key management by eliminating the
need for third-party authorities or complex re-encryption
schemes.
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Table 1: Comparative Analysis Of Different Protocols

Reference Description Protocols Used Drawbacks Main Services Suitability for IoT

Constraint Nodes

Lee et al. [14] Proposed MQTLS, an

extension of TLS, for E2E

security via an untrusted

broker.

TLS, Diffie–Hellman

(DH)

High overhead for mobile

IoT devices; requires per-

subscriber authentication

and key exchange.

E2E confidentiality,

secure key exchange.

Limited due to

high computational

and communication

overhead.

Peng et al. [15] Proposed IBE-based Pub/Sub

system using a third-party

PKG.

Identity-Based

Encryption (IBE)

Does not ensure E2E

encryption; requires

trusted third-party PKG.

Confidentiality via

IBE.

Limited due to reliance

on third-party PKG.

Chien et al. [16] Proposed a trusted broker for

secure group communication

using topic keys.

Symmetric Encryption

(Topic Keys)

Relies on a trusted broker;

lacks message integrity.

Group confidentiality. Moderate, but

depends on broker

trustworthiness.

Mektoubi et al.

[17]

Used a CA to create topic

certificates and private keys

for communication.

Certificate Authority

(CA), Symmetric

Encryption

Manual distribution of

keys and certificates;

difficult to update

periodically.

Confidentiality, topic-

based access control.

Limited due to manual

key management.

Dahlmanns et al.

[20]

Used a key server for pairwise

PSK setup and session key

generation.

Symmetric Encryption,

PSK

Relies on a single key

server; prone to single

point of failure.

E2E confidentiality. Moderate, depending on

server reliability.

Borcea et al. [18] Proposed proxy re-encryption

(PRE) for E2E security

without prenegotiation.

Asymmetric Encryption,

Proxy Re-encryption

Broker requires re-

encryption capabilities;

lacks message integrity.

E2E confidentiality. Limited due to

asymmetric encryption

overhead.

Hamad et al. [19] Used secret splitting and RSA

for distributing topic keys via

KeyStores.

Secret Splitting, RSA Overhead from certificate

verification; requires

all KeyStores for key

reconstruction.

Confidentiality, access

control.

Limited due to overhead

and KeyStore reliance.

Singh et al. [6] Proposed CP-ABE and

KP-ABE for secure MQTT

communication.

Ciphertext Policy ABE

(CP-ABE), Key Policy

ABE (KP-ABE)

High computational

overhead due to pairing

operations.

Confidentiality, access

control.

Limited due to

high computational

requirements.

Pal et al. [8] Used CP-ABE for content-

based Pub/Sub encryption.

Ciphertext Policy ABE

(CP-ABE)

Massive overhead from

ABE operations.

Confidentiality, access

control.

Limited due to

computational

complexity.

Wang et al. [9] Proposed encrypting

symmetric keys with ABE for

secure data encryption.

Attribute-Based

Encryption (ABE),

Symmetric Encryption

High overhead from

pairing operations in

ABE.

Confidentiality, access

control.

Limited due to ABE

complexity.

Our new protocol Proposed a new MQTT

payload lightweight

encryption scheme using

Salsa20 and Blake2B

Salsa20 and Blake2B Limited to installations at

the edge with secure and

controlled environment

hosting local broker

server

Confidentiality,

Integrity

Suitable due to low

computational overhead.

4 Research Methodology

4.1 Introduction

The methodology section is structured to
comprehensively evaluate the performance of various
encryption protocols for securing IoT communications
using MQTT. It encompasses software and hardware
components designed to replicate real-world IoT
scenarios, along with a detailed description of the
publisher’s role, which simulates the behavior of
resource-constrained IoT devices. The aim is to assess the
computational efficiency of the protocols under test.

The software layer integrates a custom-developed
MQTT publisher, which is implemented in Python and
augmented with various encryption algorithms such as
AES-GCM, ChaCha20-Poly1305, SPECK-HMAC, and
others. The publisher encrypts image payloads of varying
sizes (e.g., 1KB, 5KB, and 10KB) and transmits them to
an MQTT broker. Performance metrics such as CPU
cycles, encryption time, memory usage, and throughput
are captured using tools like perf and psutil.

The hardware testbed is designed to emulate IoT
environments. The publisher is deployed on a laptop
running Ubuntu OS, utilizing accurate measurements of
CPU cycles, RSS, and throughput, and encryption time
directly measured in the code, to reflect the computational
performance and energy constraints typical of IoT nodes.
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The MQTT broker, which acts as the intermediary for
message distribution, is hosted on a cloud platform. The
subscriber, representing the end-user or application, is
implemented on a mobile device or a PC for testing the
decryption and performance at the receiving end.

At the heart of the system, the publisher plays a
crucial role as the IoT data generator. It represents a
resource-constrained device capable of encrypting and
sending data to the broker. By simulating an IoT device,
the publisher provides a realistic benchmark for
evaluating the efficiency of encryption protocols under
limited resources. The publisher encrypts image files
using the selected protocol, with the process repeated for
a specified number of iterations (e.g., 100 messages per
protocol). It then logs performance metrics and securely
sends the encrypted payloads to the broker, enabling
end-to-end testing of the encryption schemes. This
integrated approach ensures a robust evaluation of
encryption protocols, addressing both the performance
and security aspects critical for IoT applications. The
methodology establishes a foundation for comparing
various protocols and identifying the most suitable
options for secure and efficient IoT communication.

4.2 Testbed

We have deployed and evaluated our implementation
using the testbed that is shown in Fig. 1. The testbed is an
essential component of the experimental framework,
designed to emulate a real-world IoT environment for
evaluating encryption protocols. In this setup, the
publisher represents an IoT resource-constrained device
which is responsible for generating and encrypting data
before transmitting it to the cloud or other devices
through an MQTT broker. The testbed is structured to
simulate conditions that IoT devices typically face,
including limited computational power, restricted
memory, and constrained energy resources.

Fig. 1: Testbed Hardware And Software Components

We have deployed and evaluated our implementation
using the testbed illustrated in Fig. 1. This testbed is a
cornerstone of our experimental framework, designed to
emulate a real-world IoT environment for assessing
encryption protocols under resource-constrained
conditions and realistic environmental scenarios.

4.2.1 -Hardware Specifications:

–Laptops:

Two laptops, each running Ubuntu 22.04 LTS, serve as the

MQTT Publisher and MQTT Subscriber. Their hardware

configurations include:

–Processor: Intel Core i5 (quad-core, approximately

2.6GHz)

–Memory: 8GB DDR4 RAM

–Storage: 256GB SSD

–Network Interface: Dual-band Wi-Fi adapters supporting

both 2.4GHz and 5GHz bands to ensure stable and high-

speed wireless connectivity.

–Cloud Server:

The MQTT broker is hosted on an AWS cloud server

running Ubuntu 24.04 LTS with Mosquitto version 2.8.16.

The server’s specifications are:

–Processor: Intel Xeon (4 cores at 2.3GHz)

–Memory: 16GB RAM

–Storage: Enterprise-grade SSD

This configuration ensures that the broker can handle

high message throughput and maintain reliable

performance under load.

The MQTT broker is hosted on the AWS cloud server, it
centrally manages all message exchanges, ensuring that
both publishing and subscribing processes can be
evaluated under consistent conditions. The MQTT
Publisher (one of the laptops) utilizes the Paho MQTT
client library (version 1.5.1) to generate and encrypt
messages before sending them to the broker. The MQTT
Subscriber (the second laptop) receives and processes
these messages, enabling end-to-end performance and
security analysis.

All experiments were conducted in a controlled lab
setting where the ambient temperature was maintained at
22±2◦C, and relative humidity levels were held within
the 45–55% range. This control minimizes environmental
variability and potential interference that could affect
wireless communication. Both laptops and the simulated
IoT device were connected to the same dedicated Wi-Fi
network.

5 MQTT Publisher Implementation

The publisher serves as the central entity for encryption and

message publishing. Its role is to process image data (used as

payloads) and apply various encryption protocols to secure the

data before sending it to the MQTT broker. By simulating an

IoT device, the publisher implementation mirrors the
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performance limitations and challenges associated with

real-world IoT deployments.

The choice of image files in this testbed, with sizes such as

1KB, 5KB, and 10KB, represents typical payload sizes in IoT

scenarios, ranging from small telemetry data to larger payloads

like real images. By iterating over these different file sizes, the

testbed assesses how protocol performance scales with

increasing payload complexity. This scalability analysis is

crucial, as IoT devices often need to balance security

requirements with resource constraints.

In this setup, the publisher’s primary functions include:

Data Encryption: Using various protocols, such as

AES-GCM, ChaCha20-Poly1305, and SPECK-HMAC, the

publisher encrypts image data to ensure confidentiality. Each

protocol is tested iteratively to gather performance metrics.

Performance Measurement: Through integration with tools

like perf and psutil, the publisher monitors and logs critical

performance metrics, including encryption time, CPU cycles,

memory usage, and throughput. These metrics are crucial for

determining the suitability of encryption protocols for IoT use

cases.

Message Publishing: Encrypted data is packaged and sent to

the MQTT broker. The use of MQTT, a lightweight messaging

protocol, aligns with the energy-efficient and low-overhead

communication requirements of IoT networks.

The testbed’s flexibility also allows for additional

configurations, such as using TLS for secure transport or testing

non-TLS scenarios. By enabling different configurations, the

testbed evaluates the impact of transport layer security on

overall performance and energy consumption.

In summary, the publisher simulates a constrained IoT

device within the testbed, encapsulating the challenges and

trade-offs faced in real-world deployments. Its role as the data

generator, encrypter, and transmitter is pivotal in benchmarking

encryption protocols and assessing their feasibility for secure

IoT communications. This setup provides insights into protocol

efficiency and helps determine the optimal choice of encryption

for IoT applications, considering the constraints of

computational resources, memory, and energy.

The publisher code is designed to encrypt and publish

image data over MQTT while dynamically supporting multiple

encryption protocols. Its primary focus is on evaluating the

performance of these protocols under IoT conditions. The code

starts by accepting configuration inputs, such as the encryption

method and whether TLS is used. These parameters are passed

as command-line arguments, enabling flexibility in choosing the

protocol dynamically. For example, protocols like AES-GCM,

ChaCha20-Poly1305, Salsa20, and SPECK can be selected at

runtime, and each protocol has a specific implementation logic

in the encrypt payload function.

The script reads image data in binary format from a

specified file, which serves as the payload for encryption. The

selected encryption protocol determines how the payload is

processed. For instance, AES-GCM and ChaCha20-Poly1305

use authenticated encryption with associated data (AEAD) for

both confidentiality and integrity. Block ciphers like SIMON

and SPECK encrypt data in chunks, with optional HMAC

appended to ensure integrity.

The encrypted payload is packaged into a JSON object

along with metadata like timestamps. This object is published to

the MQTT broker under a predefined topic. The publishing

process is iterative, with a specified number of messages being

sent per protocol, allowing for a robust performance evaluation.

Each iteration measures metrics such as encryption time,

throughput, and memory usage. These are gathered using the

Linux perf tool for CPU and cache metrics and the psutil library

for memory monitoring. The script integrates performance

monitoring by invoking perf during execution. It tracks task

execution time, CPU cycles, cache references, and cache misses,

while also logging average and peak memory usage during the

encryption process. These metrics are saved to a CSV file for

further analysis, enabling a detailed comparison of the

protocols.

To ensure consistent and statistically significant results, the

code is embedded in a shell automation script that iterates

through all supported protocols. Each protocol is tested multiple

times with different file sizes, such as 1KB, 5KB, and 10KB.

This iterative testing ensures that variations due to transient

system conditions are mitigated, and reliable averages for

performance metrics can be derived.

Overall, the publisher modified Python code is a

comprehensive tool for evaluating the efficiency of various

encryption protocols in IoT settings. It dynamically supports

multiple protocols, integrates with system performance tools,

and automates iterative testing across different file sizes, making

it ideal for large-scale performance analyses.

6 Results And Analysis

6.1 Introduction

The results section presents analyzing the performance of

different cryptographic protocols in the context of IoT (Internet

of Things) communication. Given the constraints of IoT devices,

which often suffer from limited resources (e.g., processing

power, memory, energy), this research investigates the efficiency

of various encryption protocols when applied to IoT traffic.

These protocols are tested to ensure confidentiality and integrity

while considering the limited resources available on IoT

devices.

The study proposes a lightweight security scheme,

integrating the Salsa20 encryption algorithm and the Blake2b

hashing algorithm, offering a balance between speed and

security. The focus is primarily on the publisher (i.e., the

resource-constrained IoT device), assessing how well the

encryption performs under varying conditions. The study

evaluates the following cryptographic protocols, each with its

distinct advantages and trade-offs:

–AES-EAX

–AES-GCM

–AES-CCM8

–TinyAES-HMAC

–ASCON

–SIMON-HMAC

–SPECK-HMAC

–ChaCha20-Poly1305

–Salsa20-Blake2b (Proposed Scheme)
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These protocols were chosen for their varied computational

complexities, key sizes, and security properties. The goal was to

assess how each protocol performs in terms of CPU cycles,

encryption time, and throughput, which are critical for

resource-constrained IoT devices.

6.2 Performance Analysis And Discussion

The dataset included in the performance analysis contains the

following columns:

–TimeStamp: The timestamp of the performance

measurement.

–Elapsed Time: The total time taken to encrypt the data.

–CPU Cycles: The total number of CPU cycles consumed

during encryption.

–Throughput: The rate at which data is processed (typically in

KB/s or similar units).

–Number Of Messages (Images): The number of images

processed during the encryption process.

–Protocol: The cryptographic protocol used for the encryption

(e.g., AES-GCM, Salsa20, etc.).

–Image Size: The size of the image being encrypted (1KB,

5KB, or 10KB).

The dataset tracks performance across three image sizes (1KB,

5KB, and 10KB) to assess how each protocol scales with

increasing data sizes, which is critical for understanding the

practical performance of these protocols in real-world IoT

applications. The analysis aimed to evaluate and compare

cryptographic protocols by following the below steps:

–Data Aggregation: The analysis began by aggregating the

raw data based on protocol and image size. This enabled a

fair comparison of the protocols under consistent

conditions. Appendix A contains the complete dataset,

which includes the average results from ten runs for each

protocol. Each run involved encrypting 100 messages, with

performance measured throughout.

–Metric Calculation: We focused on three performance

metrics:

–CPU Cycles: Measures the computational load for each

protocol.

–Elapsed Time: Represents the time taken for encryption,

where lower values indicate faster performance.

–Throughput: Indicates the amount of data processed per

unit of time, where higher throughput signifies better

efficiency.

–Visualization: After calculating the average for each metric

(CPU Cycles, Elapsed Time, and Throughput) across the

different image sizes, we created visualizations (charts) to

make the comparisons more intuitive. The charts allow us to

observe trends and differences between protocols and how

they perform with different image sizes. Table 2 and Table

3. showed the final results by comparing different protocols

using 128-bit key and 256-bit key with the new scheme.

–Insights: The analysis provided insights into the relative

performance of each protocol, allowing for conclusions

about the most efficient cryptographic schemes for IoT

devices with limited resources. In particular, the proposed

Salsa20-Blake2b scheme demonstrated superior

performance in terms of faster encryption times, lower CPU

cycles, and higher throughput compared to the other

protocols.

6.3 Rationale for Dual Key Sizes

In our experimental framework, we evaluated encryption

protocols using both 128-bit and 256-bit key sizes. This

dual-key approach serves two main objectives:

–Security Margin:

–128-bit Keys: Widely regarded as secure for most

practical applications, 128-bit keys offer robust

protection against brute-force attacks while keeping

computational overhead low—a critical factor for

resource-constrained devices such as IoT endpoints.

–256-bit Keys: Providing a higher security margin,

256-bit keys are particularly relevant in contexts with

elevated threat models or where data must remain

secure over long periods (e.g., against future quantum

adversaries). Although the increased key length may

introduce slightly higher computational demands, it

offers additional protection where needed.

–Performance Trade-offs: The experimental results reveal

that for many encryption algorithms (e.g., Salsa20, GCM,

and TinyAES), the differences in throughput, CPU cycles,

and encryption time between 128-bit and 256-bit keys are

marginal. This suggests that, in many cases, the extra

security provided by a 256-bit key does not incur a

significant performance penalty—even on devices with

limited computational resources. However, even minor

differences may be important in extremely

energy-constrained environments.

6.4 Security vs performance trade-off

Lightweight encryption protocols are particularly well-suited for

edge devices, where computational resources, memory, and

energy are constrained. At the edge, these protocols efficiently

secure data transmissions without overwhelming the device,

making them an excellent choice for real-time processing and

local communication. However, when data moves beyond the

edge—specifically when it is transmitted to or stored in the

cloud—the security requirements typically become more

stringent. In cloud environments, where computational overhead

is less of a concern, employing more robust encryption schemes

is advisable. This is because cloud systems are exposed to a

broader threat landscape, including sophisticated attacks that

lightweight protocols might not sufficiently mitigate.
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Table 2: Comparing the new scheme with other protocols (AES- GCM, AES- EAX, ChaCha20-Poly1305, AES-CCM8, TinyAES) with 256-bit key

Image Size Lowest CPU Cycles Highest Throughput Lowest Encryption Time

1KB Our New Scheme Our New Scheme TinyAES (Our scheme is second and near to TinyAES)

5KB Our New Scheme Our New Scheme Our New Scheme (TinyAES is very near to our scheme)

10KB Our New Scheme Our New Scheme Our New Scheme

Table 3: Comparing the new scheme with other protocols (AES-EAX, AES-GCM,AES-CCM8, TinyAES-HMAC, SPECK-HMAC, SIMON-HMAC, ASCON) with 128-bit key.

Image Size Lowest CPU Cycles Highest Throughput Lowest Encryption Time

1KB Our New Scheme Our New Scheme (SPECK

And SIMON protocols are

very near to our scheme)

TinyAES (Our scheme is second and near to TinyAES)

5KB Our New Scheme Our New Scheme Our New Scheme (TinyAES is very near to our scheme)

10KB Our New Scheme Our New Scheme Our New Scheme

7 Conclusion And Future Research

The raw data and subsequent analysis highlight the practical

trade-offs involved in selecting encryption protocols for IoT

applications. While more traditional encryption methods, such

as AES-based schemes, offer strong security, they often come

with significant computational overhead, making them less

suitable for resource-constrained IoT devices. The

Salsa20-Blake2b scheme, being lightweight, showed promising

results, offering lower CPU cycles, faster encryption, and higher

throughput, making it an ideal choice for IoT environments.

However, the condition of using secure physical environments

may not be directly relevant in cloud-based MQTT brokers,

where different security considerations are at play. This

difference requires further study to better understand the

security dynamics in MQTT cloud brokers and their

implications on the choice of encryption schemes. Additionally,

this opens future research lines related to using the

Salsa20-Blake2b scheme at the edge, where IoT devices operate

in resource-constrained environments.

This study emphasizes that encryption strategies must be

carefully aligned with the deployment context. At the edge,

where devices face limited resources, lightweight encryption not

only ensures acceptable performance but also meets the

immediate security needs. However, as data transitions from

these localized environments to cloud infrastructures, the

security requirements evolve. Cloud-based systems operate

under a broader threat landscape, necessitating more robust

encryption measures to protect against sophisticated attacks.

Future research directions might invovle hybrid encryption

architectures that integrate lightweight encryption at the edge

with stronger, more comprehensive encryption protocols for

cloud communications, ensuring end-to-end data security.

Another direction is related to extensive real-world studies to

assess the performance and security of the Salsa20-Blake2b

scheme in diverse operational environments, particularly in

scenarios with variable physical security conditions.
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Table 4: Appendix 1

Protocol Image Size Average

Throughput

Average

CPU Cycles

Average

Encryption

Time

Number Of

Runs

Number Of

Messages Per Run

Key Size

Salsa20 10KB 26149.91 94615315.2 95.676 10 100 256-bit

Salsa20 10KB 26151.057 94649266.2 95.651 10 100 128-bit

CCM8 10KB 26010.281 99483501 105.952 10 100 256-bit

CCM8 10KB 26009.129 100950239.1 108.025 10 100 128-bit

ChaCha20-

Poly1305

10KB 26032.733 101475664.1 100.631 10 100 256-bit

GCM 10KB 26041.045 102810133.7 109.703 10 100 128-bit

GCM 10KB 26040.961 104287283.6 111.259 10 100 256-bit

EAX 10KB 26041.29cm2 151693341.6 138.104 10 100 128-bit

EAX 10KB 26038.991 151889348.1 135.843 10 100 256-bit

TinyAES 10KB 25963.324 229554006.7 109.229 10 100 128-bit

TinyAES 10KB 25963.619 254852205.5 115.03 10 100 256-bit

ascon 10KB 43.504 16487610258 2435.564 10 100 128-bit

SPECK 10KB 23545.237 18487802953 3287.174 10 100 128-bit

SIMON 10KB 22924.193 25533917382 4055.224 10 100 128-bit

Salsa20 1KB 2827.624 29783764.3 82.791 10 100 128-bit

Salsa20 1KB 2827.314 30621037.7 78.912 10 100 256-bit

TinyAES 1KB 2639.649 40078871.1 76.21 10 100 128-bit

ChaCha20-

Poly1305

1KB 2709.877 40090915.2 85.42 10 100 256-bit

TinyAES 1KB 2639.339 41323512 73.655 10 100 256-bit

CCM8 1KB 2429.2 47089176.1 100.063 10 100 128-bit

CCM8 1KB 2686.294 47097224.7 92.273 10 100 256-bit

GCM 1KB 2717.599 53618149.7 98.533 10 100 256-bit

GCM 1KB 2718.008 54018473.3 106.628 10 100 128-bit

EAX 1KB 2717.53 99860519.2 125.227 10 100 256-bit

EAX 1KB 2451.484 100498533.9 135.028 10 100 128-bit

SPECK 1KB 2819.263 1461976906 404.767 10 100 128-bit

ascon 1KB 46.989 1948811951 465.429 10 100 128-bit

SIMON 1KB 2819.215 2471199223 555.588 10 100 128-bit

Salsa20 5KB 13049.017 59372831.8 94.54 10 100 128-bit

Salsa20 5KB 13047.631 61438767.3 87.035 10 100 256-bit

ChaCha20-

Poly1305

5KB 12938.185 66666744.9 91.453 10 100 256-bit

CCM8 5KB 12915.906 69077373 108.351 10 100 128-bit

CCM8 5KB 11673.362 70072261.9 101.108 10 100 256-bit

GCM 5KB 12244.41 74000954.6 101.406 10 100 256-bit

GCM 5KB 11671.593 76274281.7 111.761 10 100 128-bit

TinyAES 5KB 12861.428 121269896.7 95.493 10 100 128-bit

EAX 5KB 12947.208 122832191.3 138.758 10 100 128-bit

EAX 5KB 12945.722 126049102.1 129.406 10 100 256-bit

TinyAES 5KB 12859.947 133649650.8 90.552 10 100 256-bit

SPECK 5KB 11316.471 7632311131 1389.327 10 100 128-bit

ascon 5KB 45.193 8550672327 1395.252 10 100 128-bit

SIMON 5KB 12302.669 12279359186 2003.317 10 100 128-bit
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