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Abstract: In this paper, we introduce a new conformable transform known as conformable general double transform. We
presented its essential properties and proved some useful results such as the double convolution theorem and derivative
properties. Furthermore, we apply the proposed conformable general double transform to solve some conformable partial
differential equations such as heat, wave, Advection- diffusion and telegraph equations. The results demonstrate the
strength and efficiency of the presented method in solving various problems in the fields of physics and engineering
compared with other methods.
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1. Introduction

Partial differential equations have recently emerged as
crucial for simulating a variety of real-world applications in
engineering and science, including mathematical biology,
fluid dynamics, optics, electrical circuits, and quantum
physics [1,2]. Several definitions of fractional derivatives
and integrals have been discussed in the literature, including
those by Riesz, Weyl, Riemann-Liouville, Caputo,
Hadamard, and others. Numerous strange characteristics of
these fractional derivatives, such as the fact that not all of
them adhere to the product rules, quotient, and others, result
in a variety of problems in engineering and physics
applications. The authors Khalil et al. [3] proposed an
interesting definition known as the conformable fractional
derivative that meets most traditional characteristics of
derivatives.

Recently, Laplace transform has widely been applied to
solve PDEs [4,5]. In addition, researchers have contributed
extensions to the original Laplace transform such as Fourier
[6], Sumudu [7], Elzaki [8], Gamar [9], Kamal [10], ARA
[11], Jafari [12], Mellin [13], among many other transforms.

Moreover, many researchers and mathematicians have
developed new methods to obtain solutions of conformable
partial differential equations, such as the conformable
double Laplace transform by Ozkan and Abdeljawad et al
[14-17], [18-20] the conformable double Sumudu transform
proposed by Abdeljawad and Mohamed et al, the
conformable double Laplace- Sumudu transform [21-23] by
Ahmed and Honggang et al, [24] Abd Elmohmoud et al
solved nonlinear fractional Burgers’ equations by the

conformable double Elzaki transform, and Hamza et al used
the conformable double ARA transform to solve Regular
and Singular conformable fractional coupled Burgers’
equations [25], and the conformable triple Laplace transform
solved two-dimensional nonlinear Telegraph equations [26]
by Deresse, and the conformable triple Sumudu transform
was proposed by Gharib et al to solve regular and single
dimensional identical burger equation [27].

In the current study, we introduce a novel concept of
conformable double transform in two dimensional spaces. It
is called the conformable general double transform.
Recognizing that the conformable general double transform
has additional properties, the problem of the study was to
propose a general conformable transform that would
generate many conformable transforms by changing the
values of its constituent functions, and apply it in solving
differential equations to explain some real phenomena, for
example, vibration equations in physical systems and
analysis of fluid flow in channels and pipes, as well as in
modeling population growth and reducing the spread of
diseases, as well as in analyzing climate models and
predicting weather conditions to reduce natural disasters.

After presenting the definition of the conformable general
double transform for function of two variables in the
positive quadrant plane, we proved the basic properties
concern the existing conditions theorem. Furthermore, we
provided the conformable double general transform of some
known functions. Later on, we establish new results relative
to the partial differential derivatives. Finally, we use this
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new transform to solve some first-order and second-order
partial differential equations.

2. Basic Definitions and Theorems for General
Double Integral Transform

This section includes the basic properties and definitions of

the general double transform.

Definition 2.1. [28,29] Let g(x,¥) be an integrable

function of two variables X, ¥ = 0 Then the general double

transform denoted by (1, V) is defined as

GlaCe,y): ()] = pu,v) = 1wp(v) I J g(x,y)e'{“}(“]ﬁw(”}y}dxdy.
0

0 )

where fP(H) and w(v) are the transform functions for
X and Y respectively.

And,
| atio | | btim |
-1 ol = | (p(u)xd I B W{V)}’d .
Flbal-s) =g, | i | o
f-im b-in (2

where a and b are real constants.

Recognizing that this transform it has additional
properties, namely, it can generate many double
integral transforms by changing the values of

n(w), p(v), @(u) and wiv).

Definition 2.2. [28,29] If g(x,v) defined on

[0,X] x [0, ¥] satisfies the following condition

lg(x, v)| < Ke™+o¥, IK>0, VWx=X

and ¥y =Y .Then, g(x,v) is called a function of

exponential orders @and § asx,y — .

Theorem 2.1. [28] The existence condition of general
double transform of the continuous function g (X, ¥)
defined on [0, X]x [0,¥] is to be of exponential orders
a and &,for Re[@(u)] = a and Re[w(v)] = &.

Proof of Theorem 2.1. From the definition of general
double transform, we get

[p (w,v)| =

n(wp(v) f f g(x,y) e~ @@+ 4y dy
0 0

[+4] [+4]
<yu)p (U)J J lg(x, y)| e~ @x+w®Y) gy gy
0 Jo

= Kn(u)p(u)f e—(qﬂfu}—a}xale e—{w(u}—&}yd},
4] 4]

B nwpw) K
() —a)w) — &)

where Re[@(u)] = a and Re[w(v)] = &.

Definition 2.3. [28] The convolution of g(x,v) and
h(x,v) is denoted by (g =+ h)(x, y) defined by:

(9+* MG y) = f; [y 90c = @,y = Oh(e, 6)dads. g
Theorem 2.2. [28] Let G[g(x, ¥)] = Wy, (1, v7) . Then,

Gloc— .y~ OHx ~ .y ~8)] = e DB, ). gy
where H(x — a, v — &) denotes the unit step function
defined by

1L,x >ay=>4.
Hx—ay—48)=

0,Otherwise.
Theorem 2.3. (General Double Convolution Theorem)

[28,30]. If GLg(x )] =1y (1, v) and
G[h(x,¥)] = pp (1w, v) then

1

Q[(H wE 'hj (I,Uj] = 41{;}_} (I!, Ujﬁ’ﬂ(url’rj-(S)

7 plw)

In the following, we state some basic properties of general
double transform

Assume that i, (1, v) = G|g(x,v)] and
Uy (u,v) = Glh(x,v)] and a,b € R.Then

Glagloy) +bh(x,y)]=aGlgle )1+ b6 Y ()

6 ap(wv)+bpv)]=a G Wplw vl + b6 (W)l (7)
Fa+1rk+1)

Glxy?1=nWp) MOETIORE a,b > 0. ®
ximn] n(w)p()
Gle®+] = G -0Ww) =D’ o) >a,w(v) > Db. ©
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nwe(m) pww(v)

Glcos(ax) cos(by)] = 220+ W) 1 P a,bER. w0
. . _oan@  bp) ,
Glsin(ax) sin(by)] = 61 EW) 1 7 ,a,b ER. )
n-1
6"h(x,y)] G0
=0 W) 1) ) ") ———, neN.

l dx sZi dx (12)

Where G,(0,v) is be the general integral

transform of h{0, v)[13].

3. Conformable Fractional Derivatives (CFD)

In this section we introduce the conformable general double
transform using the following definitions:

Definition 3.1. [25,31] Let h (— —) Rx(0,m)=R
, then:
i.  The conformable space fractional partial derivative
of h (; Tr) order 1 is defined as

r H Tt
i yt h(x?+ﬁxl_r.y?) - (x_ ! ) y
6_rh = lim —>00<rt<l
U W A = f Tt (13)

ii.  The conformable space fractional partial derivative
r r
of h (— }‘—) order t is defined as
E

T REANC
a—thx—rﬂ :limh(r't+§} ) h( )—l>00<m<1
W\ t) Ee { r't (14)

3.1 Conformable Fractional Derivatives of Some Basic
Functions

In the following arguments, we introduce conformable
fractional derivatives for some basic functions.

-

I?
o Leth (I— , then:

t
L _.t‘
! r) r
ar xr},t }’t at xryt xT
axr(??):? Byt (7?):?-

o Lleth (i }r) x: ):-: , then:

L xT n—1 at "
) =) ay* () =o
) (%)

, then:

I
|

ot
e leth (I—,}—)
e

Il
—_—
q..lhc

: = .5 z
sl T ()
i h () = (£) i (). e

g0 () ana ()= 2o (5 ine (%)
)-ss

et
T,
S
©“.
=
=
[
-
e

Let r,tE(0,1] and hix,t) be
differentiable function of order r and t at the point
points x,y = 0 respectively, then

ar xT },t —r a xT }’t
axrh(?-?)— “aMTT)

9L e 9 (7 )
ayt \r't dy \r’'t

Proof of Property 3.1. Using definition 3.1 and putting
j= B x'" weget

Property 3.1.

ar x7 },t - a xT },t
axrh(?-?)—x a\7T)

Similarly, we can easily prove that

O (SN 07
ayt \r't dy \r't])

4. Conformable General Double Transform
(CGDT)

Let’s in this section prove that some properties and theorems
of the conformable general double transform.

r ot
Definition 4.1. Let it (I—,}T) be a piecewise continuous
-

function on the interval [0,00) x [0,00) having

© 2025 NSP
Natural Sciences Publishing Cor.


https://www.naturalspublishing.com/Journals.asp

28 =H o

A. Sedeeg: Conformable General Double Transform...

exponential order. Consider for some a,b € R,

|;..|r_}_'|
= |
r t xT T
X ¥ n—+ L .
sup—,T =0 ,e" r " t.Thus, under these conditions
-

the conformable general double transform is given by

}J’
gxgyl ( t)l .IuD].-t(“‘ v)
0 A0 ¥ t Tt
:n(u)ﬂ(U)J J g oW T h(x—,}?ﬂxr‘lyt'ldxdy.
0 r (15)

0
Where u,v € C,0 < r,t = 1 and the integrals are

by means of conformable fractional with respect to x?—

t
and }T respectively.

4.1. The CGDT in Relation to Other Conformable
Double Transforms

In this section, we discuss the relationship between the
new conformable general double transform and some
familiar conformable double transforms such as the
Laplace [14-17] , Sumudu [18,20] , Elzaki [24] ,
Laplace-Sumudu [21-23] transforms and ARA
transform [25].
o If n(u) =plv)=1and @(u) =uw(v) =1,
then these new conformable

turns into the

conformable double Laplace transform.

T

o If nlu) = @(u) =§and plv) =w(v) = i, then

r- 1},t ldx d},

the new conformable transform turns into the

conformable double Sumudu transform.

xr rt 1 W A0 lxr 1},! xl" ],t
. :—J J A |
r ot uv 0 Jo r ot

o If n{u) = w,p(v) = v and g(u) = i,w[u] = i,
le

then the new transform turns into the conformab
double Elzaki transform.

Tt it
h(x?%) ﬂxr‘lyt'ldxdy.

G:Gy

e Ifn(u) = 1,0(uw) =u and p(v) = w(v) =;,£~’
then the new transform turns into the conformable

G:Gy

double Laplace-Sumudu transform.
e
ﬂ xlytldxdy.

PO A I W R Ol I 6
(22 :_J f A [ e
rot Ve Jy rt

4.2. Some Properties and Theorems of Conformable
Double General Transform

In this section, we proceed to prove some basic properties
and theorems such as existence, conformable general double
convolution  theorems and conformable fractional
derivatives.

Property 4.1. Let

HED) = ()00,

616} If (%) (}?)l = GG, [Fg .

(16)

Proof of Property 4.1: Using the definition of CGDT, we
get
'y it
f (—) g (}—ﬂx"lyt'ldx dy.

y
gxgylf( i (t)
t 4 1
,¢=2do = x""*dx and dg = y*~'dy in

) J

L P },t
[ e
00

Substituting:

&
o=
Eq. (17) and simplifying, we obtain
G263 (5)a (5] - nowr [ [Temro s tr@aaens = s, gl
Where G, and G, the general double transform of
fx)and g(y) respectively.

4.3. Conformable General Double Transform of Some
Certain Functions

In the following arguments, we introduce the conformable
general double transform for some basic functions.

r rt
i. Leth (I—,}T) = 1, then:
-

g;g;[]_] = n(u)p(u)j j e_(ﬂ{ﬂ} W{U} ¥~ lyt ldx dy
0 /0

From Property 4.1 and Eq.(8),we get

el [ ATy
=1y gur vt |[h|—,—
0 Do r ot
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- B _ nwp)

ii. Leth (i—'!%) _ (.1;_"')” (%)m

,then:
r”ytm o 0 y rnyt
=] |=nwp) [ J e'q’(u)?'w(“): ( ) —| [y dxdy.
t L 1)\t

o

From Property 4.1 and Eq.(8),we get
= GuGyla"y"] =

( ) (y) nwWpW)n+ r(m+1)

0 ()" w(pymtt
ror X ipd
iii. Let!r,(x—,:’T)=.=3"1 FTE T ,then:
-

G4y

GGy

t

Q;g;[ej T = o) J [ etk [A H‘? 'y A dy.
0 o

From Property 4.1 and Eq.(9),we get

ret 25 etft n(u)p(v)

B R e R R

iv. Leth ('t—:%) = sm..l( )smﬁ’( } ;then:

f sin](x?r)sinﬁ (gﬂ

g
r t
wmwwﬂ mmﬁﬁwgwmym@

From Property 4.1 and Eq. (11), we get

L

e'(p(u Uy

G:6y

o B n(u)pv)
smﬂ( )smﬁ ( )‘gxgy[smﬂxsmﬁy]:(wz(uH;)‘E:Z(vH 2}

Theorem 4.1. (The Convolution Theorem for

Conformable General Double Transform). If
Glg(x v)] = ¥y (1, v) and G[h(x,v)] = pp (1, v)
then both exist for u = 0 and v = 0, then:

r ok x—r y_t _#
gng,[(g h)(r ' r)l e Yo W, V)ip,, @,). (18)

where ** denotes the convolution of the conformable
functions.

Proof of Theorem 4.1. By using the definition of CGDT,
Lemma (4.1) and Theorem (9) in [28], one can easily show

the proof

4.3 Existence Condition for the conformable double
General Transform

r r
If h (IT}T) is an exponential order a and b as

r t
% - mf? — oo, if there exists a positive constant
E =0, such that for all x = X,
= A i -
vy = ¥Yand ‘h(?,?)‘ <FEe"r t.Then it is

easy to get:

ro_t ¥ =
h(x—,"’—) = U(e“_“’ ) as = = o and
™ t "

r t
Thus, the function h (i—%} is called an exponential

t
order as=— — o and J'T - o,
"

Theorem 4.2. If k (— T) is a continuous function on

the region (0,X) x (0,T) of exponential orders a and
b, then the conformable general double transform of

-

r
JL(I—,}T) exists for all Re[g(u)] > a and

r

Re[w(v)] = b.
Proof of Theorem 4.2. Using the definition of the CGDT of

o }_r
h (— T) we have
A7 yt
h — = r-1 ,t—ld d’,

oot
hcﬂa)
r t

W A0 o ks ¥ t
J 6_9”(“)?'“’(")}? (e“TJr”}?)x"‘lyt‘ldx dy,
0

wmwﬁ

0

w e o },t
J e—m(u) T W(”)T
0

‘pgr‘t(u, 1})‘ =

W 0 Py },t
J e-qa(u) ?'“’(“)T
0

smmuwj

0

SEmmmw[

0

xr—l},t—ldx d}’.

i

o .00 xl’ ,
- E n(u)ﬁ(U) [ [ e_(qp(u)_ﬂ)?—(w(y)_b)T
0 Y0

B En(wp(v)
~ (e —a)w() —b)

For Re[@ ()] = aand Re[w(v)] = b.

xr—lyt—ldx d}’.
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X"y )] [ /T n ¥ yt an }’
Theorem 4.3. Let gy [ ( t exist, then the g§g§r (?) h ?? = (- )na n gxgy )
conformable general double transform of the functions can .

be represented as follows: (22)

[ n t\] n rot
r ry 7?(“) 6 xr yt Tt i x_?‘ 1 _{_1ym__ | pret x_ i
LG, ( tﬂ T g ??(u)gxgy r't]|) ngy_ t " rt)] - av™ GGy |h rit)|)
C‘(‘*vri i | SERYCICO B (RESON] Y el - =
G ) T Twma e O ")) X\ [ [y 0" i (xy
66| (5) [t (=) | = coma gt =)
Proof of Theorem 4.3. AT ‘ ! coArt
@9
Proof of (i). Using the definition of CGDT of h (T’T) [ x Aty y . d oy
and differentiating the both sides with respect to U in by t ?h Tt =D ot by @h re))|f

Eq.(15) we have

y rot
gxgy ( ) Theorem 4.4. Let Let GTGY [h (x— }T)] exist, then the

t "9 I\ 1y conformable general double transform of the conformable
([ (u[u)e )h( ) " 1dx)
0

fractional derivatives of order + and ¢t for 0 < r,t <1
can be represented as follows

It

(19) .
gC(:\J[Iculating the partial derivative of second integral, we can ' gxgy[ ( )] u ngy[h( )l n(u)gjf’[h(o'};_t)l'
Tt
o577 ﬁ
wsi( . . 6 i (5] = ma 5] -t o)
:P(U)L E_W(U}?}’t_ldJ’L (_??(“)QUJ(“)? " n(u)gyb (y;)l
! - ux_r xr yt r- t oot rout r
f “‘”)“’ " }Th(??)"‘ e o G k()] =g ()] - et 6 R (0))

(20)
Substituting Eq. (20) into Eq. (19), we obtain gxgy (r )l ()ngy[ ( )l w(o)p() ¢ [h( )l_

¢y 1 y n'() Ky
B

) n(u)ﬂ y
BTOEALT )ngy | Proof of Theorem 4.4.

21 r rok
@) i.  Using the definition of CGDT for % h {x—,:’T),
k4 L

Similarly, we can easily prove that:

e . we have
y y pv !
oo 220t sl (7))

ﬁr x y
ngy a T'
o't
We conclude that the above results can be expanded as
follows: :”(u)p(u)J

a [xy o
EJxrh( tﬂx Y dy.

(26)
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Eq.(26) can be written as an 1yt
a y gxgy }’m r ?
gxgy y S Y
W e )gxgyl ( )] o)) wti0) (gx \a [ )D
=1
(31)

0 I ar
=p(v) L e'w(”)}?yt'l(n(u) L nk (Fh(_ —) v ldx)dy

(@7)
Applying Property 3.1, then Eq. (27) becomes
I xryr m_ f m_ x_rd xryr
% ph -= :ﬂ(u)[ r Fin0) I eq’(“}rd—h — | driy
rrt 0 0 't (28)

Thus, the integral inside curly bracket given by

[44] r a X y
-qa(u)
n(u)[] 6xh(r t) dx
yt ® [y
=n(u) (—h (0,—) +0o(u) ] e ?h(—,
t ) r

Substituting Eqg. (29) into Eq. (28), we obtain

d ¥
e

t
}—) x'"'ldx).
t

(29)

Therefore,

ar x’ yt xr yt yt
GGy @h(??) = o(u)GiGy [h(?? ~n(w)Gy |h 0|
In the same manner, the CGDT of

af -r." }_I.') a:." x." }_f a!f _r." }_f
S (Ch) imh(5r) e (D0)
B}'th(r’ t t'ax2T r'or and 82t h rtt
can be obtained.

We note that the above results can be extended as follows:
anr x }’
axnr
1
(u)gxgyl £ an ol Aot

(30)

o e

The proof of Egs.(30) and (31) can be obtained by induction.

The below theorem establishes the CGDT of the functions
.t"' ar x." }_I.‘ }_r B." .:r'F }_r
Saeh (55 ) (%)
r r
Theorem 4.5. Let G.. [h (i—,‘%)] exist, then
Wt gt _onuwl a1 | oyt
gxgy v ayt (r t)l__ @' (W) a(ﬁ gxgy[h(?'T)]
NwWp® d (o [ (2
i oW du(gx [h(r 'OJI)'
s ()=t s )
gxgy ta \r' e/l W) avlpl) gxgy h rlt
@ ke
i. W) d by h O't '
Proof of Theorem 4.5. Using the definition of CGDT of

af x." }I.‘
—h(— —) we get
ﬂ}'r r e 9

9t y
gxgy J’t (}’ ?)

=n(w)p(v) L ’ L me-qo(u) L)L

S—
+

e
—+

at Tt
s

(32)

By differentiating the both sides with respect to u in
Eq.(32), we have

at x yt )
c'h: ngy yt T

o at , o a ol X_r
:p(r})L e (a},th(x ! ))yt ldyU ﬁ(n(u)e o0 )x’“'l dx}.

(33)

we calculate the partial derivative in second integral as
follows

m a o
_ ‘99(11)?) r—ld
L au(n(u)e 1y
@ xr r

:n’(u)f e"”(”)?xr'ldx—n(u)cp’(u)J e Ty
0 0

(34)
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Substituting Eq. (34) into Eq. (33), we get

o)

And,
T at X yt
ngy[r ayt (7?)]
1 ﬂt iyt
IO GGy ﬂyt Tt

xm b (xTy n(w) a [ 1 at (x"y
r oyt (r ?ﬂ o' () du (()gxgy[c?yt (r t)D
Using Theorem 4.4, we have
rat (x }’)
riyt

uw(p) d 'y u)p(v) d b
- ! )( g )ﬂu( ( )ngy\ ( } )) ”(QU’)&() )ﬁ( £[h(?0)n

In a similar manner, one can prove that

o iy
t oy ( )
1wWp(v) d y
) alap]

_ Ylu)plv) @ gg v y
W) dolpl)™
5. Applications

In this section, we find the solutions of conformable
fractional heat equation, conformable fractional wave
equation, conformable fractional Advection- diffusion
equation, conformable fractional telegraph equation and
boundary value problem of conformable fractional partial
differential equation using conformable general double

Thus,

GGy |—

Gy~

G|~

transform. We note that if 7 =t =1 in the following
problems, one can obtain the solutions of some problems,
which was studied in [17,18,20,32,33]:

Example 5.1.

Consider the following homogeneous conformable fractional
heat equation of the form

32]'" xT },t at xT },t
a7 7)) T e\ T )
(39)

subject to

¥y a’ M ’ P " »
h(R0)=er o h(0)=er . ph(07)=er (36)
Solution:

By applying the conformable general double transform for

both sides of Eq. (35), we have
; (x E )l
")) (37)

521*
s | 2o (22)] st

By partial derivative properties of CGDT, we get

oo e
()gxgyl( ﬂ g

0* ()G gy

(38)

Substituting
IO A A LI I A I [
5 h(o,?) v)-1 (gyax"( )) w(r)-1 g”“( ) o) -1

in Eq. (38) and rearranging the terms, we have

(0*(u) - ())ngy[ (x Y ﬂ p(W)nw)e@) + o) nwpv)

w(v) -1 ) o) -1
(39)
By simplifying, we obtain
X"yt nwp)
r’t (@) — Dw(v) —1)
Thus, we can get the solution as
h (_:»_) _ 5

for r = t = 1, the exact solution becomes
h(x,y) = e**y.

This result is consistent with the result obtained in [20]
double conformable Sumudu transform.

The following figures (Figure 1 and Figure 2 ) illustrates the
3D graph of the exact and approximate solutions of Example

51latr =t =1 and Figure 3, we sketch the approximate
ro.t
h (I—,}T) for Eq. (40) at
-

r=t=1,0.99,0.98,0.97 i, p.

solutions  of
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Fig. 1: Plots of the 3D exact solutions of Eq .(40).

Fig. 2: Plots of the 3D approximate solutions of Eq .(40)
obtained using the CGDT.

—— Exact

-------- Approximate at r=t=0.99
------ Approximate at r=t=0.98
—— Approximate at r=t=0.97

Fig. 3: The exact and CGDT method solution of Eq. (40) at
v=1landr =t =1,0.99,0.98,0.97.

Moreover, in Table 1 we present the absolute error of
r b
h (X—,J'T) obtained by exact and CGDT at different values
-
of T and V.
x _}-‘r .
Table 1: The absolute error of h (_’T) obtained by
-

exact and CGDT at different values of r, t and y.

xy [ |t Exact |CGDT  |lhgact — hecor!
11]0.10.99|0.99| 1.2214 [1.22965| 0.00825
1 (0.2 1099|099 (1.34986 | 1.3616 | 0.01174
110.3/0.99|0.99|1.49182 [1.50691 | 0.01509
11]0.10.98|0.98| 1.2214 [1.23825| 0.01685
1 (0.2 10.98|0.98(1.34986 |1.37384 | 0.02398
110.3/0.98|0.98|1.49182 [1.52262 | 0.0308
110.10.97|0.97| 1.2214 [1.24724 | 0.02584
110.2 10.97|0.97|1.34986 [1.38659 | 0.03673
110.3|0.97|0.97|1.49182 [1.53898 | 0.04716
Example 5.2.

Consider the following homogeneous conformable fractional
wave equation of the form

321'" xr t azt xr t
s (1)) = s ()
(41)
subject to
hxr _x_r athxr _x_rhyt_ﬁ arh yt_}_':
(-0)=er ™ (F0)=er. a(0g)=er . Gh(pT)=er
(42)
Solution:

By applying the conformable general double transform for
both sides of Eq. (41), we have

321“ x" yt azt x7 yt
Tt Wl =crt _
ngy[axz,,h(r, t)l 5y aJ’Zth(T’ f)l 43)

By partial derivative properties of CGDT, we get

oyt t ar t

PGS, lh(x—,y—ﬂ—w(u)n(u)g; h(o,y?) g Eh(o%ﬂ
rot T at r

WG, lh("? 5"?) o [h(”?o)] — ) [a—yth(x; 0)

(44)
Substituting

ool sl

n(u)
o) -1’
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"\ e " [ [ y\] pl)
(0% )|-amrs S0k )| aty
in Eq. (44) and rearranging the terms, we have

Tt
CORIEOs h(—”;ﬂ
p(nWe) +wp®)  (1p()w(v) +n(w)p(v))
I .

w(v)-1 olu) -
By simplifying, we obtain
. "y nwp)
620y [h (?' ?)I ~ @ - D) -1

Thus, we can get the solution as
ot ATyt Fig._5: Ploj[s of the 3D approximate solutions of Eq .(45)
( y ) Ty obtained using the CGDT.

—,—|=ert.

for ¥ = t = 1, the exact solution becomes

h(x,y) = e**y.

This result is consistent with the result obtained in [20]

double conformable Sumudu transform. o Fyact

The following figures (Figure 4 and Figure 5) illustrates the 1 wwnsens. pproXimate atr=£=0.99

3D graph of the exact and approximate solutions of Example £ oproinle =06

52atr =t = 1and Figure 6, we sketch the approximate | & 1777 P -
t —— Approximate af r={=0.97

solutions  of h %,y?) for Eq. (45) at

r=t=1,0.99,0.98,0.97 inp.

Fig. 6: The exact and CGDT method solution of Eq. (45) at
v=1landr =1t =1,0.99,0.98,097.
Moreover, in Table 2 we present the absolute error of
E
h (% ,“YT) obtained by exact and CGDT at different values

of r,t and v.

r
Table 2: The absolute error of h (%,“‘r?) obtained by exact

and CGDT at different values of 7+t and V.

x|y |r [t |Exact |CGDT ||hgraet — hecprl
110.1(0.99|0.99|1.2214 |1.22965(0.00825
110.2(0.99|0.99|1.34986|1.3616 |0.01174
110.3(0.99|0.99|1.49182|1.50691(0.01509
1
1

0.1/0.98/0.98(1.2214 |1.23825|0.01685
0.2|0.98]0.98|1.34986|1.37384|0.02398

Fig. 4: Plots of the 3D exact solutions of Eq .(45).
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1]0.3/0.98]0.98(1.49182|1.52262|0.0308

1]10.1/0.97]|0.97(1.2214 |1.24724/0.02584
1]0.2/10.97]0.97|1.34986|1.38659|0.03673
1]0.3/0.97]0.97]1.49182|1.53898/|0.04716

Example 5.3.

Consider the following conformable fractional Advection-
diffusion equation of the form

at X7 yt aZr x7 yt ar X" yt
@(h(??) ‘m(h(?-?) W(h(??) =0

(46)
subject to
Eo)ir-2 i)t Eafad)-o
(47)
Solution:

By applying the conformable general double transform for
both sides of Eq. (46), we have

at b yt 321' " },t ar 7 yt
ret| I B D T _ T —
gxgy[ﬂyt(h(r ' t)) 6x2r(h(r ' t))+8xr(h(r ' t)ﬂ =0
(48)

Using the conformable convolution theorem and partial
derivative properties of CGDT, we get

Tt r ot
wisffshial-voss ]

i

) ar i Tt
+w(u)n(u)gﬁlh(0.}?ﬂ 00, @h(of;)% q)(u)g;gﬁlh(x;%ﬂ
—n )Gy [h (0? ] = 0.

- )G

(49)
Substituting

yt B 1 1 ar yt B
g;[h(o'?ﬂ_p(v)(erwz(v))' g;[@h(o,?ﬂ—o.

Gx :h (x?r 0)} =1 (q::-[u; —1 tpzl(u))'

in Eq. (49) and rearranging the terms, we have

Tt
ret[p(* )
s

1 1

) (o~ ) - o) (5 )+ o) (54 )

(w0) - 2@+ p(w)

By simplifying, we obtain

grgth _ ﬂ(u)ﬂ(v) B n(u)p(v)
- w(v)lplw)-1) o*(u)wln)

Thus, we can get the exact solution as

X7 b P xT .t
h(—,}—) S
rot r t

forr = t = 1, the exact solution becomes

Y },t

't

(50)

h(x,y) =e* —x + .

This result is consistent with the result obtained in [32] by
Adomian decomposition method.

The following figures (Figure 7 and Figure 8) illustrates the
3D graph of the exact and approximate solutions of Example

5.3atr = t = 1 and Figure 9, we sketch the approximate

h(i,ij for Eq. (50) at

r £

r=t=1,0.99,098,0.97 in 2D.

solutions  of

Fig. 7: Plots of the 3D exact solutions of Eq .(50).

w4

Fig. 8: Plots of the 3D approximate solutions of Eq .(50)
obtained using the CGDT.
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Exact
-------- Approximate at r={=0.99
------ Approximate at r=t=0.98
—— Approximate af r=t=0.97

Fig. 9: The exact and CGDT method solution of Eq. (50) at
v=1landr =t =1,0.99,0.98,0.97.

Moreover, in Table 3 we present the absolute error of

h (i T) obtained by exact and CGDT at different values
"

CA-T A ) S
(52)

Solution:

By applying the conformable general double transform for
both sides of Eq. (51), we have

r,,(,f 53!‘ I X" yr 5:‘( I X" yr 5( I X!‘ yr 'I XJ‘ yt 1 +(Xr‘):+yt
§G o \M T T oz M7 ) e\ T ) )R ) ) T

Using the conformable convolution theorem and partial
derivative properties of CGDT, we get

]
el o
i

PGy ; ({0

\__/

ofr, t and y. nwpelw) wpe) ywpl)
ro.t 3 v 2y
Table 3: The absolute error of i (i—,}?) obtained by exact (v)(P(“) v Ww() (p(u)w ) (54)
and CGDT at different values of r, t and y. Substituting
J' r J't
xly [r |t |Exact|CGDT ||hgyaer — hegprl gy } :—’U(U) _ gf, g h 0,}— =0,
1]0.1/0.99(0.991.10517 |1.10889 0.00372 ot w2(v) ox” t
1]0.210.99|0.99 ] 1.1214 |1.12596 0.00456 X 2 (w) at  x’ n(w)
11]0.3]0.99]0.991.14986 |1.15560 0.00574 Gx [h(—.O)} 3( 5 Gr [6 y: ( 0)] = ﬁ
110.1/0.98]0.98|1.10517 |1.11277 0.00760 r “ Y r plu
1(0.2]0.98(0.98] 1.1214 |1.13071 0.00931 in Eq. (54) and rearranging the terms, we have
110.3/0.98]0.98|1.14986 |1.16159 0.01173 y
1]0.1/0.97]0.97|1.10517 | 1.1168 0.01163 (0" (u) - wHv) - wlv) - )Gy |h (7 ?)
110.2(0.97]0.97 |1.12140 |1.13566 0.01426 . .
) Y
110.310.9710.97 1 12986 |1 16764 0179 _Twple) Tn(wpls) _ nple) glaluels) (el
& ol 5.4 “wll) pPw0) pw) T W) W)
xample >4 ) n(u)ﬁ(v)
Consider the following conformable fractional telegraph W )
equation of the form v v
By simplifying, we obtain
L N A M N M W B “”’, e )
R I ) O WA A B L R r't GrGL | h *r }_ = ?3? wpw T pzv _
P t)] @*wl) ew?(v)
X y
=1- (7) —?- Thus, we can get the exact solution as
(51) X7 vt K2t
subject to h (7}?) - (?) * }?
(55)
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forr = t = 1, the exact solution becomes

h(x,y) =x* +.

This result is consistent with the result obtained in [33] by
combination of Laplace transform and variational iteration
method.

The following figures (Figure 10 and Figure 11 ) illustrates the
3D graph of the exact and approximate solutions of Example

54 atr =1t =1 and Figure 12, we sketch the approximate
ro_t
h (I—, :’—) for Eq.

r £

r=1t=1,099098,097in2D.

solutions of (55) at

Fig. 10: Plots of the 3D exact solutions of Eq .(55).

Fig. 11: Plots of the 3D approximate solutions of Eq .(55)
obtained using the CGDT.

—— Bradt

soeneees Approximate at r=1=0.99
------ Approximate at r=t=0.98
—— Approximate atr=t=0.97

Fig. 12: The exact and CGDT method solution of Eq. (55) at
yv=1landr =1t =1,0.99,0.98,0.97.

Moreover, in Table 4 we present the absolute error of
ro_t

h (’:—,}T) obtained by exact and CGDT at different values

of r,t and y.

r r
Table 4: The absolute error of h (i—, }T) obtained by exact
and CGDT at different values of r, t and y

xly r [t |Exact|CGDT |lhgrqet — heapr|
1]0.1]0.99(0.99| o011 |0.114047 0.004047
1(0.2(0.99|0.99| o014 |0.145510 0.005510
11(0.310.99|0.99| o019 |0.197428 0.007428
1(0.1(0.98|0.98| o011 |0.118267 0.008267
11(0.210.98|0.98| o014 |0.151269 0.011269
1(0.3(0.98|0.98| 0.19 |0.205184 0.015184
1]0.10.97|0.97| 011 [0.122669 0.012669
1]0.2|0.97|0.97| 014 |0.157288 0.017288
1]0.3|0.97|0.97| 019 [0.213285 0.023285
Example 5.5.
Consider the following boundary value problem of

conformable fractional partial differential equation

AN L A R 0y

@(h(??))—@(h(??»:sm(n?) 0<?<1,?>0.
(56)

subject to

r(E0)=0 , a(0Z)=0,k(12)=0 ;—;h(g,o):o.
(57)

Solution:

By applying the conformable general double transform for
both sides of Eq. (56), we have
x}"
sin(n—)
r

. aZr X" yt aZt X" yt .
(58)

Using the conformable convolution theorem and partial
derivative properties of CGDT, we get

Tt it or 't
h(—%) -l o.};) -1l g;lﬁh(o%ﬂ
Tt I at r
—w?(v)g;gﬁlh(%) O N e lﬁh(”ﬂ

_pv) m)
~wv) ?(w) + 1%

v GG h

(59)
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Substituting

TEA N R

in Eq. (59) and rearranging the terms, we have

Gy

| (1Y (] ) m
(00) - w2w) 665 h(? r)‘ (w) 6y = P ( ) OO G
By simplifying, we obtain
r t
o [+ (7 )
! g;[ﬂh(oy_t) , pm() |
(92w - wi(w)) ™ |0 W) (02(w) - w2(v))(p* () 4 72)
(60)

Eqg. (60) can be written in the form

1Y el | I S r[ﬁ ( y_t)]
ot |1 () w—wew) 2 [ "\ ")

p)mn () (p* () + %)
w(v) (02 (w) — w2(®))(9? (W) + 72)e>@) + 72

Or
o)
1 | 1 oy
OO OROR (p(u)] [95’ [F‘ (0' ?)I
p) W) + 1) = p()w?(v)
mw(v)(w?(v) 4+ 12)
| pIW*W) = p)wiw) + %))
fw()(w?(v) + %) (9*(u) +7?)

Taking the inverse general transform with respect to ¥, we
obtain

As > L thenh(?'T)% 0 , thus

[ ( )] B [P{v) p(v)w(v) ]
G ax” ’ -

wilr) w2(v) +n?
Thus,

w(v))

Taking the inverse general transform with respect to v, we
obtain

r .t 1 r t
h (x_] y_) = —sin (nx—) {cos (ny—) - 1}.
r't)] w T t

forr =1t = 1, the exact solution becomes

(2 = o) 2ot
Gy r’t)| w? T w?(v) + ?

(61)

h(x,y) = %sin(ﬁx) {cos(my) — 1}.

This result is consistent with the results obtained in [17,18]
by the conformable double Laplace transform and the
conformable double Sumudu transform.

The following figures (Figure 13 and Figure 14 ) illustrates
the 3D graph of the exact and approximate solutions of

Example 5.5at ¥ =t = 1 and Figure 15, we sketch the

t
approximate solutions of h(x—r,y?) for Eq. (61) at
T

r=1t=1,0.99098,097in2D.

Fig. 14: Plots of the 3D approximate solutions of Eq .(61)
obtained using the CGDT.
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000

005
Bxact

1y

wooY Approximate at r=t=0.99

e R

------ Approximate at r=t=0.98

o5 —— Approximate atr=t=0.97

-0

Fig. 15: The exact and CGDT method solution of Eq. (61) at
v=1landr =t =1,0.99,0.98,097.

Moreover, in Table 5 we present the absolute error of
r r

h (I—,}’T) obtained by exact and CGDT at different values
-

ofr,tand v.
= }_r .

Table 5: The absolute error of h (—, T) obtained by exact
-

and CGDT at different values of r, t and y.

x|y |r |t |Exact|CGDT ||lhgyac: — heepr|
110.1/0.99]0.99|.0.0015324|-0.0016894 0.0001569
1 10.2]0.99]0.99].0.0029148|-0.0031832 0.0002684
110.3]0.99]0.99|.0.0040119|-0.0043484 0.0003365
110.1/0.98]0.98|.0.0015324|-0.0018628 0.0003304
1 10.2]0.98]0.98]-0.0029148|-0.0034766 0.0005618
1 10.3/0.98]0.98|.0.0040119|-0.0047126 0.0007007
110.1]0.97]0.97|.0.0015324|-0.0020544 0.0005220
110.2]0.97]0.97|.0.0029148|-0.0037971 0.0008823
110.3]0.97]0.97|.0.0040119|-0.0051066 0.0010947

All the above figures and tables of selected examples are
obtained using Mathematica software 13.

6. Results and Discussion

In this section, we discuss the accuracy and applicability of
the proposed method by comparing the approximate and
exact solutions using tables and graphs. Figures 1, 2, 4,5, 7,
8, 10, 11, 13 and 14 present the 3D plot solutions of
Examples 1-5 obtained by the CGDT method and compared

with the exact solutions at 7 =t = 1, These figures show
that the approximate solutions obtained by the present
method are almost identical to the exact solutions. Figures 3,

6, 9, 12 and 15 present comparisons between the linear plots
of the approximate solutions from the proposed method and

the exact solutions of Examples 1-5 for the value of X and

different values of the fractional degree 7" and .t From our
view of the figures, we conclude that the numerical solutions

are very close to the exact solutions when 7>, T — 1 while
tables from 1 to 5 provide us with a comparative study
between the exact and approximate solutions for each
example in terms of the absolute error at

X = ]__ V= '::ll, ':'2, 0.3 and

r=1t=0.99098,097 js apparent from the tables
and figures provided. Accordingly, we have confirmed that
the solution using our current method converges quickly
towards the exact solution

7. Conclusions

Inspired by the new general double transform in two
dimensions, we introduced a novel approach called a
conformable general double transform in two dimensional
spaces. This new transform collects and implies the known
conformable double Laplace transforms into the positive
quadrant plane. Practically, we proved some essential
properties related to the presented conformable general
double transform such as partial derivative properties. To
establish the effectiveness of this conformable, we apply it
to solve some partial differential equations subject to
appropriate conditions. It is very important to investigate the
convergence behavior of the conformable general double
transform. Furthermore, it should be pointed out that this
novel transform can be combined with any numerical
iteration methods in order to solve nonlinear PDEs and
PDEs with variables coefficients. Furthermore, in the future
I will investigate the possibility of applying this approach to
other complex systems and fuzzy differential equations.
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