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Abstract: The group matrix ring M2(R)G serves as a generator matrix for constructing binary linear codes by integrating algebraic

properties of groups and matrices. This research explores the application of M2(R)G, where M2(R) denotes the set of 2×2 matrices with

entries from a ring R, and G represents a specific group. The study investigates how this structure can be effectively utilized in generating

binary linear codes through a generator matrix, highlighting its potential advantages in error correction and secure communication. The

findings provide deeper insights into the theoretical framework of group matrix rings and their practical applications in coding theory,

contributing to advancements in information security.
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1 Introduction

Currently, information security has developed into
something very important. As society increasingly relies
on digital networks for communication, business and data
storage, the need to prevent misuse of sensitive data or
illegal access is increasing for both individuals and
companies. Furthermore, with cyber threats continuing to
grow in complexity and severity ([1], [2], [3], [4], [5]),
strong information security is essential to protect against
potential risks and vulnerabilities ([6], [7], [8]).

The amount of highly sensitive information stored
digitally is rapidly growing; accordingly, businesses
should implement tighter security to prevent unauthorized
access. These provisions are necessary to prevent
unauthorized access and misinformation. Numerous
studies emphasize the importance of implementing strong
security measures to protect information from breaches
and errors. Alshboul [9] emphasizes the need for security
measures, preventive measures, and policies that tailored
to protect organizational assets from internal and external
attacks. Kidd [10] highlights the need for regular security
audits, intrusion detection, and a focus on human factors
in information security.

Several studies have investigated methods for
enhancing information security. Popa [11] and
Arutyunov [12] both emphasize the potential of
combining biometrics and cryptography to improve
system security. Schaefer [13] highlights the role of
information theory approaches in designing secure
information systems. Additionally, algebraic techniques
have also been explored, such as the use of group theory,
matrix rings, and error-correcting codes to enhance the
structural robustness of security mechanisms [14], [15],
[16], [17], [18].

From the results obtained above, it follows that coding
theory is one of such scientific branches that can aid in
this process. Coding theory is a branch of mathematics as
well as computer science that is concerned with the
design of error-correcting codes. These algorithms are
designed to find and fix errors which might occur due to
noise, interference or other kinds of errors leading to data
corruption. They are also used to protect from these kind
of mistakes. A code is a representation of a collection of
messages created in order to shield messages from
mistakes during transportation. Several types of code
include: linear codes, convolution code, and turbo code. A
linear code of length n is a code where its alphabet is
comprised of a finite field. One example is binary linear
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code, which is a code with elements ranging from fields
to 2 members, namely 0 and 1. Linear code is a basic
concept in coding theory, with various applications in
error correction and data transmission. Muller et al[19]
introduced the concept of coding computing, which aims
to reduce the computational cost of matrix-vector
multiplication. Additionally, [20] discusses linear codes
derived from projective spaces.

Binary codes are extensively used in the
telecommunications, digital communication systems, as
well as computer networks in the data transmission. They
allow reliable and efficient to be occur at any errors that
may appear during the transmission of information
through the channels, which are noise. Binary codes are
most commonly used in digital storage systems, such as:
Hard drives. This assures the integrity and accuracy of
stored data, for example, in the existence of storage media
errors. Binary codes are models in which cyphers have
important varieties in cryptography and information
defense. Error correction codes are applied to prevent
corruption and interference of data especially sensible
data during data transmission and data storage.

Binary linear code can be built or constructed by
various methods ([21], [22]). Some of them are
Concatenation, Parity Check Matrix, Reed-Solomon
Codes, Convolutional Codes, and Generator Matrix. This
article will focus on discussing the formation of binary
linear codes using a generator matrix from the group
matrix ring Mk(R)G. The group matrix ring Mk(R)G is a
set of matrices with entries in the matrix as elements of
the group ring RG, where k represents the size of the
matrix forming a k × k block. The ring group itself,
denoted by RG, constitutes a formal series or quantity
formed from each ring element and its finite group of
elements. A matrix from this ring can serve as a generator
for constructing binary linear codes. This paper mainly
focuses on studying the role of the group matrix ring
M2(R)G in constructing binary linear codes.

2 Methodologies

The initial stage in this study is to choose a finite group
G. In this case, dihedral group D8 is selected to be the
designated group. It is a finite group with 16 elements.
Dihedral group D8, also known as the octagonal
symmetry group, is a symmetry group consisting of all
symmetry transformations that preserve the octagon
shape but can change its position and orientation. This
group is a well-known examples of the important
symmetry group, is often utilised in geometric,
crystallographic and computer graphic areas for modeling
symmetry and transformations in two dimensional
shapes, like octagons and other shapes. The two views of
a standard octagon appear in Figure 1. The figure contains
two parts which show the shape in figure (a) and the
numbered vertices in figure (b). The labeling system

identifies symmetrical patterns in the octagon that
demonstrate the dihedral group D8 structure.

Fig. 1: (a) Octagon (b) Octagon with numbering

The elements in the dihedral group D8 consist of
rotations and reflections. Rotation refers to the act of
rotating clockwise or counterclockwise around the center
of the octagon at angles such as 45 degrees, 90 degrees,
135 degrees, and so forth. Following the group selection,
the next step is to determine the mapping τk(v), which
sends an element v from the matrix ring Mk(R)G to k× k

matrices over the ring R. This mapping is defined in the
context of the chosen group G and the form of k × k

matrices over R. The group matrix ring denoted by
Mk(R)G is a set of matrices whose entries in the matrix
are elements of the group ring RG.

Let G be any finite group and let R be any ring with
unity. The group ring RG set is formed with its members
being the formal sum ∑i∈I rigi where ri ∈ R and gi ∈ G

[23]. The group matrix ring Mk(R)G is a k× k matrix with
entries from ring R [24].

Mk(R)G =









a11 a12 a13 · · · a1k

a21 a22 a23 · · · a2k

...
...

...
...

...
ak1 ak2 ak3 · · · akk









.

The index k in Mk(R)G is the block matrix size of the
group matrix ring. The overall matrix size could be much
larger. Let v = αg1

g1 +αg2
g2 +αg3

g3 + . . .+αgngn ∈ RG.
Let σ(v) ∈ Mk(R)G be matrix described as follows

σ(v) =













α
g−1

1
g1 α

g−1
1

g2 α
g−1

1
g3 · · · α

g−1
1

gn

α
g−1

2
g1 α

g−1
2

g2 α
g−1

2
g3 · · · α

g−1
2

gn

...
...

...
. . .

...
α

g−1
n

g1 α
g−1

n
g2 α

g−1
n

g3 · · · α
g−1

n
gn












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where g−1
1 ,g−1

2 ,g−1
3 , . . . ,g−1

n ∈ G. the mapping σ is
defined as follow.

σ : RG −→ Mk(R)G,

where the members of RG are mapped to matrices in
Mk(R)G.

In this article, the value of k is set to 2. For this
reason, the group ring matrix is M2(R)D8 with the
mapping represented by τ2(v), which maps an element
from M2(R)D8 to a 2 × 2 matrix over the ring R.
Subsequently, the research involves determining
generator matrices in the form of [I2n|τ2(v)], where Ikn

represents the identity matrix of size 2n× 2n, and v is an
element in the matrix ring M2(R)G. The next phase
employs these generator matrices to directly find self-dual
binary codes over the finite field F2.

Fig. 2: The research steps

By applying the above methodology—from selecting
the dihedral group D8 and mapping its elements into the
matrix ring M2(R), to constructing and testing generator
matrices—this research aims to leverage the algebraic
robustness of group and ring theory for enhanced code
design and can be optimized for data security. The
subsequent section, Results and Discussion, will detail
the empirical outcomes of this method, highlighting both
the theoretical significance and practical implications of
employing dihedral symmetries in binary linear coding.

3 Results and Discussions

This section presents a detailed examination of the codes
generated using the dihedral group D8. The discussion

begins by illustrating how the group’s rotational and
reflective elements translate into distinct matrix
representations. Throughout this analysis, the manner in
which dihedral symmetries influence code structure is
emphasized, ultimately illustrating the potential
advantages of leveraging group-theoretic properties for
robust and efficient error correction in information
security contexts.

The first step taken is to obtain the matrix
representation of the elements of D8. As mentioned in the
previous section, the dihedral group D8 is known as the
dihedral group of order 16, encompassing the symmetries
of a regular octagon. Specifically, the group contains
eight rotation elements and eight reflection elements, each
of which can be expressed in terms of a 2 × 2
transformation matrix that acts on the plane containing
the octagon. The rotation elements correspond to angular
rotations by multiples of 45◦. These can be written as:

Rk =

(

cos kπ
4

−sin kπ
4

sin kπ
4

cos kπ
4

)

, k = 0,1, . . . ,7,

and are listed in Table 1 with their corresponding degrees
of rotation. Each rotation effectively repositions the
vertices of the octagon around its center, preserving
distances and angles, thus highlighting the key geometric
symmetry that defines D8. Furthermore, the reflection
element is defined as a reflection about the axis of
symmetry that passes through the midpoint of each side
of the octagon or a reflection about the axis of symmetry
that passes through two corner points. For more details,
see Figure 3.

Fig. 3: Reflection of each side and corner point of the octagon

The blue line is a reflection of each corner and the
orange line is a reflection of each side. First, it is reflected
on each side as follows. The reflection elements of D8 are
shown in detail in Table 2.
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Table 1: All rotation elements of D8

No Rotation elements Figure Permutation

1 45 r1 =

(

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 1

)

=
(

1 2 3 4 5 6 7 8
)

2 90 r1 =

(

1 2 3 4 5 6 7 8

3 4 5 6 7 8 1 2

)

=
(

1 3 5 7
)(

2 4 6 8
)

3 135 r1 =

(

1 2 3 4 5 6 7 8

4 5 6 7 8 1 2 3

)

=
(

1 4 7 2 5 8 3 6
)

4 180 r1 =

(

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

)

=
(

1 5
)(

2 6
)(

3 7
)(

4 8
)

5 225 r1 =

(

1 2 3 4 5 6 7 8

6 7 8 1 2 3 4 5

)

=
(

1 6 3 8 5 2 7 4
)

6 270 r1 =

(

1 2 3 4 5 6 7 8

7 8 1 2 3 4 5 6

)

=
(

1 7 5 3
)(

2 8 6 4
)

7 315 r1 =

(

1 2 3 4 5 6 7 8

8 1 2 3 4 5 6 7

)

=
(

1 8 7 6 5 4 3 2
)

8 360
r1 =

(

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

)

= (1)(2)(3)(4)(5)(6)(7)(8) = (1)
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Table 2: All reflection elements of D8

No Reflection elements Figure Permutation

1 Horizontal reflection h =

(

1 2 3 4 5 6 7 8

6 5 4 3 2 1 8 7

)

=
(

1 6
)(

2 5
)(

3 4
)(

7 8
)

2 Vertical reflection v =

(

1 2 3 4 5 6 7 8

2 1 8 7 6 5 4 3

)

=
(

1 2
)(

3 8
)(

4 7
)(

5 6
)

3 Diagonal reflection d =

(

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

)

=
(

1 8
)(

2 7
)(

3 6
)(

4 5
)

4
Invers diagonal

reflection
d′ =

(

1 2 3 4 5 6 7 8

4 3 2 1 8 7 6 5

)

=
(

1 4
)(

2 3
)(

5 8
)(

6 7
)

5

Reflection

of corner

points 1 and 5

a1 =

(

1 2 3 4 5 6 7 8

1 8 7 6 5 4 3 2

)

=
(

2 8
)(

3 7
)(

4 6
)

6

Reflection

of corner

points 2 and 6

a2 =

(

1 2 3 4 5 6 7 8

3 2 1 8 7 6 5 4

)

=
(

1 3
)(

4 8
)(

5 7
)

7

Reflection

of corner

points 3 and 7

a3 =

(

1 2 3 4 5 6 7 8

5 4 3 2 1 8 7 6

)

=
(

1 5
)(

2 4
)(

6 8
)

8

Reflection

of corner

points 4 and 8

a4 =

(

1 2 3 4 5 6 7 8

7 6 5 4 3 2 1 8

)

=
(

1 7
)(

2 6
)(

3 5
)
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Based on the above explanation, it can be seen that the
dihedral group D8 consists of 16 elements, representing
all symmetries of a regular octagon, or it can be written as
follow

D8 =

{

r1,r2,r3,r4,r5,r6,r7,r8

h,v,d,d′,α1,α2,α3,α4

}

.

The operation in the dihedral group D8 is a
transformation composition, in which two
transformations are sequentially combined to produce a
new transformation. For example, if r1 is a 45 degree
rotation and h is a horizontal reflection, the composition
of r1h resulting in a reflection angle of 4.8 is α4. For more
details, below is an illustration of the composition of r1h.

Fig. 4: Horizontal reflection

Table 3: Cayley Table for (D8,◦)

◦ r1 r2 r3 r4 r5 r6 r7 r8 h v d d′ α1 α2 α3 α4

r1 r2 r3 r4 r5 r6 r7 r8 r1 α4 α2 α1 α3 v d′ h d

r2 r3 r4 r5 r6 r7 r8 r1 r2 d d′ v h α2 α3 α4 α1

r3 r4 r5 r6 r7 r8 r1 r2 r3 α1 α3 α2 α4 d′ h d v

r4 r5 r6 r7 r8 r1 r2 r3 r4 v h d′ d α3 α4 α1 α2

r5 r6 r7 r8 r1 r2 r3 r4 r5 α2 α4 α3 α1 h d v d′

r6 r7 r8 r1 r2 r3 r4 r5 r6 d′ d h v α4 α1 α2 α3

r7 r8 r1 r2 r3 r4 r5 r6 r7 α3 α1 α4 α2 d v d′ h

r8 r1 r2 r3 r4 r5 r6 r7 r8 h v d d′ α1 α2 α3 α4

h α3 d′ α2 v α1 d α4 h r8 r4 r6 r2 r5 r3 r1 r7

v α1 d α4 h α3 d′ α2 v r4 r8 r2 r6 r1 r7 r5 r3

d α4 h α3 d′ α2 v α1 d r2 r6 r8 r4 r7 r5 r3 r1

d′ α2 v α1 d α4 h α3 d′ r6 r2 r4 r8 r3 r1 r7 r5

α1 d α4 h α3 d′ α2 v α1 r3 r7 r1 r5 r8 r6 r4 r2

α2 v α1 d α4 h α3 d′ α2 r5 r1 r3 r7 r2 r8 r6 r4

α3 d′ α2 v α1 d α4 h α3 r7 r3 r5 r1 r4 r2 r8 r6

α4 h α3 d′ α2 v α1 d α4 r1 r5 r7 r3 r6 r4 r2 r8

Fig. 5: Illustration of 45 degree rotation resulting from horizontal

reflection

The composition permutation operation begins with a
horizontal reflection of the octagon, as shown in Figure
4. Following this reflection, the resulting transformation is
rotated by 45 degrees, as illustrated in Figure 5. In Figure
4, point 1 is mapped to point 6. Subsequently, in Figure
5, point 1 moves again, this time to point 8, where point
8 coincides with point 7 in the final position. Thus, in the
permutation operation involving the composition of r1 and
h, point 1 is ultimately mapped to point 7. This process is
applied consistently to every point in the octagon, resulting
in the permutation α4, which corresponds to a reflection of
corner points 4 and 8. Consequently, the composition of
the permutation r1 and h yields the following results.

r1 ◦ h =
(

1 2 3 4 5 6 7 8
)

◦
(

1 6
)(

2 5
)(

3 4
)(

7 8
)

=
(

1 7
)(

2 6
)(

3 5
)

= α4.

The dihedral group D8 can also be depicted using the
Cayley diagram and group table as shown by Table 3.
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The elements of Dn can be represented as a 2 × 2
matrix, with the group operation corresponding to the
matrix multiplication operation. In particular,

Rk =

(

cos(2πk/n) −sin(2πk/n)
sin(2πk/n) cos(2πk/n)

)

,

Sk =

(

cos(2πk/n) sin (2πk/n)
sin(2πk/n) −cos(2πk/n)

)

.

The Matrix Rk definded as a rotation matrix
representing clockwise rotation through an angle of
2πk/n. Sk is a reflection matrix that crosses a line that
forms an angle πk/n with the x axis. Below are several
examples of representation of D8 elements in a 2 × 2
matrix.

Table 4: Matrix Representation of Elements of D8

Elements of D8 Matrix Representation

90 degree rotation

(

0 −1

1 0

)

180 degree rotation

(

−1 0

0 −1

)

270 degree rotation

(

0 1

−1 0

)

360 degree rotation

(

1 0

0 1

)

Horizontal reflection.

The line of

intersection has 0

degrees magnitude

with the x-axis.

(

1 0

0 −1

)

Vertical reflection.

The line of

intersection is 90

degrees to the x-axis.

(

−1 0

0 1

)

Diagonal reflection.

The intersection line

has a magnitude of 45

degrees with the

x-axis.

(

0 1

1 0

)

Inverse diagonal

reflection. The line of

intersection has a

magnitude of 135

degrees with the x-axis

(

0 −1

−1 0

)

Consider M2(R)G, a group of order 18 and define the
transformation τ2(v) as a 2× 2 block matrix [24]:

τ2(v1) =

(

A B

B A

)

.

The matrix A and the matrix B are defined as follows.

A =CIRC(A1,A2,A3, . . . ,A9),

B =CIRC(A10,A11,A12, . . . ,A18),

where Ai ∈ M2(R).

τ2(v) =





















































0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1
0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1
0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0
1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0
1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0
1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0
1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1
1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0
1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0





















































.

Example 4.4 [23] Let

v =

(

0 0
0 0

)

+

(

0 0
0 0

)

a+

(

0 0
0 0

)

a2

+

(

0 1
1 0

)

a3 +

(

0 1
1 0

)

b

+

(

1 1
1 1

)

ba+

(

1 1
1 1

)

ba2

+

(

1 1
1 1

)

ba2 ∈ M2(F)D8,

where< a,b>∼=D8, dihedral group with 8 elements. Then
σ2(v) generates the code C2(v).

Next, the properties of the matrix τ2(a) are examined.
The matrix τ2(a) consists of the following elements.

v1 =

(

0 0
0 0

)

,v2 =

(

0 0
0 0

)

,

v3 =

(

0 0
0 0

)

,v4 =

(

0 1
1 0

)

,

v5 =

(

0 1
1 0

)

,v6 =

(

1 1
1 1

)

,

v7 =

(

1 1
1 1

)

,v8 =

(

1 1
1 1

)

.

Thus the matrix τ2(v) can be expressed in the following
form

τ2(v) =























v1 v2 v3 v4 v5 v6 v7 v8

v4 v1 v2 v3 v8 v5 v6 v7

v3 v4 v1 v2 v7 v8 v5 v6

v2 v3 v4 v1 v6 v7 v8 v5

v5 v6 v7 v8 v1 v4 v2 v3

v8 v5 v6 v7 v3 v1 v4 v2

v7 v8 v5 v6 v2 v3 v1 v4

v6 v7 v8 v5 v4 v2 v3 v1























.
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Then the matrix τ2(v) above, it can be seen that this matrix
is a block matrix. Here are the partitions.

τ2(v) =





















































0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1
0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1
0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0
1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0
1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0
1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0
1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1
1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0
1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0





















































=























v1 v2 v3 v4 v5 v6 v7 v8

v4 v1 v2 v3 v8 v5 v6 v7

v3 v4 v1 v2 v7 v8 v5 v6

v2 v3 v4 v1 v6 v7 v8 v5

v5 v6 v7 v8 v1 v4 v2 v3

v8 v5 v6 v7 v3 v1 v4 v2

v7 v8 v5 v6 v2 v3 v1 v4

v6 v7 v8 v5 v4 v2 v3 v1























=

(

A B

B C

)

.

τ2(v) =CIRC(A,B,C)

The submatrix is defined follows.

1. Submatrix A

A =























0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0























=







v1 v2 v3 v4

v4 v1 v2 v3

v3 v4 v1 v2

v2 v3 v4 v1






.

Based on the description above, it can be seen that
submatrix A is a 4 × 4 circular matrix or can be
denoted as

A = circ(v1,v2,v3,v4).

Next, transpose matrix A as follows.

AT =







v1 v4 v3 v2

v2 v1 v4 v3

v3 v2 v1 v4

v4 v3 v2 v1







It can be seen that the transpose of submatrix A is not
the same as matrix A itself, thus submatrix A is not a

symmetric matrix. Then submatrix A is a 4 × 4
persymmetric matrix. For further details, the form of
the subtranspose matrix is first determined. The
following is the calculation of each submatrix entry of
A into a subtranspose matrix entry of submatrix A.

ai j −→ aS
n− j+1,n−i+1.

Table 5: Mapping of Submatrix A Entries to Submatrix AS

Entries

Submatrix A entries Submatrix entry AS

a11 aS
4−1+1,4−1+1 = aS

44

a12 aS
4−2+1,4−1+1 = aS

34

a13 aS
4−2+1,4−1+1 = aS

24

a14 aS
4−4+1,4−1+1 = aS

14

a21 aS
4−1+1,4−2+1 = aS

43

a22 aS
4−2+1,4−2+1 = aS

33

a23 aS
4−2+1,4−2+1 = aS

23

a24 aS
4−4+1,4−2+1 = aS

13

a31 aS
4−1+1,4−3+1 = aS

42

a32 aS
4−2+1,4−3+1 = aS

32

a33 aS
4−2+1,4−3+1 = aS

22

a34 aS
4−4+1,4−3+1 = aS

12

a41 aS
4−1+1,4−4+1 = aS

41

a42 aS
4−2+1,4−4+1 = aS

31

a43 aS
4−2+1,4−4+1 = aS

21

a44 aS
4−4+1,4−4+1 = aS

11

Based on the calculation above, the subtranspose
matrix is

AS =







v1 v2 v3 v4

v4 v1 v2 v3

v3 v4 v1 v2

v2 v3 v4 v1






.

Thus, it can be seen that the subtranspose matrix is the
same as submatrix A. Hence, submatrix A is a
persymmetric matrix, it can be denoted as

A = persym(v1,v2,v3,v4).

2. Submatrix B

b =























0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0























=







v5 v6 v7 v8

v8 v5 v6 v7

v7 v8 v5 v6

v6 v7 v8 v5






.

Based on the description above, it can be seen that
submatrix B is a 4 × 4 circular matrix or can be
denoted as

B = circ(v5,v6,v7,v8).
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Next, transpose matrix B as follows.

BT =







v5 v8 v7 v6

v6 v5 v8 v7

v7 v6 v5 v8

v8 v7 v6 v5






.

It can be seen that the transpose of submatrix B is not
the same as matrix B itself, thus submatrix B is not a
symmetric matrix. Then, submatrix B is a 4 × 4
persymmetric matrix. For further details, the form of
the subtranspose matrix is first determined. The
following is the calculation of each submatrix entry
from B to become a subtranspose matrix entry from
submatrix B.

bi j −→ bS
n− j+1,n−i+1.

Table 6: Mapping of submatrix B entries become the BS

submatrix entries

Submatrix B entries Submatrix entry BS

b11 bS
4−1+1,4−1+1 = bS

44

b12 bS
4−2+1,4−1+1 = bS

34

b13 bS
4−2+1,4−1+1 = bS

24

b14 bS
4−4+1,4−1+1 = bS

14

b21 bS
4−1+1,4−2+1 = bS

43

b22 bS
4−2+1,4−2+1 = bS

33

b23 bS
4−2+1,4−2+1 = bS

23

b24 bS
4−4+1,4−2+1 = bS

13

b31 bS
4−1+1,4−3+1 = bS

42

b32 bS
4−2+1,4−3+1 = bS

32

b33 bS
4−2+1,4−3+1 = bS

22

b34 bS
4−4+1,4−3+1 = bS

12

b41 bS
4−1+1,4−4+1 = bS

41

b42 bS
4−2+1,4−4+1 = bS

31

b43 bS
4−2+1,4−4+1 = bS

21

b44 bS
4−4+1,4−4+1 = bS

11

Based on the calculation above, the subtranspose
matrix is

BS =







v5 v6 v7 v8

v8 v5 v6 v7

v7 v8 v5 v6

v6 v7 v8 v5






.

Thus, it can be seen that the subtranspose matrix is the
same as submatrix B. Hence, submatrix B is a
persymmetric matrix, it can be denoted as

B = persym(v5,v6,v7,v8).

3. Submatrix C

C =























0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0























=







v1 v4 v2 v3

v3 v1 v4 v2

v2 v3 v1 v4

v4 v2 v3 v1






.

Based on the description above, it can be seen that
submatrix C is a 4 × 4 circular matrix or can be
denoted as

C = circ(v1,v4,v2,v3).

Next, transpose the matrix C as follows.

CT =







v1 v3 v2 v4

v4 v1 v3 v2

v2 v4 v1 v3

v3 v2 v4 v1







It can be seen that the transpose of the submatrix C is
not the same as the matrix C itself, thus the submatrix
C is not a symmetric matrix. The submatrix C is also a
persymmetric matrix 4 × 4. For further details, the
form of the subtranspose matrix is first determined.
The following is the calculation of each submatrix
entry of C into a subtranspose matrix entry of the
submatrix C.

ci j −→ cS
n− j+1,n−i+1.

Table 7: Mapping of submatrix C entries become the CS

submatrix entries

Submatrix C entries Submatrix entry CS

c11 cS
4−1+1,4−1+1 = cS

44

c12 cS
4−2+1,4−1+1 = cS

34

c13 cS
4−2+1,4−1+1 = cS

24

c14 cS
4−4+1,4−1+1 = cS

14

c21 cS
4−1+1,4−2+1 = cS

43

c22 cS
4−2+1,4−2+1 = cS

33

c23 cS
4−2+1,4−2+1 = cS

23

c24 cS
4−4+1,4−2+1 = cS

13

c31 cS
4−1+1,4−3+1 = cS

42

c32 cS
4−2+1,4−3+1 = cS

32

c33 cS
4−2+1,4−3+1 = cS

22

c34 cS
4−4+1,4−3+1 = cS

12

c41 cS
4−1+1,4−4+1 = cS

41

c42 cS
4−2+1,4−4+1 = cS

31

c43 cS
4−2+1,4−4+1 = cS

21

c44 cS
4−4+1,4−4+1 = cS

11
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Based on the calculation above, the subtranspose
matrix is

CS =







v1 v4 v2 v3

v3 v1 v4 v2

v2 v3 v1 v4

v4 v2 v3 v1






.

Hence, it follows that the subtranspose matrix is
identical to the submatrix C. Consequently, C is a
persymmetric matrix, which can be denoted as
follows:

C = persym(v1,v4,v2,v3).

From the description above it can be seen that the
matrix τ2(v) is a block-circulant matrix, where the
matrix τ2(v) is a 2× 2 block matrix, each submatrix is
a circulant matrix and a persymmetric matrix.

Hence, from the above discussion, it can be observed that
the matrix τ2(v) exhibits a block-circulant structure,
where each 2 × 2 block is both circulant and
persymmetric. These properties provide a strong
algebraic foundation for the subsequent construction and
analysis of binary codes, motivating the next step in
which the generator matrix is introduced and utilized to
systematically encode information.

Generator Matrix

The generator matrix plays a central role in creating binary
linear codes. For an (n,k)-code C, a generator matrix G is a
k×n matrix whose rows form a basis for C. By multiplying
G with a message vector (over F2 or another appropriate
field), one obtains the encoded codeword. In this section,
the way in which this construction leverages the structural
properties identified in τ2(v) to yield efficient and robust
error-correcting codes is explored. The generator matrix is
used to obtain the binary linear code. A generator matrix
G for (n,k)-code C is a k × n matrix whose rows are the
bases of C.

Example 1.Given (5,3)-code C with the following basis:

V1 = (10001),

V2 = (00010),

V3 = (00100).

C = {10001,00010,00100,10010,

10100,00110,10111,00000}.

G =





V1

V2

V3



=





1 0 0 0 1
0 0 0 1 0
0 0 1 0 0



 .

G is the generator matrix for (5,3)-C code. If the message
m = (x,y,z) is encoded to

mG =
(

x y z
)





1 0 0 0 1
0 0 0 1 0
0 0 1 0 0



=
(

x 0 z y x
)

.

The message to be received, namely
(

x, 0, z, y, x
)

The
G(n,k)-code generator matrix C is said to be equal in
standard form if G is of the form

G =
(

Ik A
)

.

The matrix Ik is an identity matrix of size k× k:









1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1









k×k

.

Matrix A is a matrix of size k× (n− k).

Example 2.Looking at Example 1, if the chosen base is
different, for example V1 = (10010),

V2 = (01011),

V3 = (00101),

Therefore, the matrix G takes the following form:

G =





V1

V2

V3



=





1 0 0 1 0
0 1 0 1 1
0 0 1 0 1



 ,

then the message m = (x,y,z) is encoded as

mG =
(

x y z
)





1 0 0 1 0
0 1 0 1 1
0 0 1 0 1





=
(

x y z x+ y y+ z
)

.

Therefore, the message to be received, viz(x,y,z,x+ y,y+
z).

Example 3.[23] Let vvv111 = 1011, vvv222 = 0101 and generator
matrix

G =







1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1







The codeword ccc111 = vvv111G = 1011000,
ccc222 = vvv222G = 0101101∈C is obtained.

Example 4.The generator matrix G is as follows

H =

(

0 1 1 0
1 1 0 0

)

.

C is a (4,2)-code,

C = {xxxH ∈ Fn
2 |xxx ∈ Fk

2 }= {xxxH ∈ F4
2 |xxx ∈ F2

2 }.

All codewords obtained from the generator matrix H will
be determined.
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First, the initial code is determined, sinte the C code
has k = 2, the initial code consists of 2 bits with members
from F2. The initial code here is denoted by

xxx ∈ F2
2 .

xxx = {00,01,10,11}.

Then, to obtain the codewords, the initial code x is
operated with the generator matrix H. The following is
the explanation.

xxx111 = 00;ccc111 = xxx111H =
(

0 0
)

(

0 1 1 0
1 1 0 0

)

= 0000;

xxx222 = 01;ccc222 = xxx222H =
(

0 1
)

(

0 1 1 0
1 1 0 0

)

= 1100;

xxx333 = 10;ccc333 = xxx333H =
(

1 0
)

(

0 1 1 0
1 1 0 0

)

= 0110;

xxx444 = 11;ccc444 = xxx444H =
(

1 1
)

(

0 1 1 0
1 1 0 0

)

= 1010.

Thus, 4 codewords are obtained in code C

C = {0000,1100,0110,1010}.

Code Construction of Group Group Matrix Ring

MMM222(((RRR)))GGG

Building on the previous discussion about generator
matrices, this subsection provides a detailed overview of
how to construct a binary linear code using a generator
matrix derived from the group matrix ring M2(R)G. The
key steps involved are as follows:

1.Vector Representation of Messages. A message is
initially represented as a row vector of length k, where
each element is a bit in F2. For example, let

v = {v1,v2,v3, . . . ,vk} with v ∈ F
k
2.

This vector v encapsulates the k-bit message that is to
be encoded.

2.Vector Multiplication with a Generator Matrix. In
order to produce the codeword c, the message vector v

is multiplied by the generator matrix G:

c = vG.

Since operations take place in the finite field F2, all
additions and multiplications are performed in modulo
2.

3.Computation Details. The multiplication vG is carried
out by multiplying each element of v with the
corresponding entry in each column of G, then
summing (mod 2). Concretely:

(a)Multiply each bit vi in v by the corresponding entry
in the current column of G.

(b)Sum these products and reduce mod 2 to obtain one
bit of the resulting codeword.

(c)Move to the next column of G and repeat,
ultimately forming the complete codeword c.

For instance, to multiply v by the first column of G, the
following computation is performed:

k

∑
i=1

(

vi ×Gi,1

)

(mod2).

Repeating this for each column produces the final
codeword c.

A codeword c is the binary output obtained by
multiplying a message vector v by a generator matrix G.
In the context of binary linear codes, G is designed to
ensure that each distinct k-bit message v maps to a unique
and identifiable codeword c. This uniqueness is crucial
for reliable decoding and error correction, as it guarantees
that no two message words collide into the same
codeword.

By applying the generator matrix, one transforms the
original message into a structured binary sequence that
inherently contains redundancy and error-detection/
correction capabilities. Since each column (or row,
depending on convention) of G encodes a portion of the
message, the resulting codeword incorporates systematic

patterns that aid in detecting and correcting transmission
errors. Furthermore, during decoding, these patterns allow
standard algorithms (e.g., syndrome-based decoders) to
pinpoint and rectify corrupted bits, enabling successful
retrieval of the original message v.

The following is a concise explanation intended to
simplify the understanding of how codewords are
generated. By outlining the fundamental steps, it aims to
guide readers through the formation of binary codes from
an original message. For larger code sizes, manual
calculations can become exceedingly complex; hence,
computational tools such as Python are recommended to
streamline the process and ensure more efficient,
organized computation.

1.Determining the initial code. Since the matrix τ2(v) is
16× 16, each resulting codeword also has length 16,
leading to 216 = 65,536 possible codewords. For
demonstration purposes in this article, however, only
a random subset of 20 codewords will be selected
from F

16
2 . It is denoted as follows:

aaa = {aaaiii, i = 0,1,2, . . . ,19}

=
{

aaa000,,,aaa111,,,aaa222,,,aaa333,,,aaa444,,,aaa555,,,aaa666,,,aaa777,,,aaa888,,,aaa999,,,aaa10,,,aaa11,,,

aaa12,,,aaa13,,,aaa14,,,aaa15,,,aaa16,,,aaa17,,,aaa18,,,aaa19

}

,

Here, the index i indicates the ordering of vector
elements, not the rows or columns of a matrix. In
Python, the NumPy library facilitates matrix and
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algebraic operations, while the random (or
numpy.random) module is used to select the initial
codes randomly. The outcomes of this selection are
summarized in the following sections. The results
obtained are as follows.

aaa000 =
(

1 1 0 1 1 1 1 1 1 0 0 1 0 0 1 0
)

aaa111 =
(

1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0
)

aaa222 =
(

1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1
)

aaa333 =
(

0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0
)

aaa444 =
(

0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1
)

aaa555 =
(

1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1
)

aaa666 =
(

1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
)

aaa777 =
(

0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1
)

aaa888 =
(

1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0
)

aaa999 =
(

1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0
)

aaa10 =
(

1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0
)

aaa11 =
(

1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
)

aaa12 =
(

1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1
)

aaa13 =
(

1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0
)

aaa14 =
(

0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1
)

aaa15 =
(

1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1
)

aaa16 =
(

1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0
)

aaa17 =
(

0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0
)

aaa18 =
(

1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0
)

aaa19 =
(

1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0
)

2.Defining the generator matrix. As introduced in [23],
there is a generator matrix denoted τ2(v), hereafter
referred to as the τ matrix. In this study, the τ matrix
serves as the generator matrix:

τ =





















































0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1
0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1
0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0
1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0
1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0
1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0
1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1
1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0
1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0





















































After determining the initial code aaa, the resulting
codeword is obtained by multiplying aaa by τ . Let

bbb = {aaaτ ∈ F1
2 6|aaa ∈ F16

2 }= {aaaτ ∈ F16
2 |aaa ∈ F16

2 }.

Hence, each element bbb in the above set is formed by
applying the τ matrix to a corresponding initial code aaa.
The code word results from the τ matrix as a generator
matrix:

bbb000 =
(

1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1
)

bbb111 =
(

0 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1
)

bbb222 =
(

1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0
)

bbb333 =
(

0 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0
)

bbb444 =
(

1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0
)

bbb555 =
(

1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
)

bbb666 =
(

0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1
)

bbb777 =
(

1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1
)

bbb888 =
(

0 1 0 0 0 1 1 1 0 0 1 0 1 1 1 0
)

bbb999 =
(

1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1
)

bbb10 =
(

0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1
)

bbb11 =
(

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
)

bbb12 =
(

0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1
)

bbb13 =
(

0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1
)

bbb14 =
(

1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0
)

bbb15 =
(

0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 0
)

bbb16 =
(

0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
)

bbb17 =
(

1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
)

bbb18 =
(

1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1
)

bbb19 =
(

1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 0
)

This is a description of the steps in constructing a
binary code from the group matrix ring M2(R)G such
that the codeword bbb for the random message is
obtained. This code word will later be sent to the
message recipient. This process is called encoding
where the initial message/code is operated to produce
a codeword.

Recommendation

This study has demonstrated how to utilized the matrix
generator method, specifically the group matrix ring
M2(R)G, in constructing binary linear codes. For future
research, several directions can be explored to enhance
the efficiency and applicability of the proposed method.
Alternative coding techniques, such as the H parity-check
matrix method, may offer further improvements in error
correction capabilities. Additionally, investigating the
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integration of algebraic coding theory with modern
cryptographic frameworks could contribute to
advancements in secure communication systems.
Furthermore, computational optimizations, including
machine learning-assisted decoding and deep
learning-based error detection, could be explored to
improve the performance of algebraic codes in large-scale
applications. Expanding the scope of this research to
cover quantum error correction and network coding could
also provide valuable insights into the broader
implications of algebraic approaches in information
security.

Conclusion

This article has presented an algebraic approach to
strengthening information security by leveraging ring
matrix groups as a basis for constructing robust codes.
Through the systematic use of algebraic
structures—particularly those derived from dihedral
groups and other finite groups—researchers and
practitioners can generate binary linear codes with
advantageous error-correction properties and enhanced
resilience to potential attacks. The inherent symmetry and
rich algebraic properties of these groups offer a flexible
framework for designing codes that are both
computationally efficient and theoretically sound.
Furthermore, by integrating group and ring theory with
practical software tools (e.g., Python) for large-scale
computations, the proposed methodology can be applied
to real-world scenarios where manual calculations
become infeasible. This combination of algebraic rigor
and computational feasibility paves the way for advanced
security mechanisms, including improved key
management and robust data integrity checks.
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Improving information security risk analysis by including

threat-occurrence predictive models. Comput. Secur., 88.

https://doi.org/10.1016/j.cose.2019.101609.

[9] Alshboul, A. Information Systems Security Measures and

Countermeasures: Protecting Organizational Assets from

Malicious Attacks. Communications of the IBIMA, (2010).

http://www.ibimapublishing.com/journals/CIBIMA/

cibima.html

[10] Kidd, T. T., & Hiltbrand, R. K. Intrusion Detection

and Information Security Audits. Encyclopedia of

Information Ethics and Security, 411–417, (2007).

https://doi.org/10.4018/978-1-59140-987-8.CH061:

[11] Popa, D. and Simion, E. Enhancing security by combining

biometrics and cryptography. Proceedings of the 9th

International Conference on Electronics, Computers and

Artificial Intelligence, ECAI 2017, 2017-January, 1–7,

(2017). https://doi.org/10.1109/ECAI.2017.8166461

[12] Arutyunov, V. V. The results of priority research

in the field of information security. Scientific and

Technical Information Processing, 43(1), 42–46, (2016).

https://doi.org/10.3103/S014768821601007X/METRICS

[13] Schaefer, R. F., Boche, H., Khisti, A., & Poor, H. V.

Information Theoretic Security and Privacy of Information

Systems, (2017). https://doi.org/10.1017/9781316450840

[14] Shen, J., Liu, D., He, D., Huang, X., & Xiang, Y.

(2020). Algebraic Signatures-Based Data Integrity Auditing

for Efficient Data Dynamics in Cloud Computing. IEEE

Transactions on Sustainable Computing, 5, 161-173.

https://doi.org/10.1109/TSUSC.2017.2781232.

[15] Zhao, Y., & Sun, H. (2020). Expand-and-Randomize: An

Algebraic Approach to Secure Computation. Entropy, 23.

https://doi.org/10.3390/e23111461.

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


738 S. Sylviani et al.: Algebraic Approaches to Information Security

[16] Bhandari, A. (2021). Analysis of Computational Algebra

for Cryptography and Coding Theory Applications.

Mathematical Statistician and Engineering Applications.

https://doi.org/10.17762/msea.v70i1.2513.

[17] Letychevskyi, O., & Peschanenko, V. (2022).

Applying Algebraic Virtual Machine to Cybersecurity

Tasks. 2022 IEEE 9th International Conference

on Sciences of Electronics, Technologies of

Information and Telecommunications (SETIT), 161-169.

https://doi.org/10.1109/SETIT54465.2022.9875895.

[18] Sakib, S. (2021). Analysis on Fundamental

Algebraic Concepts and Information Security System.

https://doi.org/10.31224/osf.io/j46tg.
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