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Abstract: This paper develops a stochastic SIRI epidemic model that incorporates nonlinear relapse dynamics, logistic population

growth, and a bilinear incidence rate. We begin by establishing the existence and uniqueness of a positive global solution, ensuring the

model’s well-posedness. Subsequently, we derive sufficient conditions that determine whether the disease will persist in the population

or eventually become extinct. These theoretical results are rigorously analyzed and validated through numerical simulations, which

illustrate the interplay between key model parameters and epidemic outcomes. Our findings provide valuable insights into the complex

dynamics of infectious diseases with relapse and population regulation.
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1 Introduction

Millions of people die each year from cholera, respiratory
infections, measles, malaria, and dengue fever in diverse
parts of the world. This is enormously happening in many
countries with weak health care systems. In 2011, WHO
estimated there were 1.5 million deaths from tuberculosis,
1.2 million from HIV/AIDS, and nearly half a million
mortalities from malaria. The high epidemic mortality
rate has significant implications for life expectancy and
the economic system in the concerned countries. For
example, the ongoing Coronavirus (COVID-19) caused a
deep international crisis with nearly seven million deaths
resulting in global health problems and changes in
lifestyle. Supporting public health authorities in making
informed decisions during crises requires diverse
scientific approaches. Mathematical modeling, both a
methodological tool and a scientific discipline, is
uniquely suited to this challenge. The classical methods
employing experimental and statistical approaches may
not be sufficient, but the use of the dynamic models may
provide an additional understanding of the transmission
mechanisms of an epidemic. In 1911, S. R. Ross, applied
his discovery of malaria transmission between humans
and mosquitoes to explore the effectiveness of different
intervention methods through mathematical modeling.

For this discovery, Ross received the Nobel Prize in 1902.
The development of a model for infectious disease spread
marked a turning point in mathematical epidemiology,
opening doors to previously unimaginable levels of
analysis and prediction. In 1927 [1], public health doctor
W.O. Kermack and biochemist A.G. McKendrick
collaborated to publish a groundbreaking system for
modeling the spread of epidemics by direct contact. Their
model, focusing on the dynamics of susceptible,
infectious, and recovered individuals, provided a simple
yet powerful framework that researchers have since
analyzed and improved upon in various studies. These
developments include intricate models such as
SIR,SIS,SEIR,SIRS,SVIS, etc. (see for instance [2,3,4,
5,6,7,8]), which allow for deeper investigation of the
transmission dynamics of infectious diseases within a
population. In certain diseases like tuberculosis and
herpes, recovered individuals can become infectious
again due to the reactivation of a lingering infection. This
phenomenon, known as relapse, is caused by the
reactivation of previously dormant pathogens [9].
Diseases with potential for relapse, can be modeled using
compartmental models, including the SIRI model. These
models, often composed of three basic compartments
representing Susceptible S, Infected I, and Recovered R

individuals, track disease dynamics and evaluate

∗ Corresponding author e-mail: mouadesseroukh@gmail.com

c© 2025 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/190401


740 M. Esseroukh et al.: Logistic Growth and Relapse in the Stochastic Dynamics...

interventions. SIRI models are one specific type of
compartmental model with strengths in understanding
infectious diseases where recovered individuals can
become infectious again. If a susceptible individual
encounters an infectious person, they have a chance of
becoming infected, moving from the S to the I group.
After a certain period of infection, typically representing
the duration of symptoms and infectivity, individuals
transition from the I group to the R group, representing
recovery. However, in diseases like tuberculosis and
herpes, recovered individuals in the R group may lose
their immunity over time and Relapse into the infectious I

group As a result of the reawakening of a dormant
pathogen. Pioneering work by Tudor [10] established the
first compartmental models incorporating relapse,
employing a bilinear incidence rate within a constant total
population. Building on SIRI models, Sanchez et al. [11]
presented a novel model for the spread of behaviors,
specifically focusing on drinking habits. Their model
incorporated social interactions within shared drinking
environments and included a non linear relapse function.
The model can be represented as







dS = [µ − µS−β SI]dt,
dI = [−(µ +λ )I+β SI+ δRI]dt,
dR = [−µR+λ I− δRI]dt,

(1)

in this system, the parameters can be interpreted as µ and
β represent positive constants describing the birth rate
and infection coefficient, respectively. λ and δ represents
the recovery rate of the infected individuals and the loss
of immunity rate (relapse rate), respectively. δRI captures
the rate at which individuals transition from the recovered
state R back to the infected state I. β SI signifies the
bilinear rate of transmission from susceptible individuals
S to infected individuals I. While natural populations may
initially experience exponential growth, such expansion
cannot last forever. However, resource limitations,
stabilize populations at a sustainable level known as the
carrying capacity. Studies like [12] and [13] demonstrate
the utility of logistic growth models in forecasting
COVID-19 cases, with the former focusing on Egypt and
Oman, and the latter investigating Alpha variant
transmission dynamics in England. Several researches
have integrated epidemiological models incorporating
logistic growth. Wang et al. [14] examined an SIR model
incorporating a susceptible population characterized by
logistic growth and bilinear incidence rate. In a similar
vein, Xu et al. [15] delved into a delayed SEIS model
featuring logistic growth and saturation incidence,
proving the stability of both disease-free and persistent
states. Additionally, Perez et al. [16] further explored an
SIR epidemic model incorporating a saturated treatment
rate, logistic growth, and a nonlinear incidence rate, while
also exploring local stability and various bifurcation
types. Verhulst developed a logistic growth model [17],
which defines the equation for the rate of population

growth in the following way

dN(t) = rN

(

1− N

K

)

dt,

where r represents the intrinsic growth rate of the
population and K denotes the carrying capacity of the
environment. This equation expresses how the population
size N changes over time using the growth rate r. The
population size is proportional to K. The importance of
this equation lies in its consideration of the negative
feedback mechanism experienced when larger and
smaller populations vie for identical resources. When
populations approach their carrying capacity,the
emergence of new offspring outpaces the available
resources. For diseases with a high mortality rate, using
logistic growth as a framework to estimate the influx of
susceptible individuals is more effective (see, for
instance, [18,19,20,21,22]). Considering this, our
operational hypothesis assumes that the vulnerable
population in any nation adheres to the logistic growth
model. To support this hypothesis, we propose a SIRI

epidemic model incorporating logistic growth and
nonlinear relapse. This model, given by the following
system, includes positive constant parameters, with r > µ



























dS =

[

rS

(

1− S

K

)

− µS−β SI

]

dt,

dI = [−(µ +λ )I+β SI+ δRI]dt,

dR = [−µR+λ I− δRI]dt.

(2)

The unpredictable and stochastic nature of real-life events
motivates the development of stochastic models.
Consequently, numerous researchers have employed
various parameter perturbation methods to develop
stochastic epidemic models[23,24,25,26,27,28,29]. In
line with this, Lahrouz and Settati [30,31] examined a
model incorporating SIRI framework with nonlinear
recovery rate to account for relapse behavior. To account
for environmental fluctuations (see [32,33,34,35,36,37]),
we introduce variability into parameters δ and β of the
model (2), that is

β −→ β +σ1dB1 and δ −→ δ +σ2dB2,

where σ1 and σ2 representing the respective intensities of
environmental white noises affecting the system. Here,
σ1 > 0 and σ2 > 0 to ensure positive intensities.
Additionally, B1(t) and B2(t) denote independent
standard Brownian motions. By incorporating these noise
terms into the previously defined system (2), we arrive at
the following stochastic model


























dS =

[

rS

(

1− S

K

)

−µS−βSI

]

dt −σ1SIdB1,

dI = [−(µ +λ )I +βSI +δRI]dt +σ1SIdB1 +σ2RIdB2,

dR = [−µR+λ I −δRI]dt −σ2RIdB2.

(3)
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The paper is structured as follows Section 2 demonstrates
the existence of a unique global positive solution for
system (3). In Section 3, we investigate the conditions
under which the disease becomes extinct in our model.
Section 4 delves into the concept of persistence in mean.
Finally, Section 5 discusses our theoretical findings and
provides numerical simulations to illustrate these results.

2 Existence and uniqueness of the solution

In this study section, we focus on validating the presence
and uniqueness of a globally positive solution to the
equation represented by (3) for all positive initial values.
This involves investigating the existence and
distinctiveness of such a solution in all possible scenarios.
Denote the meaningful domain for system (3) by

∆ =

{

x ∈R
3
+;x1 + x2 + x3 <

rK

4µ

}

.

The following theorem ensures the well-posedness of the
model (3).

Theorem 1.Let (S0, I0,R0) ∈ ∆ , then the system (3)
admits a unique solution (S(t), I(t),R(t)) for t ≥ 0 and

this solution remains in ∆ with probability 1.

Proof. Let (S0, I0,R0) ∈ ∆ . The total population in system
(3) verifies the equation

dN = [−µN + rS− r

K
S2]dt.

Then, if (S(s), I(s),R(s)) ∈ R
3
+ for all 0 ≤ s ≤ t almost

surely, and using the following inequality
rK

4
≥ rS− r

K
S2,

we get

dN(s)≤ (−µN +
rK

4
)ds a.s.,

hence

N(t)≤ rK

4µ
+

(

N0 −
rK

4µ

)

e−µt a.s..

Starting from S(0)+ I(0)+R(0) ≤ rK

4µ
, it can be readily

demonstrated that

S(t)+ I(t)+R(t)≤ rK

4µ
, for all t ≥ 0 a.s.. (4)

Since the coefficients of the system (3) are locally
Lipschitz continuous, for any given initial value
(S0, I0,R0) ∈ ∆ , there is a unique local solution
(S(t), I(t),R(t)) on t ∈ [0,τe) , where τe is the explosion
time.
Let ε0 > 0 such that S0, I0,R0 > ε0. For ε ≤ ε0

considering the stoping times

τε = inf{t ∈ [0,τe) ,S(t)≤ ε orI(t)≤ ε orR(t)≤ ε}

and

τ = lim
ε→0

τε .

Consider the function V defined for (S, I,R) ∈
(

0,
rK

4µ

)3

by

V (S, I,R) =− ln

(

4µS

rK

)

− ln

(

4µI

rK

)

− ln

(

4µR

rK

)

.

Applying Ito’s formula we obtain,
for all t ≥ 0,s ∈ [0, t ∧ τε ]

dV =

[

−r+
rS(s)

K
+µ +β I +

σ2
1 I2(s)

2

]

ds

+

[

µ +λ −βS(s)−δR(s)+
σ2

1 S2(s)

2
+

σ2
2 R2(s)

2

]

ds

+

[

µ − λ I(s)

R(s)
+δ I(s)+

σ2
2 R2(s)

2

]

ds

+σ1(I(s)−S(s))dB1(s)+σ2(I(s)−R(s))dB2(s),

≤
[

3µ +λ +
rS(s)

K
+(β +δ )I(s)+

σ2
1 (I

2(s)+S2(s))

2

+
σ2

2 (I
2(s)+R2(s))

2

]

ds+σ1(I(s)−S(s))dB1(s)

+σ2(I(s)−R(s))dB2(s).

Using (4) we affirm that

S(s), I(s),R(s) ∈
(

0,
rK

4µ

)

for alls ∈ [0, t ∧ τε ] a.s..

Therefore

dV ≤ k+σ1(I(s)− S(s))dB1(s)

+σ2(I(s)−R(s))dB2(s) a.s.,

where

k = 3µ +λ +
r2

4µ
+

(β + δ )rK

4µ
+

r2K2(σ2
1 +σ2

2 )

8µ2
.

Hence, by integration we obtain

V (S(s), I(s),R(s))−V (S(0), I(0),R(0))≤ ks+Ms a.s..

Since

Ms =
∫ s

0
σ1(I(u)− S(u))dB1(u)

+

∫ s

0
σ2(I(u)−R(u))dB2(u)
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is mean zero process, by taking the expectation of both
parts of the above inequality, we deduce that for all t ≥ 0

E [V (S (t ∧ τε ) , I (t ∧ τε) ,R(t ∧ τε ))]≤ k(t ∧ τε )+V0,

≤ kt +V0.
(5)

Follows that V (S (t ∧ τε) , I (t ∧ τε ) ,R(t ∧ τε))> 0, hence

E [V (S (t ∧ τε) , I (t ∧ τε) ,R(t ∧ τε ))]

= E
[

V (S (t ∧ τε) , I (t ∧ τε) ,R(t ∧ τε))χ(τε≤t)

]

+E
[

V (S (t ∧ τε ) , I (t ∧ τε) ,R(t ∧ τε ))χ(τε>t)

]

,

≥ E
[

V (S (τε) , I (τε ) ,R(τε))χ(τε≤t)

]

,

here, χA represents the characteristic function of set A.
It’s important to recognize that a component of
(S (τε) , I (τε ) ,R(τε )) equals ε , hence

V (X (S (τε) , I (τε ) ,R(τε )))≥− ln

(

4µε

rK

)

.

Thereby

E [V (S (τε ) , I (τε) ,R(τε ))]≥− ln

(

4µε

rK

)

P(τε ≤ t) .

(6)
By combining (5) with (6), we deduce for all t ≥ 0

P(τε ≤ t)≤ −(kt +V0)

ln

(

4µε

rK

) .

Letting ε → 0, one has P(τ ≤ t) = 0 for all t ≥ 0. This
implies that P(τ = ∞) = 1. Since τe ≥ τ , it follows that
τe = τ = ∞ a.s.. Wich concludes the proof of the theorem.

3 Extinction of disease

When examining the dynamics of a stochastic epidemic
model, a notable scenario arises when the threshold equals
one, remaining untreated in all instances. To address this,
we present an approach based on stopping times τε and τ ,
introducing two positive numbers

Rδ =
δ rK

4µ

(

µ +λ +
1

2

(

σ2rK

4µ

)2
) ,

Rβ =
β rK

4µ

(

µ +λ +
1

2

(

σ1rK

4µ

)2
) .

Theorem 2.For any given initial values

(S(0), I(0),R(0)) ∈ ∆ , if any of the followings

assumptions

(C1) Rδ = 1, δ −β ≥ σ2
2

rK

4µ
and β ≥ σ2

1

and

(C2) Rβ = 1, β − δ ≥ σ2
1

rK

4µ
and δ ≥ σ2

2

holds, then we get

lim
t→∞

I(t) = 0 a.s..

Proof.We consider a positive constant ε satisfy the
condition ε ∈ (0,1)∩ (0, I0).
Define two stopping times

τ1 = inf{t ≥ 0, I(t)≤ ε}, τ ′1 = inf{t ≥ τ1, I(t)≥ ε} .

The first step in our proof involves establishing that
E(τ1)< ∞.
For all T > 0 and t ≤ T ∧ τ1, we have

I(t)≥ ε a.s.. (7)

Applying Ito’s lemma, we can obtain the following
equation

d log(I) =

(

−(µ +λ )+β S+ δR− 1

2

(

σ2
1 S2 +σ2

2 R2
)

)

dt

+σ1SdB1 +σ2RdB2,

= φ(S,R)dt +σ1SdB1 +σ2RdB2.

Where φ is defined on

(

0,
rK

4µ

)

by

φ(x,y) =−(µ +λ )+β x+ δy− 1

2

(

σ2
1 x2 +σ2

2 y2
)

. (8)

If (C1) holds, in view of β ≥ σ2
1 , the function x 7→ φ(x,.)

is clearly an increasing function. Since S <
rK

4µ
−R <

rK

4µ
,

we can therefore conclude that

d log(I)≤
[

β
rK

4µ
− (µ +λ )− 1

2
σ2

1

(

rK

4µ

)2

+

(

δ −β +σ2
1

rK

4µ

)

R− 1

2

(

σ2
1 +σ2

2

)

R2
]

dt

+σ1SdB1 +σ2RdB2,

, F(R)dt +σ1SdB1 +σ2RdB2.

(9)

Since δ − β ≥ σ2
2

rK

4µ
, the function F is increasing on

(0,
rK

4µ
).

By (7) we have R ≤ rK

4µ
(1− ε), injecting this in (9) leads
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to

d logI ≤
[

−1

2

(

σ2
1 +σ2

2

)

(

rK

4µ
(1− ε)

)2

+

(

δ −β +σ2
1

rK

4µ

)

(
rK

4µ
(1− ε))

+β
rK

4µ
− (µ +λ )− 1

2
σ2

1

(

rK

4µ

)2
]

dt

+σ1SdB1 +σ2RdB2,

=

[(

µ +λ +
1

2
σ2

2

(

rK

4µ

)2
)

(Rδ − 1)

+ε

(

rK

4µ

)(

rK

4µ
σ2

2 +β − δ

)

−ε2

2

(

rK

4µ

)2
(

σ2
1 +σ2

2

)

]

dt

+σ1SdB1 +σ2RdB2,

=

[

ε

(

rK

4µ

)(

rK

4µ
σ2

2 +β − δ

)

−ε2

2

(

rK

4µ

)2
(

σ2
1 +σ2

2

)

]

dt

+σ1SdB1 +σ2RdB2.

By integrating the given inequality from 0 to τ1 ∧ T and
then taking the expectation on both sides, we obtain

ε

[

(
rK

4µ
)

(

δ −β − rK

4µ
σ2

2

)

+
ε

2
(

rK

4µ
)2
(

σ2
1 +σ2

2

)

]

E(T ∧ τ1)

≤−E(log I (T ∧ τ1))+ log I(0).

Letting T −→+∞ and applying Fatou’s lemma, we get

E(τ1)≤
− log(

rK

4µ
ε)+ log I(0)

ε

[

(
rK

4µ
)

(

δ −β − rK

4µ
σ2

2

)

+
ε

2
(

rK

4µ
)2
(

σ2
1 +σ2

2

)

] ,

< ∞.

Next, we define a sequence of stopping times τn and τ ′n for
n > 1.

τ ′n = inf{t ≥ τn, I(t)≥ εn} ,
τn+1 = inf

{

τn < t < τ ′n, I(t)≤ εn+1
}

.

By using similar reasoning as the initial step of the proof,
we can establish the result.

E(τn+1)−E(τn)

≤
− log(

rK

4µ
ε)+ log I(0)

εn+1

[

(
rK

4µ
)

(

rK

4µ
σ2

2 +δ −β

)

+
εn+1

2
(

rK

4µ
)2
(

σ2
1 +σ2

2

)

]
.

By using induction, we can conclude that E(τn) < ∞ for
alln ∈ N. The sequence (τn)n∈N is, by definition,

increasing. As a consequence τn −→ τ∞ and the family
(τn < ∞) is decreasing. This implies that

P

(

∞
⋂

n=1

(τn < ∞)

)

= lim
n→∞

P(τn < ∞) = 1.

We assert that P(τ∞ < ∞) = 0. To achieve a contradiction,
let us consider that there exists ω ∈ (τ∞ < ∞). For such
ω , we have I (τn(ω)) = εn for all n ∈ N

∗. By utilizing the
continuity of I(t) and taking the limit, we obtain

I (τ∞(ω)) = 0.

Define τ0 = inf{t > 0, I(t) = 0}. This implies that
(τ∞ < ∞)⊂ (τ0 < ∞). Consequently,

P(τ0 < ∞)≥ P(τ∞ < ∞)> 0.

This leads to a contradiction, as it conflicts with the fact
that P(τ0 = ∞) = 1. Therefore, we conclude that

P(τ∞ < ∞) = 0. (10)

We can verify that

P
(

Ω ′)= 1 where Ω ′ =
∞
⋂

n=1

(τn < ∞) . (11)

From (10) and (11), it follows P((τ∞ = ∞)∩Ω ′) = 1.

Consider ω ∈ (τ∞ = ∞)∩Ω ′, with t > 0,η > 0,

and n0 =

[

logη

logε

]

, where [·] denotes the integer part. For

t ≥ τn0
(w), there exists an n such that

n ≥ n0 and τn(w)≤ t ≤ τn+1(w),

this implies

εn+1 ≤ I(t,w)≤ εn ≤ εn0 = ε
logη
logε ε = η ,

thus, we have

lim
t→∞

I(t,w) = 0a.s..

Similarly, if conditions (C2) holds, it can be shown that
lim
t→∞

I(t,w) = 0 almost surely as well.

Now we will analyze the disease-free dynamics under
these two assumptions

(C3) Rδ < 1,δ −β ≥ σ2
2

rK

4µ
and β ≥ σ2

1

and

(C4) Rβ < 1,β − δ ≥ σ2
1

rK

4µ
and δ ≥ σ2

2 .

Theorem 3.Suppose that either (C3) or (C4) holds. Then,

for any given initial values (S(0), I(0),R(0)) ∈ ∆ , the

disease-free equilibrium state E0(1,0,0) of system (3) is

globally asymptotically stable in probability.
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Proof.Let us consider the Lyapunov function

V = a1(r− µ − r

K
S)2 + kI1/k + a2R2,

where k > 1 and a1,a2 are positive constants that will be
determined appropriately. The differential operator L ,
acting on the function V , is given by

LV =− 2a1
r

K
(r− µ − r

K
S)[rS

(

1− S

K

)

− µS−β SI]

+ a1

( r

K

)2

σ2
1 S2I2 + I1/k [−(µ +λ )+β S+ δR

+
1

2

(

1

k
− 1

)

(

σ2
1 S2 +σ2

2 R2
)

]

+ 2a2R[−µR+λ I− δRI]+ a2σ2
2 R2I2.

Employing (S, I,R) ∈ ∆ and the inequality

I j ≤ I1/k
(

rK
4µ

) j−1/k

for j ∈ {1,2} yields to

LV ≤−2a1
r

K
S(r−µ − r

K
S)2 −2a2µR2 −2a2δR2I

+ I1/k

[

2a1β
r

K

(

rK

4µ

)2−1/k

(r+µ +
r2

4µ
)

+a1

( r

K

)2
(

rK

4µ

)4−1/k

σ2
1 +2a2λ

(

rK

4µ

)2−1/k

+a2

(

rK

4µ

)4−1/k

σ2
2 +

1

2k

(

rK

4µ

)2
(

σ2
1 +σ2

2

)

+

(

−(µ +λ )+βS+δR− 1

2

(

σ2
1 S2 +σ2

2 R2
)

)]

=−2a1
r

K
S(r−µ − r

K
S)2 −2a2µR2 −2a2δR2I

+ I1/k

[

a1
r

K

(

rK

4µ

)2−1/k(

2β

(

r+µ +
r2

4µ

)

+
( r

K

)

(

rK

4µ

)2

σ2
1

)

+
1

2k

(

rK

4µ

)2
(

σ2
1 +σ2

2

)

+a2

(

rK

4µ

)2−1/k
(

2λ +

(

rK

4µ

)2

σ2
2

)

+φ(S,R)

]

.

(12)

Suppose that (C3) holds. Given that β ≥ σ2
1 , the function

φ defined in (8) has the property that for any y ∈ (0, rK
4µ ),

the function x → φ(x,y) is increasing. Therefore, for any

(x,y) ∈ {x+ y ≤ rK
4µ }, we can conclude that

φ(x,y) ≤ φ(
rK

4µ
− y,y),

= β
rK

4µ
− (µ +λ )− 1

2
σ2

1 (
rK

4µ
)2

+

(

δ −β +σ2
1

rK

4µ

)

y− 1

2

(

σ2
1 +σ2

2

)

y2,

, F(y). (13)

Given that δ −β ≥ σ2
2

rK

4µ
, the function F is increasing on

(0,
rK

4µ
).

This implies F(y)< F( rK
4µ ).

Substituting this inequality into (13) yields

φ(x,y) ≤
(

δ
rK

4µ
− (µ +λ )− 1

2
σ2

2

(

rK

4µ

)2
)

.

By combining this inequality into (12), we obtain

LV (x) ≤ −2a1
r

K
S(r− µ − r

K
S)2

−2a2µR2 − 2a2δR2I +AI1/k. (14)

where

A = a1
r

K

(

rK

4µ

)2−1/k
(

2β

(

r+µ +
r2

4µ

)

+
( r

K

)

(

rK

4µ

)2

σ2
1

)

+a2

(

rK

4µ

)2−1/k
(

2λ +

(

rK

4µ

)2

σ2
2

)

+
1

2k

(

rK

4µ

)2
(

σ2
1 +σ2

2

)

+

(

δ
rK

4µ
− (µ +λ )− 1

2
σ2

2

(

rK

4µ

)2
)

.

Since the threshold Rδ < 1, we can find a sufficiently large
positive integer value for k such that

k >

(

rK
4µ

)2
(

σ2
1 +σ2

2

)

−δ rK
2µ + 2(µ +λ )+σ2

2

(

rK
4µ

)2
.

We can now strategically choose positive values for a1 and
a2 to be small enough to ensure that

a2 <−
1
2k

(

rK
4µ

)2
(

σ2
1 +σ2

2

)

+

(

δ rK
4µ − (µ +λ )− 1

2
σ2

2

(

rK
4µ

)2
)

(

rK
4µ

)2−1/k
(

2λ +
(

rK
4µ

)2

σ2
2

) ,

and

a1 <−
a2

(

rK
4µ

)2−1/k
(

2λ +
(

rK
4µ

)2
σ2

2

)

+ 1
2k

(

rK
4µ

)2 (
σ2

1
+σ2

2

)

+

(

δ rK
4µ − (µ +λ )− 1

2
σ2

2

(

rK
4µ

)2
)

r
K

(

rK
4µ

)2−1/k
(

2β

(

r+µ + r2

4µ

)

+
(

r
K

)(

rK
4µ

)2
σ2

1

) .

This manipulation in equation (14) results in all the

coefficients associated with (1 − S)2, I
1
k and R2 being

negative. Furthermore, assuming condition (C4) is
satisfied, we can leverage the fact that δ ≥ σ2

2 . This
property implies that the function y 7→ φ(.,y) is
monotonically increasing with respect to its second
argument y. Consequently, for any pair of values (x,y)
satisfying the constraint x+ y ≤ rK

4µ , we can conclude that
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φ(x,y) ≤ φ(x,
rK

4µ
− x),

= δ
rK

4µ
− (µ +λ )− 1

2
σ2

2 (
rK

4µ
)2

+

(

β − δ +σ2
2

rK

4µ

)

x− 1

2

(

σ2
1 +σ2

2

)

x2,

, G(x). (15)

Since β − δ ≥ σ2
1

rK

4µ
, the function G is increasing on

(0,
rK

4µ
), which means G(y) < G( rK

4µ ). Substituting this

inequality in (15) yields

φ(x,y) ≤
(

β
rK

4µ
− (µ +λ )− 1

2
σ2

1

(

rK

4µ

)2
)

.

Since Rβ < 1, then, by applying the same arguments as
before, we can easily verify that

LV (x) ≤ −2a′1
r

K
S(r−µ − r

K
S)2 −2a′2µR2

−2a′2δR2I +A′I1/k′ .

where

A′ = a′1
r

K

(

rK

4µ

)2−1/k
(

2β

(

r+µ +
r2

4µ

)

+
(

r

K

)

(

rK

4µ

)2

σ2
1

)

+a′2

(

rK

4µ

)2−1/k′
(

2λ +

(

rK

4µ

)2

σ2
2

)

+
1

2k′

(

rK

4µ

)2
(

σ2
1 +σ2

2

)

+

(

β
rK

4µ
− (µ +λ )− 1

2
σ2

1

(

rK

4µ

)2
)

,

k′ >

(

rK
4µ

)2
(

σ2
1 +σ2

2

)

−β rK
2µ + 2(µ +λ )+σ2

1

(

rK
4µ

)2
,

0 < a′2 <−
1

2k′
(

rK
4µ

)2
(

σ2
1 +σ2

2

)

+

(

β rK
4µ

− (µ +λ )− 1
2

σ2
1

(

rK
4µ

)2
)

(

rK
4µ

)2−1/k′
(

2λ +
(

rK
4µ

)2

σ2
2

) ,

and

0 < a′1 <−
a′2
(

rK
4µ

)2−1/k′(
2λ+

(

rK
4µ

)2
σ2

2

)

+ 1
2k′
(

rK
4µ

)2

(σ 2
1+σ 2

2 )+
(

β rK
4µ −(µ+λ )− 1

2 σ2
1

(

rK
4µ

)2
)

r
K

(

rK
4µ

)2−1/k′(
2β
(

r+µ+ r2

4µ

)

+( r
K )
(

rK
4µ

)2
σ 2

1

) .

Consequently, the coefficients of (1− S)2, I
1
k and R2 are

all negatives. As a consequence, based on the properties
established in Theorem 3, we can conclude that the proof
is complete.

4 Persistence

The most interesting topics in analyzing infectious
disease models often revolve around two key outcomes:

extinction and persistence. Section 3 addressed the
concept of extinction. In this section, we will focus on
demonstrating that the disease is persistent in mean. To
address this, we define a positive number

R =
r(β K + 4µ)

4µ

(

µ +λ +
1

2

(

rK

4µ

)2

(σ2
1 +σ2

2 )+
r2

4µ

) .

For analytical convenience, we introduce the following

notation < x >=
1

t

∫ t

0
x(s)ds.

Theorem 4.If R > 1 and β ≤ r

K
. Then for any given

initial value (S(0), I(0),R(0)) ∈ ∆ , the solution of system
(3) has the property that

(i) lim
t→∞

inf < I >≥

(

µ +λ +
1

2

(

rK

4µ

)2

(σ2
1 +σ2

2 )+
r2

4µ

)

(R−1)

µ +λ +β
a.s.,

(ii) lim
t→∞

inf < R >≥
λ

(

µ +λ +
1

2

(

rK

4µ

)2

(σ2
1 +σ2

2 )+
r2

4µ

)

(R−1)

(µ +δ
rK

4µ
)(µ +λ +β )

a.s..

Proof.Let consider the second equation of the system (3).
By integrating both sides of this equation, we get

I− I0

t
=− (µ +λ )< I >+β < SI >+δ < RI >

+
σ1

t

∫ t

0
SIdB1 +

σ2

t

∫ t

0
RIdB2.

(16)

Applying Ito’s formula to model (3) yields the following
equations

d lnS = [r− r

K
S− µ −β I]dt −σ1IdB1 +

σ2
1

2
I2dt, (17)

and

d ln I = [−(µ +λ )+β S+ δR− σ2
1

2
S2 − σ2

2

2
R2]dt

+σ1SdB1 +σ2RdB2. (18)

Taking the integrals of both sides of equations (17) and
(18) over the time interval from 0 to t, and then dividing
both sides by t, leads to

lnS(t)− lnS(0)

t
= r− r

K
< S >−µ −β < I >

+
σ2

1

2
< I2 >−σ1

t

∫ t

0
IdB1, (19)

ln I(t)− lnI(0)

t
= −(µ +λ )+β < S >+δ < R >

−σ2
1

2
< S2 >−σ2

2

2
< R2 >

+
σ1

t

∫ t

0
SdB1 +

σ2

t

∫ t

0
RdB2. (20)
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We combine (16), (19), and (20) and derive that

lnS(t)− lnS(0)

t
+

ln I(t)− ln I(0)

t
+

I− I0

t

=r− (µ +λ )− (µ +λ +β )< I >+(β − r

K
)< S >

+ δ < R >−σ2
1

2
< S2 >+

σ2
1

2
< I2 >−σ2

2

2
< R2 >

+β < SI >+δ < RI >−σ1

t

∫ t

0
IdB1 +

σ1

t

∫ t

0
SdB1

+
σ2

t

∫ t

0
RdB2 +

σ1

t

∫ t

0
SIdB1 +

σ2

t

∫ t

0
RIdB2,

≥ r

4µ
(β K + 4µ)−

(

µ +λ +
1

2
(

rK

4µ
)2(σ2

1 +σ2
2 )+

r2

4µ

)

− (µ +λ +β )< I >+
σ1

t

∫ t

0
(S+ SI− I)dB1

+
σ2

t

∫ t

0
(R+RI)dB2,

(21)

then

< I > ≥

(

µ +λ +
1

2

(

rK

4µ

)2

(σ2
1 +σ2

2 )+
r2

4µ

)

(R− 1)

µ +λ +β

+
1

µ +λ +β

(

1

t
M1(t)+

1

t
M2(t)−

lnS(t)− S(0)

t

− ln I(t)− I(0)

t
− I − I0

t

)

.

Where M1(t) = σ1

∫ t
0(S + SI − I)dB1 and

M2(t) = σ2

∫ t
0(R+RI)dB2.

By the strong law of large number theorem for
martingales (Lipster [38]) and the fact that

S(t), I(t),R(t) ∈
(

0,
rK

4µ

)

, which yields that

lim
t→∞

S(t)

t
= 0, lim

t→∞

I(t)

t
= 0,

lim
t→∞

M1(t)

t
= 0 a.s., lim

t→∞

M2(t)

t
= 0 a.s.,

therefore,

lim
t→∞

inf < I >≥

(

µ +λ +
1

2

(

rK

4µ

)2

(σ2
1 +σ2

2 )+
r2

4µ

)

(R−1)

µ +λ +β
a.s. (22)

This validates the necessary assertion (i).
(ii) Integrating the third equation of system (3) yields

R−R0

t
=−µ < R >+λ < I >−σ < RI >−σ1

t

∫ t

0
RIdB2,

≥−(µ +δ
rK

4µ
)< R >+λ < I >−σ1

t

∫ t

0
RIdB2.

(23)

Then

< R >≥ 1

µ + δ
rK

4µ

(

λ < I >−R(t)−R(0)

t

−σ2

t

∫ t

0
R(u)I(u)dB2(u)

)

.

According to the strong law of large number theorem for

martingales and the fact that R ∈
(

0,
rK

4µ

)

, we derive

lim
t→∞

(

R(t)−R(0)

t
− σ2

t

∫ t

0
R(u)I(u)dB2(u) = 0

)

a.s..

Then, applying (i), we obtain

lim
t→∞

inf < R >≥
λ

(

µ +λ +
1

2

(

rK

4µ

)2

(σ2
1 +σ2

2 )+
r2

4µ

)

(R−1)

(µ +δ
rK

4µ
)(µ +λ +β )

a.s..

This completes the proof of the Theorem 4.

5 Simulations

This section presents numerical simulations to visualize
the behavior predicted by our main results. We will
employ a numerical method specifically designed for
stochastic differential equations to approximate the
solutions of system (3). This method, known as the
Milstein method. By applying this method to system (3),
we obtain a discretized equation that can be used to
generate numerical solutions.



























































































Sk+1 =Sk +

[

rSk

(

1− Sk

K

)

−µSk −βSkIk

]

∆ t

−σ1SkIk

√
∆ tτk −

σ2
1

2
SkIk

(

τ2
k −1

)

∆ t,

Ik+1 =Ik +[−(µ +λ )Ik +βSkIk +δRkkk]∆ t

+σ1SkIk

√
∆ tτk +

σ2
2

2
SkIk

(

τ2
k −1

)

∆ t

+σ2RkIk

√
∆ tξk +

σ2
2

2
RkIk

(

ξ 2
k −1

)

∆ t,

Rk+1 =Rk +[−µRk +λ Ik −δβRkIk]∆ t

−σ2RkIk

√
∆ tξk −

σ2
2

2
RkIk

(

ξ 2
k −1

)

∆ t.

Here ,τk and ξk (k = 1,2, ...) represent independent
random variables. These variables follow a normal
distribution N(0,1).

Example 1.For system (3), we choose K = 1.6, r = 0.3,
µ = 0.1, λ = 0.4 and initial value
(S(0), I(0),R(0)) = (0.7,0.3,0.1).
Case 1: Let σ1 = 0.3,σ2 = 0.35,δ = 0.4902 and β = 0.3.

Then Rδ = 1, β ≥ σ2
1 and δ −β ≥ σ2

2

rK

4µ
.
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Case 2: Let σ1 = 0.45,σ2 = 0.2,δ = 0.1 and β = 0.5382.

Then Rβ = 1,δ ≥ σ2
2 and β − δ ≥ σ2

1

rK

4µ
.

From upon Theorem 2, we can establish that the
disease-free equilibrium state, denoted by E0(1,0,0), of
the system described by equation (3) is globally
asymptotically stable in probability. This implies that
with probability one (almost surely), solutions to the
system will converge to this disease-free state over time.
Furthermore, as illustrated in Figure 1, the trajectories of
the solution paths for the system (3) visually demonstrate
their convergence towards the equilibrium point
E0(1,0,0).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

S(t)

I(t)

R(t)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

S(t)

I(t)

R(t)

Fig. 1: Trajectories of S(t), I(t), and R(t) for the scenario
presented in Example 1. The upper panel shows the path of
these variables over time in Case 1, while the lower panel
displays the corresponding paths in Case 2.

Example 2.The parameters K, r, µ and λ are identical to
those used in Example 1.
Case 1 : Let σ1 = 0.35,σ2 = 0.3,δ = 0.4 and β = 0.25.

Then Rδ = 0.8499 < 1, δ −β ≥ σ2
2

rK

4µ
and β ≥ σ2

1 .

Case 2 : Let σ1 = 0.35,σ2 = 0.25,δ = 0.2 and β = 0.4.

Then Rβ = 0.816 < 1, β − δ ≥ σ2
1

rK

4µ
and δ ≥ σ2

2 . From

Theorem 3, we can establish that the disease-free
equilibrium state, denoted by E0(1,0,0), of the system
described by equation (3) is globally asymptotically
stable in probability. This implies that with probability
one (almost surely), solutions to the system will converge
to this disease-free state over time.
Furthermore, as illustrated in Figure 2, the trajectories of
the solution paths for the system (3) visually demonstrate
their convergence towards the equilibrium point
E0(1,0,0).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

S(t)

I(t)

R(t)

0 20 40 60 80 100
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0.2

0.4

0.6

0.8

1

1.2

S(t)

I(t)

R(t)

Fig. 2: Trajectories of S(t), I(t), and R(t) for the scenario
presented in Example 2. The upper panel shows the path of
these variables over time in Case 1, while the lower panel
displays the corresponding paths in Case 2.

Example 3.The parameters K, r and µ are the same as
those specified in Example 1. Let’s select the parameters
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in system (3) as follows λ = 0.1, σ1 = 0.15,
σ2 = 0.1,δ = 0.3, β = 0.18 and initial value
(S(0), I(0),R(0)) = (0.7,0.3,0.1). Then R = 1.1694 > 1,

(4µ)2 − r(4µ +
σ2

2

2
K2) ≥ 0 and β ≤ r

K
. Theorem 4

implies that the disease being persistent in mean. Figure 3
supports this conclusion.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(t)

I(t)

R(t)

Fig. 3: Trajectories of S(t), I(t), and R(t) for the scenario
presented in Example 3.

6 Conclusion

In conclusion, this paper has successfully developed and
analyzed a novel stochastic SIRI epidemic model
incorporating nonlinear relapse dynamics, logistic
population growth, and a bilinear incidence rate. This
model represents a significant contribution to the field of
mathematical epidemiology, offering a more nuanced
understanding of disease transmission by considering the
complexities of relapse and population regulation.
Through rigorous mathematical analysis, we established
the existence and uniqueness of a global positive solution,
ensuring the model’s well-posedness and biological
relevance. Furthermore, our theoretical analysis provided
explicit conditions for disease extinction and persistence.
Theorem 2 states that if either of the conditions

(C1) Rδ = 1, δ −β ≥ σ2
2

rK

4µ
, β ≥ σ2

1

or

(C2) Rβ = 1, β − δ ≥ σ2
1

rK

4µ
, δ ≥ σ2

2

holds, then the infection will almost surely die out.
Conversely, Theorem 4 establishes that if R > 1 and

β ≤ r

K
, the disease persists with the following lower

bounds on the long-term averages of the infected and
recovered populations:

lim
t→∞

inf〈I〉≥

(

µ +λ + 1
2

(

rK
4µ

)2
(σ2

1 +σ2
2 )+

r2

4µ

)

(R−1)

µ +λ +β
a.s.

lim
t→∞

inf〈R〉≥
λ

(

µ +λ + 1
2

(

rK
4µ

)2
(σ2

1 +σ2
2 )+

r2

4µ

)

(R−1)

(µ +δ rK
4µ )(µ +λ +β )

a.s.

These theoretical findings were rigorously validated and
illustrated through numerical simulations, which
showcased the dynamic interplay between key model
parameters and epidemic outcomes. The numerical results
not only support our theoretical findings but also provide
valuable insights into the practical implications of the
model, allowing for a better understanding of how
different factors influence the spread and control of
infectious diseases with relapse. Future work could
extend this model by incorporating vaccination, treatment
strategies, or spatial heterogeneity. This work provides a
solid foundation for further investigations into the
dynamics of infectious diseases and offers valuable tools
for public health decision-making.

Acknowledgement

The authors express their sincere gratitude to the
anonymous reviewers for their invaluable comments and
constructive suggestions, which significantly enhanced
the caliber and integrity of our research endeavor.

References

[1] Kermack, W. O., McKendrick, A. G. (1927). A contribution

to the mathematical theory of epidemics. Proceedings of the

royal society of london. Series A, Containing papers of a

mathematical and physical character, 115(772), 700-721.

[2] Lahrouz, A., Omari, L., Kiouach, D. (2011). Global analysis

of a deterministic and stochastic nonlinear SIRS epidemic

model. Nonlinear Analysis: Modelling and Control, 16(1),

59-76.

[3] Lahrouz, A., Omari, L. (2013). Extinction and stationary

distribution of a stochastic SIRS epidemic model with non-

linear incidence. Statistics Probability Letters, 83(4), 960-

968.

[4] Lahrouz, A., Settati, A., El Fatini, M., & Tridane, A. (2021).

The effect of a generalized nonlinear incidence rate on the

stochastic SIS epidemic model. Mathematical Methods in the

Applied Sciences, 44(1), 1137-1146.

[5] Caraballo, T., Settati, A., El Fatini, M., Lahrouz, A., &

Imlahi, A. (2019). Global stability and positive recurrence of

a stochastic SIS model with Lévy noise perturbation. Physica
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(UAE).

Bilal El Khatib received
a Master of Mathematical
Engineering from the Faculty
of Sciences and Technology
(FSTT), Tangier (Morocco).
Prior to his Master’s degree,
he obtained a State Engineering
Diploma in Operations Research
and Decision Support from the

National Institute of Statistics and Applied Economics
(INSEA)in Rabat(Morocco).He has been enrolled
for a Ph.D. degree since 2020 at the Department of
Mathematics at Abdelmalek Essaâdi University (UAE).
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