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Abstract: In this study, the dynamical behavior of a two-strain SEIR epidemic model with fractional order of differentiation and

having general non-linear incidence rates. The mathematical representation of the epidemic model is given and the constant solution is

evaluated according to the reproduction number of the two strains. The boundedness and uniqueness of the solution are studied. The

stability of the model has been investigated by examining the stability of each constant solution of the system. Constructing appropriate

Lyapunov functions helps to investigate the global stability of the system’s constant solutions. A new numerical technique based on

approximating the Caputo fractional order derivative by difference schemes of a high-order approximation of the L2 type. This scheme

is called ”The Non-uniform L2 Fractional differentiation numerical scheme (NU L2 FDNS)” which is used to verify the analytically

proven results and also clarify the effect of system transactions on the control of the disease. Especially the vaccination rate controls

the disease very well.
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1 Introduction

Sometimes these days, infectious diseases surprise us with great challenges, despite progress in the field of treatment
and prevention. An example of this is what happened in the Corona pandemic, which the world was unable to confront
for many months. Knowing how the infection is transmitted, the duration of infection and the rate of contact between
individuals, and the dynamics of the spread of infection are essential to control the spread of this infection. Therefore,
many researchers were interested in studying mathematical models expressing the spread of diseases in general and
infectious ones in particular, [1,2,3,4]. The COVID-19 pandemic causes a frightening health and economic shock that
affected all countries and affected their health, economic, and political conditions. Therefore, researching the causes of
disease and finding appropriate treatments, vaccinations, and ways to reduce its spread were preoccupying the entire world.
Dias and Ratnayaka [5] studied the disease transmission, identified symptoms of the disease, and diagnosed the injured.
The effect of memory on the dynamics of epidemiology using Caputo’s concept is considered by many researchers. For
example, Saedian et al. [6], interested in studying the memory effect on the behaviour of the epidemic models using
Caputo’s concept. Also, Hikal et al [7] presented a fractional-order derivative of the COVID-19 model with a delay in
implementing the quarantine strategy.
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Fig. 1: Flow diagram of the General Two-Strain SEIR model.

With the occurrence of mutations in many pathogens of some diseases such as influenza [8], tuberculosis [9], and
HIV/AIDS [10,11,12]. This phenomenon may lead to the existence of two or more strains of pathogens of a disease.
Therefore, the mathematical expression of diseases caused by different strains must express the multiplicity of these
strains. Although these models that express the multiplicity of disease-causing strains are more complex, their study
is useful in understanding the conditions that allow coexistence between all strains. Various works on the multi-strain
SEIR model are presented. Amine [13], and Meskaf et al [14] used Lyapunov functions to study the stability of a two-
strain epidemic model with non-monotone incidence rates. And Bentaleb and Amine [15] studied a two-strain SEIR
epidemic model considering both bilinear and non-monotone incidence rates. Also Khyar and Allali [16] constructed
suitable Lyapunov functions to prove the global stability of the equilibrium points of the two-strain SEIR epidemic model
with general incidence rates.

In this work, the dynamic of time-fractional, nonlinear general incidence rates epidemic model with two-strain SEIR
is considered. Our model has the dynamic relation between the system variables illustrated in figure 1 and given by:

Dα
t S(t) = (1−θ )π − I1 f (S, I1)− I2g(S, I2)− δS+θ1RC,

Dα
t E1(t) = I1 f (S, I1)− (β1 + δ ) E1,

Dα
t E2(t) = I2g(S, I2)− (β2 + δ ) E2,

Dα
t I1(t) = β1E1 − (γ1 + δ1 + δ ) I1,

Dα
t I2(t) = β2 E2 − (γ2 + δ2 + δ ) I2,

Dα
t RC(t) = γ1I1 + γ2 I2 +θπ − (θ1 + δ )RC, 0 < α ≤ 1, (1)

where Dα
t is the fractional operator in the Caputo sense. Figure 1 gives the relations between the six different categories of

the system that are represented in equations in (1). The population is divided into the following, the number of susceptible
individuals class is S(t), the number of latent individuals of two strains is E1 (t) and E2 (t), the number of infected
individuals classes I1 (t) and I2 (t) and the number of recovered individuals is RC (t). The system parameters all are
positive. The parameter θ is the ratio of vaccinated individuals, π is the recruitment rate, δ is the normal rate of mortality,
θ1 is the rate from recovered to susceptible, β1 and β2 are the latency rates, γ1, and γ2 are the transfer rates from infected

classes to recovered class, δ1 and δ2 are death rates due to the disease, for strain 1 and strain 2 respectively. For the initial
conditions:

S (0)≥ 0,E1 (0)≥ 0,E2 (0)≥ 0, I1 (0)≥ 0, I2 (0)≥ 0 and RC (0)≥ 0, (2)

and X = [S (t) ,E1 (t) ,E2 (t) , I1 (t) , I2 (t) ,RC (t)] ∈ R+.
The general incidence rate for strain 1 is f (S, I1) and for strain 2 is g(S, I2). Assume that these general incidence rates

for the two strains satisfy the following conditions:

f (0, I1) = g(0, I2) = 0, for Ii ≥ 0, i ∈ 1,2, (3)

∂ f (S, I1)

∂S
> 0,

∂g(S, I2)

∂S
> 0,S > 0 and Ii ≥ 0, i ∈ 1,2, (4)

∂ f (S, I1)

∂ I1

≤ 0,
∂g(S, I2)

∂ I2

≤ 0,S > 0 and Ii ≥ 0, i ∈ 1,2. (5)

Assume the fractional order differential equations defined by the system

Dα
t X (t) = f (X) , α ∈ (0,1] , X ∈ Rn. (6)
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Definition 1.[17,18,19] The Caputo fractional derivative of a function u(t) of order α is given by

Dα
t u(t) =

1

Γ (1−α)

∫ t

a
(t −η)−α

u(1) (t)dη , 0 < α ≤ 1. (7)

The stability of behavior of the constant solutions that satisfy f (x∗) = 0 of the system (6) can be generalized to the
system itself. Where the constant solution x∗ is locally asymptotically stable whenever each eigenvalue of the Jacobian
matrix of system (6) calculated at x∗ satisfies the inequality [20]

|argλ |> απ

2
. (8)

The Lyapunov direct method may be considered the most efficient tool for studying the stability and boundedness of
solutions of nonlinear ordinary differential equations. The theory of this method is based on the use of positive definite
functions that are non-increasing along the solutions of differential equations under consideration. However, we will recall
some definitions and theorems which were given by Wilson [21] in the following: Assuming that the vector function
f (X , t) in the R. H. S. of Eq. (6) is continuous and lipschitizian on a region ρ × [t0,∞) in Rn ×R and the origin is an
isolated critical point of Eq. (6) in ρ . Let G ⊂ ρ be a neighborhood of the origin.

Definition 2. A real-valued function W : Rn → R is said to be positive (negative) definite on G if W (x)> 0(W (x)< 0) for

all x 6= 0 in G and W (0) = 0. A function L(X , t) defined on a cylinder G× [t1,∞) is called positive (negative) definite if

L(0, t) = 0 for t ≥ t1 and there exists a positive (a negative) definite function W on G such that W (x)≤ L(X , t) (W (x)≥
L(X , t) for all (x, t) in G× [t1,∞).

Definition 3. A continuous real-valued function L(X , t) is called a Lyapunov function for Eq. (6) at the origin (when the

order of the derivative is unity) if:

1. there is a cylinder G× [t0,∞), on which L(X , t) is positive definite.

2. when X (t) is a solution of (6) with X (t0) in G, then L(X (t) , t) is non-increasing in t for t ≥ t1 ≥ t0.

Definition 4. A positive definite function L(X , t) which is defined on a cylinder G× [t0,∞), is called decrescent if there

exists a positive definite function U in G such that:

L(X , t)≤U (X) ∀ (X , t) in G× [t0,∞) .

Theorem 1. If the differential equation (6) has a decrescent Lyapunov function L(X , t) at the origin with DV (a derivative

of V along the solution of Eq.(6)) negative definite, then the origin is uniformly asymptotically stable.

Also, the following lemma will be considered in our analysis [16].

Lemma 1.[16] Let x1,x2, . . . , xn be n positive numbers. Then their arithmetic mean is greater than or equal to their

geometric mean.
x1 + x2 + . . .+ xn

n
≥ n

√
x1 x2 . . .xn. (9)

2 Constant Solutions of the Two Strains Epidemic Model and Boundedness of Solution.

2.1 Constant solutions of the two strains epidemic model.

Assume that the considerable domain for solutions of system (1) is defined by Γ = (R+)
6

and the constant solutions can
given by

Dα
t S = Dα

t E1 = Dα
t E2 = Dα

t I1 = Dα
t I2 = Dα

t RC = 0. (10)

For simplicity, let

a = β1 + δ , b = β2 + δ , c = γ1 + δ1 + δ , d = γ2 + δ2 + δ and e = θ1 + δ , (11)
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and solving the six nonlinear equations in Eq. (10), at the constant solutions we have:

E1 =
c

β 1

I1, E2 =
d

β 2

I2, RC =
1

e
(θπ + γ1I1 + γ2 I2) ,

S =
1

δ
[ π

(

1−θ +
θ θ 1

e

)

− I1

(

a c

β 1

− θ 1 γ1

e

)

− I2

(

b d

β 2

− θ1 γ2

e

)

. (12)

Hence we have the following:

I1 = 0 or f (S, I1) =
ac

β1

and I2 = 0 or g(S, I2) =
bd

β2

. (13)

Then we get four constant solutions, they are as shown in the following:

P0 ( S0, 0, 0, 0, 0, RC0) , S0 =
π

δ

(

1−θ +
θ θ 1

e

)

, RC0 =
θ

e
π , (14)

P1 ( S1,E11, E21, I11, I21, C1) , S1 =

[

S0 −
1

δ

(

ac

β 1

− θ 1 γ1

e

)

I11

]

, E11 =
c

β 1

I11

f ( S1, I11) =
ac

β1

, RC1 =
1

e
[γ1 I11 +θ π ] , (15)

P2 ( S2,E12, E22, I12, I22, C2) , S2 =

[

S0 −
1

δ

(

bd

β 2

− θ 1 γ2

e

)

I22

]

, E22 =
d

β 2

I22,

g( S2, I22) =
bd

β2

, E12 = I12 = 0, RC2 =
1

e
[γ2 I22 +θ π ] , (16)

P∗ (S∗,E∗
1 ,E

∗
2 , I

∗
1 , I

∗
2 ,RC∗) ,S∗ =

[

S0 −
1

δ

(

ac

β 1

− θ1 γ1

e

)

I∗1 −
1

δ

(

bd

β 2

− θ1 γ2

e

)

I∗2

]

,

E∗
1 =

c

β 1

I∗1 , E∗
2 =

d

β 2

I∗2 , f (S∗, I∗1) =
ac

β1

, g(S∗, I∗2 ) =
cd

β2

, RC∗ =
1

e
[γ1 I∗1 + γ2 I∗2 +θ π ] . (17)

2.2 The reproduction number R0

Following [20], we can get the reproduction number R0 for the Eqns (1) by rewriting it as:

Dα
t φ (t) = ψ (φ)−η (φ) , φ = (E1, E2, I1, I2, RC, S)T

, (18)

and

ψ (φ) =















I1 f (S, I1)
I2g(S, I2)

0
0
0
0















, η (φ) =















a E1

b E2

cI1 −β1E1

dI2 −β 2E2

−γ1I1 − γ2 I2 −θπ +(θ1 + δ )RC

I1 f (S, I1)+ I2g(S, I2)− (1−θ )π + δ S−θ1RC















, (19)

Jψ =

(

F 0
0 0

)

, Jη =

(

V 0
F1 F2

)

whereF =







0 0 f (S0, 0) 0
0 0 0 g(S0, 0)
0 0 0 0
0 0 0 0






, (20)

V =







a 0 0 0
0 b 0 0

−β 1 0 c 0
0 −β 2 0 d






,V−1 =

1

abcd







acd 0 0 0
0 acd 0 0

bdβ 1 0 abd 0
0 acβ 2 0 abc






, (21)
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FV−1 =
1

abcd









β1 f (S0, 0)
ac

0
f (S0, 0)

c
0

0
β2 g(S0, 0)

bd
0

g(S0, 0)
d

0 0 0 0
0 0 0 0









. (22)

Hence, the reproduction number has the form:

R0 = max R1
0,R

2
0 , R1

0 = β1
f (S0,0)

ac
, R2

0 = β2
g(S0,0)

bd
. (23)

According to the representation of the reproduction number R0 we can summarize the conditions for the existence of
the constant solution of system (1) as:

Theorem 2. The model (1) has the free-disease constant solution P0 ( S0, 0, 0, 0, 0, RC0) defined by (14) only when

R0 ≤ 1. When R0 > 1, the constant solutions of the system are P0 in addition to one of the following constant solutions:

(i) The endemic solution of strain 1, P1 ( S1,E11, E21, I11, I21, C1) defined by (15) exists if R0 > 1 > R2
0,

(ii) The endemic solution of strain 2, P2 (S2,E12, E22, I12, I22,C2), defined by (16) exists if R0 > 1 > R1
0,

(ii) The endemic solution of the two strains, P∗ (S∗,E∗
1 ,E

∗
2 , I

∗
1 , I

∗
2 ,RC∗) defined by (17) exists if R1

0 > 1 and, R2
0 > 1.

Proof.Solving equation (10) and using the relations in (13), The first constant solution is when I1 = I2 = 0, the free disease
P0 defined in (14).

(i) The second solution is when I21 = E21 = 0 and f (S1, I11) =
ac
β1

. And I11 =
δ
π

1
(

ac
β1

− θ1 γ1
e

) (S0 − S1), it is clear that

a positive value for I11 is only when S1 ∈ [0,S0].

Let H1 (S) be a function defined for S ∈ [0,∞] and I1 =
δ
π

1
(

ac
β 1

− θ1 γ1
e

) (S0 − S)

H1 (S) = f (S, I1)−
ac

β1

, (24)

∂ H1(S)

∂ S
=

∂ f (S, I1)

∂ S
+

∂ f (S, I1)

∂ I1

(− δ

π

1
(

ac
β 1

− θ 1 γ1
e

) ) , (25)

From conditions (4) and (5), we have
∂ H1(S)

∂ S
≥ 0, (26)

and we have:

H1 (0) = f (0, I1)−
ac

β1

=−ac

β1

< 0, H1 (S1) = f (S1, I11)−
ac

β1

= 0, (27)

and H1 (S0) = f (S0,0)− ac
β1

= ac
β1

(

R1
0 − 1

)

. So from (26) and (27), H1 (S0)> 0 which is true if R1
0 > 1.

(ii) The third solution is when I12 = E12 = 0 and g(S2, I21) =
b d
β2

. And I22 =
δ
π

1
(

bd
β 2

− θ1 γ2
e

) (S0 − S2), it is clear that a

positive value for I22 is only when S2 ∈ [0,S0].

Let H2 (S) be a function defined for S ∈ [0,∞] and I2 =
δ
π

1
(

bd
β 2

− θ1 γ2
e

) (S0 − S),

H2 (S) = g(S, I2)−
bd

β 2

(28)

∂ H2(S)

∂ S
=

∂ g(S, I2)

∂ S
+

∂ g(S, I2)

∂ I2

(− δ

π

1
(

bd
β 2

− θ 1 γ2
e

) ). (29)

From conditions (4) and (5), we have
∂ H2(S)

∂ S
≥ 0, (30)
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and we have

H2 (0) = g(0, I2)−
bd

β 2

=− bd

β 2

< 0, H2 (S2) = g(S2, I22)−
bd

β 2

= 0, (31)

and H2 (S0) = g(S0,0)− bd
β 2

= bd
β 2

(

R2
0 − 1

)

. So from (30) and (31), H2 (S0)> 0 which is true if R2
0 > 1.

(iii) The fourth solution is when f (S∗, I∗1 ) = ac
β1

and g(S∗, I∗2 ) = b d
β2

,

S∗ =
[

S0 − 1
δ

(

ac
β 1

− θ 1 γ1
e

)

I∗1 − 1
δ

(

bd
β 2

− θ 1 γ2
e

)

I∗2

]

, and S∗ ∈ [0,S0]. Similarly defined H∗ (S) be a function

defined for S ∈ [0,∞] and S =
[

S0 − 1
δ

(

ac
β 1

− θ 1 γ1
e

)

I1 − 1
δ

(

bd
β 2

− θ 1 γ2
e

)

I2

]

.

∂H∗ (S)
∂ S

=
∂ f (S, I1)

∂ S
+

∂ f (S, I1)

∂ I1



−δ

π

1
(

ac
β 1

− θ 1γ1
e

)



+
∂g(S, I2)

∂S
+

∂g(S, I2)

∂ I2



−δ

π

1
(

bd
β 2

− θ1γ2
e

)



 . (32)

From conditions (4) and (5), we have
∂ H∗ (S)

∂ S
≥ 0. (33)

And we have

H∗ (0) = f (0, I1)−
ac

β1

+ g(0, I2)−
bd

β2

=−(
ac

β1

+
bd

β2

)< 0, H∗ (S∗) = f (S∗, I∗1 )−
ac

β1

+ g(S∗, I∗2 )−
bd

β2

= 0, (34)

H∗ (S0) = f (S0,0)− ac
β 1

+g(S0,0)− bd
β 2

= ac
β1

(

R2
0 − 1

)

+ bd
β2

(

R2
0 − 1

)

> 0. And from (33) and (34) H∗ (S0)> 0 when

R1
0 > 1, and R2

0 > 1.

2.3 Limited solutions to the pandemic system

Consider the total population N (t), which has the form

N (t) = S (t)+E1 (t)+E2 (t)+ I1 (t)+ I2 (t)+RC (t) , (35)

and the initial value for the total population is:

N∗ = S (0)+E1 (0)+E2 (0)+ I1 (0)+ I2 (0)+RC (0) . (36)

The fractional-order derivative of the function N (t) is defined by:

Dα
t N (t) = Dα

t S (t)+ Dα
t E1 (t)+ Dα

t E2 (t)+ Dα
t I1 (t)+ Dα

t I2 (t)+ Dα
t RC (t) . (37)

Using equation Eq. (1), we have:

Dα
t N (t)+ δN (t) = π − (δ1I1 (t)+ δ2I2 (t)) , (38)

and consequently since the term (δ1I1 (t)+ δ2I2 (t) ) is always positive, then we can write:

Dα
t N (t)+ δ N (t)≤ π . (39)

Applying Laplace transform on (39), and using the initial condition (36), we have:

N (s)≤ π

s

1

sα + δ
+

N∗

sα + δ
, (40)

using inverse Laplace transform on Eq.(40), one have

N (t)≤ N∗ tα−1 Eα ,α (−δ tα)+π

∫ t

0
(t − τ)α−1

Eα ,α

(

−δ (t − τ)α)
dτ . (41)

Applying the definition and properties of the Mittag-Leffler function, the function N (t) satisfies the inequality:

N (t)≤ N∗ tα−1 Eα ,α (−δ tα)+πtα Eα ,α−1 (−δ tα) . (42)

Hence, N (t) is bounded for t ≥ 0. And we can conclude the above result in the following theorem:

Theorem 3. Any solution of system (1) is uniformly bounded whenever it has bounded initial conditions.
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3 Stability analysis of the two-strain epidemic model

In this section, the behavior of the constant solutions of system (1) is studied.

Stability of the free disease constant solution P0:

Let f (S, I1) satisfies the following condition:

(

RC

RC0

− 1

)(

1− f (S0,0)

f (S,0)

)

≤ 0. (43)

Theorem 4. The free equilibrium point P0 of the system (1) is globally asymptotically stable when R0 ≤ 1.

Proof.Consider that we have a function L0 (X) whereX = (S,E1,E2, I1, I2,RC)

L0 (X) = S− S0 −
∫ S

S0

f (S0,0)

f (u,0)
du+E1+E2 +

a

β1

I1 +
b

β2

I2. (44)

It is sufficient to prove that L0 (X) is a positive definite function if h(S) = S− S0 −
∫ S

S0

f (S0,0)
f (u,0)

du is a positive definite.

From conditions (3), (4), f (S, I1) is a positive increasing function with respect to S. It is clear that h(S0) = 0 and for

S > S0, we have
∫ S

S0

f (S0,0)
f (u,0) du <

∫ S
S0

du = S− S0 then, −∫ S
S0

f (S0,0)
f (u,0) du >−(S− S0) and

h(S) = S− S0 −
∫ S

S0

f (S0,0)

f (u,0)
du > 0, ∀ S > S0, (45)

also, for S < S0, −∫ S
S0

f (S0,0)
f (u,0)

du =
∫ S0

S
f (S0,0)
f (u,0)

du > S0 − S and hence,

h(S) = S− S0 −
∫ S

S0

f (S0,0)

f (u,0)
du > 0, ∀ S < S0, (46)

from (45) and (46), h(S) and consequently L0 (X) are positive definite functions and by definition, L0 (X) is a Lyapunov
function. The time derivative of L0 (X) is:

L•
0 (S, E1,E2, I1, I2, RC) = S•− f (S0,0)

f (S,0)
S•+E•

1 +E•
2 +

a

β1

I•1 +
b

β2

I•2 . (47)

Substitute from Eq. (1) in Eq. (47), then using Eq. (14) and the equation

(1−θ )π = δS0 −θ1RC0.

We have

L•
0 (S, E1,E2, I1, I2, C) = δS0

(

1− S

S0

)(

1− f (S0,0)

f (S,0)

)

+θC0

(

RC

RC0

− 1

)(

1− f (S0,0)

f (S,0)

)

+
ac

β1

I1

(

R1
0

f (S, I1)

f (S,0)
− 1

)

+
bd

β2

I2

(

R2
0

f (S0,0)

f (S,0)

g(S, I2)

g(S0,0)
− 1

)

. (48)

From condition (4), we have:
f (S,I1)
f (S,0) ≤ 1

L•
0 (S,E1,E2, I1, I2,C)≤ δS0

(

1− S

S0

)(

1− f (S0,0)

f (S,0)

)

+θC0

(

RC

RC0

− 1

)(

1− f (S0,0)

f (S,0)

)

+
ac

β1

I1

(

R1
0 − 1

)

+

+
bd

β2

I2

(

R2
0

f (S0,0)

f (S,0)

g(S, I2)

g(S0,0)
− 1

)

. (49)

We have from condition (43), that the second term in (49) is not positive. Also, the third term is always not positive
where R1

0 ≤ 1. Now we have two cases that need to be considered:
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Case 1 For S ≤ S0 and using condition (4),
f (S0,0)
f (S,0) > 1, the first term in the inequality (49) is not positive. In addition

to
g(S,I2)
g(S0,0)

≤ 1, so R2
0

f (S0,0)
f (S,0)

g(S,I2)
g(S0,0)

− 1 ≤ R2
0

f (S0,0)
f (S,0) − 1, and since R2

0 ≤ f (S,0)
f (S0,0)

≤ 1, then R2
0

f (S0,0)
f (S,0) ≤ 1 and now the

R2
0

f (S0,0)
f (S,0)

− 1 ≤ 0.

Case 2 For S > S0 and by condition (4),
f (S0,0)
f (S,0)

≤ 1, the first two terms are negative and the last term satisfies that

R2
0

f (S0,0)
f (S,0)

g(S,I2)
g(S0,0)

− 1 ≤ R2
0

g(S,I2)
g(S0,0)

− 1 and since R2
0 ≤

g(S0,0)
g(S,I2)

≤ 1. So R2
0

g(S,I2)
g(S0,0)

− 1 ≤ 0.

So we conclude that when R0 ≤ 1
(

i.e.R2
0 ≤ 1 and R2

0 ≤ 1
)

.

L•
0 (S,E1,E2, I1, I2,RC)≤ 0. (50)

Stability of the endemic equilibrium point for strain 1 P1:

Let we assume that
(

f (S, I11)

f (S, I1)
− I1

I11

)(

1− f (S, I1)

f (S, I11)

)

≤ 0and

(

RC

RC1

− 1

)(

1− f (S1, I11)

f (S, I11)

)

≤ 0. (51)

Theorem 5. The equilibrium point P1 is asymptotically stable when R2
0 ≤ 1 < R1

0.

Proof. Consider a function L1 (x) where:

L1 (x) = S− S1−
∫ S

S1

f (S1, I11)

f (u, I11)
du+E11

[

E1

E11

− ln
E1

E11

− 1

]

+E2 +
a

β1

I11

[

I1

I11

− ln
I1

I11

− 1

]

+
b

β2

I2. (52)

It is sufficient to prove that L1 (X) is a positive definite function if h1 (S) = S− S1 −
∫ S

S1

f (S1,I11)
f (u,I11)

du and h11 (x) =

x− lnx−1 are positive definite functions. In a similar way as in theorem 3.1, h1 (x) can be proved to be a positive definite
function. Now h11 (1) = 0, and it has a minimum value at x=1 where the second derivative of h11 (x) is always positive
and this minimum value is zero. Then h11 (x) > 0, ∀ x 6= 1. And L1 (X) is a Lyapunov function.

The time derivative of the Lyapunov function L1 (x) is:

L•
1 (x) = S•− f (S1, I11)

f (S, I11)
S•+E11

[

E•
1

E11

− E•
1

E1

]

+E•
2 +

a

β1

I11

[

I•1
I11

− I•1
I1

]

+
b

β2

I•2 . (53)

Substitute from equation (1) in (53) and then use (15) and the equation

(1−θ )π = I11 f (S1, I11)+ δS1 −θ1 RC1.

Then, we have

L•
1 (x) = δS1

(

1− S

S1

)(

1− f (S1, I11)

f (S, I11)

)

+θ1 RC1

(

RC

RC1

− 1

)(

1− f (S1, I11)

f (S, I11)

)

+
bd

β2

I2

[

R2
0

f (S1, I11)

f (S, I11)

g(S, I2)

g(S0 ,0)
− 1

]

+ aE11

(

f (S, I11)

f (S, I1)
− I1

I11

)(

1− f (S, I1)

f (S, I11)

)

. (54)

Since from the conditions (4), and (5) we have
g(S,I2)

g(S0 ,0)
≤ 1

L•
1 (x)≤ δS1

(

1− S

S1

)(

1− f (S1, I11)

f (S, I11)

)

+θ1 RC1

(

RC

RC1

− 1

)(

1− f (S1, I11)

f (S, I11)

)

+
bd

β2

I2

[

R2
0

f (S1, I11)

f (S, I11)
− 1

]

+ aE11

(

f (S, I11)

f (S, I1)
− I1

I11

)(

1− f (S, I1)

f (S, I11)

)

+ aE11

(

4− f (S, I11)

f (S, I1)
− I1 f (S, I1)

a E1

− E1

E11

I11

I1

− f (S1, I11)

f (S, I11)

)

.

(55)

By assumption (50), the second and fourth terms in the inequality (55) are not positive. And using lemma 1.1, the fifth
term also satisfies that:

(

4− f (S1, I11)

f (S, I11)
− I1 f (S, I1)

a E1

− E1

E11

I11

I1

− f (S, I11)

f (S, I1)

)

≤ 0.

c© 2025 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 11, No. 2, 311-332 (2025) / www.naturalspublishing.com/Journals.asp 319

Now two cases are considered:
When S ≤ S1, applying condition (4),

f (S1,I11)
f (S,I11)

> 1 we have the first and third terms in the inequality (55) are not positive.

In addition, by condition (4), R2
0 ≤ f (S,I11)

f (S1,I11)
≤ 1, hence R2

0 ≤ f (S,I11)
f (S1,I11)

, then R2
0

f (S1,I11)
f (S,I11)

≤ 1 and now the R2
0

f (S1,I11)
f (S,I11)

−1 ≤ 0.

When S > S1 and by condition (4),
f (S1,I11)
f (S,I11)

< 1 and so the first and third terms in the inequality (55) are not positive. So

we conclude that when R2
0 ≤ 1 < R1

0, L•
1 (S, E1,E2, I1, I2, RC)≤ 0.

Stability of the endemic equilibrium point for strain 2 P2:

Let we assume that
(

g(S, I22)

g(S, I2)
− I2

I22

)(

1− g(S, I2)

g(S, I22)

)

≤ 0 and

(

RC

RC2

− 1

)(

1− g(S2, I22)

g(S, I22)

)

≤ 0. (56)

Theorem 6. The equilibrium point P2 is asymptotically stable when R1
0 ≤ 1 < R2

0.

Proof.Consider a function L2 (x) where:

L2 (x) = S− S2 −
∫ S

S2

g(S2, I22)

g(u, I22)
du+E22

[

E2

E22

− ln
E2

E22

− 1

]

+E1 +
a

β1

I1 +
b

β2

I22

[

I2

I22

− ln
I2

I22

− 1

]

. (57)

In the same way that used in the proof of theorem 3.2, it can be proved that L2 (X) is a Lyapunov function. And the
time derivative of the Lyapunov function L2 (x) is:

L•
2 (x) = S•− g(S2, I22)

g(S, I22)
S•+E22

[

E•
2

E22

− E•
2

E2

]

+E•
1 +

a

β1

I•1 +
b

β2

I22

[

I•2
I22

− I•2
I2

]

. (58)

Substitute from equation (1) in (58) and use (16) and the equation

(1−θ )π =
bd

β2

I22 + δS2 −θ1RC2, (59)

L•
2 (x) = δS2

(

1− S

S2

)(

1− g(S2, I22)

g(S, I22)

)

+θ1 RC2

(

RC

RC2

− 1

)(

1− g(S2, I22)

g(S, I22)

)

+
ac

β1

I1

[

R1
0

g(S2, I22)

g(S, I22)

f (S, I1)

f (S0 ,0)
− 1

]

+ bE22

(

g(S, I22)

g(S, I2)
− I2

I22

)(

1− g(S, I2)

g(S, I22)

)

+ bE22

(

4− g(S, I2)

g(S, I22)
− I2 g(S2, I2)

b E2

− E2

E22

I22

I2

− g(S2, I22)

f (S, I22)

)

.

(60)

From the conditions (4), (5), the following inequality
f (S,I1)

f (S0 ,0) le1 is satisfied, so we have:

L•
2 (x)≤ δS2

(

1− S

S2

)(

1− g(S2, I22)

g(S, I22)

)

+θ1RC2

(

RC

RC2

− 1

)(

1− g(S2, I22)

g(S, I22)

)

+
ac

β1

I1

[

R1
0

g(S2, I22)

g(S, I22)
− 1

]

+ bE22

(

g(S, I22)

g(S, I2)
− I2

I22

)(

1− g(S, I2)

g(S, I22)

)

+ bE22

(

4− g(S, I2)

g(S, I22)
− I2 g(S2, I2)

b E2

− E2

E22

I22

I2

− g(S2, I22)

f (S, I22)

)

.

(61)

The fourth term in the inequality (61) satisfies that:

bE22

(

g(S, I22)

g(S, I2)
− I2

I22

)(

1− g(S, I2)

g(S, I22)

)

≤ 0,

by the assumption (55) in addition, the second term in (61) is not positive. And indicating the relation between the
geometric and arithmetic means we get

(

4− g(S, I2)

g(S, I22)
− I2 g(S2, I2)

b E2

− E2

E22

I22

I2

− g(S2, I22)

f (S, I22)

)

≤ 0.
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Now two cases are considered:
When S ≤ S2, applying condition (4),

g(S2,I22)
g(S,I22)

> 1 and so the first term in the inequality (61) is not positive. In addition,

by condition (4), R1
0 ≤ g(S,I22)

g(S2,I22)
≤ 1, so since R1

0 ≤
g(S,I22)
g(S2,I22)

, then R1
0

g(S2,I22)
g(S,I22)

≤ 1 and now the R1
0

g(S2,I22)
g(S,I22)

− 1 ≤ 0.

When S > S2 and by condition (4),
g(S2,I22)
g(S,I22)

< 1 and so the first and third terms in the inequality (61) are not positive. So

we conclude that, L•
2 (x)≤ 0 when R1

0 ≤ 1 < R2
0.

Stability of the endemic equilibrium point P∗

Assume that the functions f (S, I1) and g(S, I2) at the constant solution P∗ satisfy that:

(

g(S∗, I∗2 )
g(S, I2)

f (S, I∗1 )

f
(

S∗, I∗1
) − I2

I∗2

)(

1− g(S, I2)

g
(

S∗, I∗2
)

f (S∗, I∗1 )

f
(

S, I∗1
)

)

≤ 0 and

(

RC

RC∗ − 1

)

(

1− f (S∗, I∗1 )

f
(

S, I∗1
)

)

≤ 0. (62)

Theorem 7.The equilibrium point P∗ is asymptotically stable when R1
0 > 1 < R2

0.

Proof. Consider a function L∗ (x) where:

L∗ (x) = S− S∗−
∫ S

S∗

f (S∗, I∗1)

f
(

u, I∗1
) du+E∗

1

[

E1

E∗
1

− ln
E1

E∗
1

− 1

]

+E∗
2

[

E2

E∗
2

− ln
E2

E∗
2

− 1

]

+
a

β1

I∗1

[

I1

I∗1
− ln

I1

I∗1
− 1

]

+
b

β2

I∗2

[

I2

I∗2
− ln

I2

I∗2
− 1

]

. (63)

In the same way that used in theorem 3.2, it can be proved that L∗ (x) is a Lyapunov function. And the time derivative
of the Lyapunov function L∗ (x) is:

L∗ • (x) = S•− f (S∗, I∗1 )

f
(

S, I∗1
) S•+E•

1

[

1− E∗
1

E1

]

+E•
2

[

1− E∗
2

E2

]

+
a

β1

I•1

[

1− I∗1
I1

]

+
b

β2

I•2

[

1− I∗2
I2

]

. (64)

Substitute equation (1) in equation (64) and using (17), we have

L∗ • (x) = δS∗
(

1− S

S∗

)

(

1− f (S∗, I∗1 )

f
(

S, I∗1
)

)

+θ1RC∗
(

RC

RC∗ − 1

)

(

1− f (S∗, I∗1 )

f
(

S, I∗1
)

)

+ aE∗
1

(

f (S, I∗1)
f (S, I1)

− I1

I∗1

)

(

1− f (S, I1)

f
(

S , I∗1
)

)

+ bE∗
2

(

g(S∗, I∗2 )
g(S, I2)

f (S, I∗1 )

f
(

S∗, I∗1
) − I2

I∗2

)(

1− g(S, I2)

g
(

S∗, I∗2
)

f (S∗, I∗1 )

f
(

S, I∗1
)

)

+ aE∗
1

(

4− a E∗
1

f
(

S, I∗1
)

I∗1
− I1 f (S, I1)

a E1

− E1

E∗
1

I∗1
I1

− f (S, I∗1)
f (S, I1)

)

+ bE∗
2

(

4− f (S∗, I∗1 )

f
(

S, I∗1
) − I2 g(S, I2)

b E2

− E2

E∗
2

I∗2
I2

− f (S, I∗1)

f
(

S∗, I∗1
)

b E∗
2

I∗2 g(S, I2)

)

. (65)

By condition (62) it guarantees that the second and the fourth term in the inequality (65) are not positive. And
indicating the relation between the geometric and arithmetic means we get

4− aE∗
1

f
(

S, I∗1
)

I∗1
− I1 f (S, I1)

a E1

− E1

E∗
1

I∗1
I1

− f (S, I∗1)
f (S, I1)

≤ 0 and 4− f (S∗, I∗1 )

f
(

S, I∗1
) − I2 g(S, I2)

bE2

− E2

E∗
2

I∗2
I2

− f (S, I∗1)

f
(

S∗, I∗1
)

bE∗
2

I∗2 g(S, I2)
≤ 0.

From condition (4), we have:

f (S∗, I∗1 )

f
(

S, I∗1
) ≤ 1 if S ≥ S∗ and

f (S∗, I∗1 )

f
(

S, I∗1
) ≥ 1 if S ≤ S∗,

then

1− f (S∗, I∗1)

f
(

S, I∗1
) ≥ 0 i f S ≥ S∗ and 1− f (S∗, I∗1 )

f
(

S, I∗1
) ≤ 0 if S ≤ S∗.
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Then the first term of the right-hand side of (65) is not positive. Also by condition (51), we have:

(

f (S, I∗1)
f (S, I1)

− I1

I∗1

)

(

1− f (S, I1)

f
(

S , I∗1
)

)

≤ 0,

which is related to the third term of (65).
From the previous relations, we conclude that L∗ • (x)≤ 0 and the constant solution P∗ is asymptotically stable when

R1
0 > 1 and R2

0 > 1.

4 The Non-uniform L2 Fractional differentiation numerical scheme

This section discusses a new scheme to get an approximate solution of the fractional order differential equation defined in
Caputo sense that is represented in the following equation:

Dα φ (t) = χ(φ), φ (0) = φ0, (66)

In the beginning, the uniqueness of the solution of system (66) is studied. Assume that χ (φ) satisfies the Lipschitz
condition as

‖χ (φ1)− χ (φ2)‖< ℓ‖φ1 − φ2‖, ℓ > 0. (67)

Hence, the solution of system (66) is given by

φ = φ0 +
1

Γ (α)

∫ t

0
(t − s)α−1 χ(φ)ds =Ψ(φ). (68)

Then, we have

‖Ψ (φ1)−Ψ (φ2)‖ ≤
1

Γ (α)

∫ t

0
(t − s)α−1‖χ (φ1(s))− χ (φ2(s))‖ds

≤ ℓ

Γ (α)

∫ t

0
(t − s)α−1

sup
s∈[0,T ]

|φ1(s)−φ2(s)|

≤ ℓ‖φ1 − φ2‖
Γ (α)

∫ t

0
(t − s)α−1

ds

‖Ψ (φ1)−Ψ (φ2)‖ ≤
ℓT α

Γ (α + 1)
‖φ1 − φ2‖. (69)

Then we get ‖Ψ (φ1)−Ψ (φ2)‖ ≤ ‖φ1 − φ2‖ as ℓT α

Γ (α+1) ≤ 1, this suggests that our model has a unique solution. The

above results are summarized in the following theorem.

Theorem 8. The system given by (66) has a unique solution under that ℓT α

Γ (α+1) ≤ 1 and condition (67) is satisfied.

To get the Non-uniform L2 Fractional differentiation numerical scheme (NU L2 FDNS) of the proposed model, we need
to develop a new different representation of the Caputo fractional derivative of a function φ (t) ∈ C3 [0,T ], with order

α,0 < α < 1, with approximation of order o(τ)3−α
. Let we consider that the total time of simulation is T and it is divided

into N nonuniform grid as

0 = t0 < t1 < t2 < .. . < tN−1 < tN = T, t j = T

(

j

N

)r

, r > 0 andτ j = t j − t j−1 , j ∈ {1,2, . . . ,N} . (70)

Dα
t j+1

φ (t) =
1

Γ (1−α)

∫ t j+1

0

φ ′(ξ )

(t j+1 − ξ )α dξ (71)

Dα
t j+1

φ (t) =
1

Γ (1−α)

∫ t2

0

φ ′(ξ )

(t j+1 − ξ )α dξ +
1

Γ (1−α)

j

∑
k=2

∫ tk+1

tk

φ ′(ξ )

(t j+1 − ξ )α dξ . (72)
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The function φ(t) will be interpolated by the quadratic interpolant Ω2, s φ(t) through the subinterval [tk, tk+1],(1 ≤
k ≤ j). Then using three points (tk−1, φ(tk−1)), (tk, φ(tk)) and (tk+1, φ(tk+1)), the interpolant function Ω2, s φ(t) can be
represented as

Ω2, kφ (t) =
φ(tk−1)(t − tk)(t − tk+1)

(tk−1 − tk)(tk−1 − tk+1)
+

φ(tk)(t − tk−1)(t − tk+1)

(tk − tk−1)(tk − tk+1)
+

φ(tk+1)(t − tk−1)(t − tk)

(tk+1 − tk−1)(tk+1 − tk)
, (73)

tk − tk−1 = τk, tk+1 − tk−1 = τk + τk+1, and tk+1 − tk = τk+1.

Differentiate Eq. (73) with respect to the time, we have

Ω ′
2, kφ (t) =

φ(tk−1)(2t − (tk+tk+1))

τk(τk + τk+1)
− φ(tk)(2t − (tk−1+tk+1)

τk τk+1

+
φ(tk+1)(2t − (tk−1+tk))

τk+1(τk + τk+1)
. (74)

Insert equation (74) in equation (71), and simplifying the obtained integrations, we get the following results:

a.
∫ t2

0
ξ

(t j+1−ξ)
α dξ = 1

(1−α)(2−α)

[

t j+1
2−α − (t

j+1
− t2)

2−α
]

− 1
(1−α) t2 (t j+1 − t2)

1−α
.

b.
∫ t2

0
1

(t j+1−ξ)
α dη = 1

(1−α)

[

t j+1
1−α − (t

j+1
− t2)

1−α
]

.

c.
∫ tk+1

tk

ξ

(t j+1−ξ)
α dξ = 1

(1−α)

[

(tk (t j+1 − tk)
1−α − tk+1 (t j+1 − tk+1)

1−α
]

+ 1
(1−α)(2−α)

[

(t j+1 − tk)
2−α − (t j+1 − tk+1)

2−α
]

.

d.
∫ tk+1

tk
1

(t j+1−ξ)
α dξ = 1

(1−α)

[

(t j+1 − tk)
1−α − (t j+1 − tk+1)

1−α
]

.

Theorem 9.The Non-uniform L2 Fractional differentiation numerical scheme (NU L2 FDNS) of the Caputo derivative

defined in Eq. (71) is given by the following relation:

Dα
t j+1

φ (t)∼= Dα
t j+1

φ (t) =
1

Γ (2−α)

j

∑
k=1

[c1(k) φ(tk− 1)− c2(k) φ(tk)+ c3(k) φ(tk+1)],1 ≤ j ≤ N − 1, (75)

where, for 1 ≤ k ≤ j,

c1 (k) = τk+1 [ak − bk (tk + tk+1)], (76)

c2 (k) = (τk + τk+1) [ak − bk (tk−1 + tk+1)] , (77)

c3 (k) = τk [ak − bk (tk−1 + tk)], (78)

and:

a1 =

(

2

τ∗1

)[

1

(2−α)

(

t j+1
2−α − (t

j+1
− t2)

2−α
)

− t2 (t j+1 − t2)
1−α

]

,

b1 =

(

1

τ∗1

)

[ t j+1
1−α − (t

j+1
− t2)

1−α
],

ak =

(

2

τ∗s

) [

1

(2−α)

(

(t j+1 − tk)
2−α − (t j+1 − tk+1)

2−α
)

+ ts (t j+1 − tk)
1−α − ts+1 (t j+1 − tk+1)

1−α

]

,

bk =

(

1

τ∗s

)

[(t j+1 − tk)
1−α − (t j+1 − tk+1)

1−α ] and τ∗k = τk τk+1(τk + τk+1). (79)

Lemma 2. Let εk = Dα
t j+1

φ (t)−Dα
t j+1

φ (t) , k = 1,2, . . . , N − 1,0 < α < 1 and φ (t) ∈C3 [0, tk+1], then |εk|= O
(

τ3−α
)

.
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Proof. let

εk = Dα
t j+1

φ (t)−Dα
t j+1

φ (t)

=
1

Γ (1−α)

[

∫ t2

0

(φ (t)−Ω2, 1φ (t))′
(

t j+1 − ξ
)α dξ +

j

∑
k=2

∫ tk+1

tk

(

φ (t)−Ω2, kφ (t)
)′

(

t j+1 − ξ
)α dξ

]

=
−α

Γ (1−α)

[

∫ t2

0

φ (t)−Ω2, 1φ (t)
(

t j+1 − ξ
)α+1

dξ +
j

∑
k=2

∫ tk+1

tk

φ (t)−Ω2, kφ (t)
(

t j+1 − ξ
)α+1

dξ

]

=
−α

6Γ (1−α)

[

∫ t2

0
φ ′′′ (ξ1)ξ (ξ−t1)(ξ−t2)

(

t j+1 − ξ
)−α−1

dξ

+
j

∑
k=2

∫ tk+1

tk

φ ′′′ (ξ2)(ξ − tk−1)(ξ−tk) (ξ−tk+1)
(

t j+1 − ξ
)−α−1

dξ

]

|εk| ≤
α

6Γ (1−α)

∣

∣

∣

∣

∫ t2

0
φ ′′′ (ξ1)ξ (ξ−t1) (ξ−t2)

(

t j+1 − ξ
)−α−1

dξ

∣

∣

∣

∣

+
α

6Γ (1−α)

∣

∣

∣

∣

∣

j

∑
k=2

∫ tk+1

tk

φ ′′′ (ξ2) (ξ − tk−1)(ξ−tk)(ξ−tk+1)
(

t j+1 − ξ
)−α−1

dξ

∣

∣

∣

∣

∣

.

Following the same procedure in [22], we have

|εk| ≤ κτ3−α ,

where κ =
(

21−αα +
√

3
9
+ α

1−α

) |φ ′′′(ξ )|
3Γ (1−α)

.

In order to get the high-order approximation for our system, we apply the NU L2 FDNS scheme of the system given by
Eq.(1) as:

Dα
t j+1

S(t j+1) = (1−θ )π − I1 f
(

S(t j+1), I1(t j+1)
)

− I2(t j+1)g
(

S(t j+1), I2(t j+1)
)

− δ S(t j+1)+θ1RC(t j+1),

Dα
t j+1

E1(t j+1) = I1(t j+1) f
(

S(t j+1), I1(t j+1)
)

− (β1 + δ )E1(t j+1),

Dα
t j+1

E2(t j+1) = I2(t j+1)g
(

S(t j+1), I2(t j+1)
)

− (β2 + δ )E2(t j+1),

Dα
t j+1

I1(t j+1) = β1E1(t j+1)− (γ1 + δ1 + δ ) I1(t j+1),

Dα
t j+1

I2(t j+1) = β2 E2(t j+1)− (γ2 + δ2 + δ ) I2(t j+1),

Dα
t j+1

RC(t j+1) = γ1I1(t j+1)+ γ2 I2(t j+1)+θπ − (θ1 + δ )RC(t j+1),

5 Results and simulation

Case 1: Consider the bilinear incidence rates for the two strains given by [23,24]:

f (S, I1) = A S (t) , g(S, I2) = B S(t). (80)

Example 1. In case 1, when the system parameters are θ = 0.1,π = 1,δ = 0.11,θ1 = 0.3, β 1 = 0.5,β2 = 0.16,γ1 =
0.165,γ2 = 0.0175,δ1 = δ2 = 0.1A = 0.03, B = 0.02. Let the initial conditions be S (0) = 0.15,E1(0) = E2 (0) = I1 (0) =
I2 (0) = RC(0) = 0.1, And considering different values of the order of differentiation α = 0.99, 0.84, 0.69 and 0.54. The
reproduction number for the two strains are: R1

0 = 0.54, R2
0 = 0.43 and hence, R0 = 0.54 is less than one. So the free

epidemic point P0 (S0,0,0,0,0,RC0), S0 =
π
δ

(

1− θδ
θ1+δ

)

, RC0 =
θ

θ1+δ π is the only critical point for the system and by

theorem 3.1 P0 is asymptotically stable. Applying the NU L2 FDNS for solving the fractional order Caputo differential
equation displayed in equations (74)-(79), the effect of differentiation order α , on the behavior of the system (1) is shown
in figure 2 (a, b, c, d, e, f). Where for α decease far from unity the time interval for disappearing the disease increases.
While by changing the values of, A = 0.8, B = 0.5, hence R1

0 = 14.3, R2
0 = 10.6,R0 = 14.3. The free disease constant

solution is unstable and by theorem 3.4, the epidemic disease constant solution P∗ asymptotically stable. The approximate
solution of system (1) for different values of α is displayed in figure 3 (a, b, c, d, e, f).

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


324 M. M. Hikal et al. : Dynamical Analysis and Simulation of a General Two-Strain...

Example 2. Considering case 1, and the set of parameters are α = 0.95, π = 1, δ = 0.11, θ1 = 0.1, β1 = 0.5, β 2 = 0.16,
γ1 = 0.165, γ2 = 0.0175, δ 1 = δ 2 = 0.1, A = 0.8, B = 0.5. Let the initial conditions be S (0) = 0.5,E1(0) = E2 (0) =
I1 (0) = I2 (0) = RC(0) = 0.1, And considering different values of the ratio of vaccinated individuals, the reproduction
number for the two strains are: The epidemic solution of system (1) P∗ is asymptotically stable by theorem 3.4. the effect

Table 1: The reproduction number for the two strains.

θ 0 0.3 0.6 0.9

R1
0 15.9 11.1 6.4 1.6

R2
0 = R0 16.9 11.8 6.8 1.7

of decreasing the portion of vaccinated individuals leads to increasing E1 (t)E2 (t) , I1 (t) , I2 (t) and RC(t) decreasing

Case 2:

Let the incidence rates be as in [25,26]:

f (S, I1) =
η S(t)

1+η1I2
1

,g(S, I2) =
ξ S(t)

1+ ξ1I2
2

. (81)

Example 3.If the parameters of the epidemic model (1) with incidence rates defined in (81) have the following values:
α = 0.95, 0 < θ ≤ 1, π = 1, δ = 0.11, θ1 = 0.9, β 1 = 0.5, β 2 = 0.6, γ1 = 0.65, γ2 = 0.75, δ 1 = 0.1, δ 2 = 0.1.
And the parameters of the incidence rates for the two strains are η = 0.5, η1 = 2.5, ξ = 0.6 and ξ1 = 3. Let the initial
conditions be S (0) = 0.15,E1(0) = E20 = I10 = I20 = RC(0) = 0.01, And considering different values of the ratio of
vaccinated individuals θ = 0.7,0.5,0.3 and 0.1. The corresponding values of the reproduction numbers are illustrated in
the following table: Then the values of R0 are greater than one in the four cases displayed. Hence, the epidemic solution of

Table 2: The reproduction number for the two strains.

θ 0.7 0.5 0.3 0.1

R1
0 1.2997 2.17 3.33 3.9

R2
0 = R0 1.44 2.4 3.36 4.32

system (1) P∗ is asymptotically stable by theorem 3.4. Applying our numerical technique to get the approximate solution
of system (1) and the effect of increasing the ratio of the vaccinated individual is clear in decreasing the number of latent
individuals of two strains E1 (t) and E2 (t), the number of infected individuals I1 (t) and I2 (t) and help in increasing
the number of recovered individuals RC (t) the above results are given in figure 5.

Case 3
In this case two Beddington-DeAngelis incidence functions [27] that has the forms:

f (S, I1) =
A S(t)

1+ω1S+ω2 I1

andg(S, I2) =
B S(t)

1+ω3S+ω4 I2

. (82)

Example 4. System (1) they satisfy condition (3) - (5) with the parameters θ = 0.8, π = 1, δ = 0.11, θ 1 = 0.3, β 1 = 0.5,
β 2 = 0.6, γ1 = 0.65, γ2 = 0.75, δ 1 = 0.1, δ 2 = 0.1. And the parameters of the incidence rates for the two strains

areA= 1.8, B = 2.8, ω1 = 0.4, ω2 = 0.6, ω3 = 0.5, ω4 = 0.8. The reproduction number R0 = 4 and it is greater than 1, and
according to theorem 4 the epidemic equilibrium point is asymptotically stable, see figure 6. While for α = 0.7, studying
the effect of vaccination is displayed in figure 7.
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Fig. 2: Time response of S (t) ,RC (t) ,E1 (t) , I1 (t) ,E2 (t) and I2 (t) respetively for example 1 when A = 0.03,B = 0.02.
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Fig. 3: Time response of S (t) ,RC (t) ,E1 (t) , I1 (t) ,E2 (t) and I2 (t) respetively for example 1 when A = 0.8,B = 0.5.
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Fig. 4: Time response of S (t) ,RC (t) ,E1 (t) , I1 (t) ,E2 (t) and I2 (t) respetively for example 2 case 1.
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Fig. 5: Time response of S (t) ,RC (t) ,E1 (t) , I1 (t) ,E2 (t) and I2 (t) respetively for example 3 for different values of portion
of vaccinated individuals θ .
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Fig. 6: Time response of S (t) ,RC (t) ,E1 (t) , I1 (t) ,E2 (t) and I2 (t) respetively with different values of α .
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Fig. 7: Time response of S (t) ,RC (t) ,E1 (t) , I1 (t) ,E2 (t) and I2 (t) respetively with different values of θ .
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6 Conclusion

This work considers a fractional two-strain SEIR epidemic model with Caputo fractional derivative, 0 < α ≤ 1, and
having general non-linear incidence rates. Vaccination is considered in our model and a part of the recovered individuals
is included in the susceptible individuals class. The mathematical model is represented and the system reproduction
number is evaluated. The system constant solutions are given according to the nature of the incidence rates functions
f (S, I1) , g(S, I2) and the values of the reproduction number for each strain. There is only the free disease constant solution
P0 when R0 ≤ 0. If the reproduction number of the first strain only, R1

0 > 1, there will be the strain 1 epidemic constant

solution P1 in addition to P0. and when R2
0 > 1, there will be the strain 2 epidemic constant solution in addition to P2 and if

R1
0 > 1 and R2

0 > 1 there is the system endemic constant solution P∗. The boundedness and uniqueness of the solution are
studied. Suitable Lyapunov functions are constructed to prove the global stability of all constant solutions of the system.
A new numerical technique based on approximating the Caputo fractional order derivative by difference schemes of a
heightened order of approximation of the L2 type. This scheme is called ”The Non-uniform L2 Fractional differentiation
numerical scheme (NU L2 FDNS)”. This scheme is used to verify the analytic results of this work. We apply our analytic
and numerical results to the Covid-19 pandemic model and the effect of the order of differentiation α on the behavior of
the system is studied. The percentage of vaccinated individuals, θ helps control the disease. Where by increasing θ the
infection individual decreases.

References

[1] Kumar, A., Nilam & Kishor, R. A short study of an SIR model with inclusion of an alert class, two explicit nonlinear incidence

rates and saturated treatment rate. SeMA Journal, 76, 505-519 (2019).

[2] El-Sheikh, M., El-Marouf, S. & Others On stability and bifurcation of solutions of an SEIR epidemic model with vertical

transmission. International Journal Of Mathematics And Mathematical Sciences. 2004 pp. 2971-2987 (2004).

[3] Hikal, M. Dynamic properties for a general SEIV epidemic model. SIAM Review, 2, 26-36 (2014).

[4] Upadhyay, R., Pal, A., Kumari, S. & Roy, P. Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates.

Nonlinear Dynamics, 96 pp. 2351-2368 (2019).

[5] Dias, P. & Rathnayaka, R. Transmission, stability, symptoms, diagnosis and management of COVID 19. Asian Journal of Research

in Infectious Diseases, 4, 39-47 (2020).

[6] Saeedian, M., Khalighi, M., Azimi-Tafreshi, N., Jafari, G. & Ausloos, M. Memory effects on epidemic evolution: The susceptible-

infected-recovered epidemic model. Physical Review E, 95, 022409 (2017).

[7] Hikal, M., Elsheikh, M. & Zahra, W. Stability analysis of COVID-19 model with fractional-order derivative and a delay in

implementing the quarantine strategy. Journal of Applied Mathematics And Computing, pp. 1-27 (2021).

[8] Layne, S., Monto, A. & Taubenberger, J. Pandemic influenza: an inconvenient mutation. Science, 323, 1560-1561 (2009).

[9] Side, S., Sanusi, W., Aidid, M. & Sidjara, S. Global stability of SIR and SEIR model for tuberculosis disease transmission with

Lyapunov function method. Asian Journal Of Applied Sciences, 9, 87-96 (2016).

[10] Brenchley, J., Price, D., Schacker, T., Asher, T., Silvestri, G., Rao, S., Kazzaz, Z., Bornstein, E., Lambotte, O., Altmann, D. &

Others Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Medicine, 12, 1365-

1371 (2006).

[11] Zahra, W., Hikal, M. & Taher, A. Stability analysis of an HIV/AIDS epidemic fractional order model with screening and time

delay. AASCIT Commun, 2, 41-49 (2015).

[12] Hikal, M. & Zahra, W. On fractional model of an HIV/AIDS with treatment and time delay. Progress of Fractional Differerentiation

and Appllications, 2, 55-66 (2016).

[13] Bentaleb, D. & Amine, S. Lyapunov function and global stability for a two-strain SEIR model with bilinear and non-monotone

incidence. International Journal of Biomathematics, 12, 1950021 (2019).

[14] Meskaf, A., Khyar, O., Danane, J. & Allali, K. Global stability analysis of a two-strain epidemic model with non-monotone

incidence rates. Chaos, Solitons & Fractals, 133 pp. 109647 (2020).

[15] Bentaleb, D. & Amine, S. Lyapunov function and global stability for a two-strain SEIR model with bilinear and non-monotone

incidence. International Journal of Biomathematics, 12, 1950021 (2019).

[16] Khyar, O. & Allali, K. Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to

COVID-19 pandemic. Nonlinear Dynamics, 102, 489-509 (2020).

[17] Teodoro, G., Machado, J. & De Oliveira, E. A review of definitions of fractional derivatives and other operators. Journal Of

Computational Physics, 388 pp. 195-208 (2019).

[18] Oldham, K. & Spanier, J. The fractional calculus theory and applications of differentiation and integration to arbitrary order, 1974.

[19] Miller, K. & Ross, B. An introduction to the fractional calculus and fractional differential equations, 1993.

[20] Driessche, P. & Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease

transmission. Mathematical Biosciences,180, 29-48 (2002)

[21] Wilson, H. Ordinary differential equations: introductory and intermediate courses using matrix methods, 1971.

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


332 M. M. Hikal et al. : Dynamical Analysis and Simulation of a General Two-Strain...

[22] Alikhanov, A. & Huang, C. A high-order L2 type difference scheme for the time-fractional diffusion equation. Applied

Mathematics And Computation, 411 pp. 126545 (2021).

[23] Ji, C. & Jiang, D. Threshold behaviour of a stochastic SIR model. Applied Mathematical Modelling, 38, 5067-5079 (2014).

[24] Wang, J., Zhang, J. & Jin, Z. Analysis of an SIR model with bilinear incidence rate. Nonlinear Analysis: Real World Applications,

11, 2390-2402 (2010).

[25] Derrick, W. & Driessche, P. A disease transmission model in a nonconstant population. Journal of Mathematical Biology, 31,

495-512 (1993).

[26] Ruan, S. & Wang, W. Dynamical behavior of an epidemic model with a nonlinear incidence rate. Journal of Differential Equations,

188, 135-163 (2003).

[27] Cantrell, R. & Cosner, C. On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. Journal

of Mathematical Analysis And Applications,257, 206-222 (2001).

c© 2025 NSP

Natural Sciences Publishing Cor.


	Introduction
	 Constant Solutions of the Two Strains Epidemic Model and Boundedness of Solution.
	 Stability analysis of the two-strain epidemic model
	 The Non-uniform L2 Fractional differentiation numerical scheme
	 Results and simulation
	 Conclusion

