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Abstract: In a series of recent papers, we reviewed all results and generalized the existing results by modifications.In this article, a new
approach of the derivative of arbitrary order (FD) with the kernel of the smooth type that gains different depictions for the temporal and
spatial variables has been given. It first applies to the time variables and hence it is fit to us transform of Laplace type (LT). Secondly,
a definition is linked to the spatial type variables, by a global derivative of arbitrary order (FD), for which we will apply the transform
of Fourier type (FT). The courtesy for this new methodology with a kernel of regular type was native from the vision that there is a
period of global systems, which can designate the material heterogeneities and the fluctuations of unlike scales, which cannot be well
described by traditional local theories or by arbitrary order models with the kernel of singular type.
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1 Introduction

The Fractional calculus (Arbitrary order Calculus) is a generalization of ordinary differentiation to non-integer cases.
The term of fractional calculus caught the attention of other great mathematicians, many of them directly or indirectly
contributed to its development. In the last 300 years the fractional calculus had an illustrious development as shown by
the many mathematical volumes dedicated to it (e.g. Baleanu et al. [1], Caponetto [2], Caputo [3], Diethelm [4], Hilfer
[5], Jiao et al [6], Kilbas et al. [7], Kyriakova [8], Mainardi [9], McBride [10], Miller and Ross [11], Petras [12], Samko
et al [13], Podlubny [14], Sabatier et al. [15], Torres and Malinowska [16], Ying and Chen [17]) and by the distinguished
diffusion as shown by the many meetings dedicated to it and the superfluous of articles appeared in mathematical (e.g.
Kilbas and Marzan [18], Heinsalu et al [19], Luchko and Gorenflo [20]). The use of derivative of arbitrary order has also
spread into many other fields of science as well mathematics and physics (e.g. Laskin [21], Naber [22], Baleanu et al.
[23], Zavada [24], Baleanu et al. [25], Caputo and Fabrizio [26,?]) such as biology (e.g. Cesarone et al. [28], Caputo and
Cametti [29]), economy (e.g. Caputo [30]), demography (e.g. Jumarie [31]), geophysics (e.g. Iaffaldano [32]), medicine
(e.g El Sahed [33]) and bioengineering (e.g. Magin [34]). The major developments in the fractional derivative which
carried out by the scientists One can see also [35], [36], [37], [38], [39] and [40] and [41]. However, some criticism has
been made for the somewhat cumbersome mathematical expression of its definition and the consequent complications in
the solutions of the fractional order differential equations. We consider an advanced definition of fractional derivative,
which assumes two different representations for the temporal and spatial variable. The first works introduced on the time
variable, where the real powers appearing and obtain the solutions of the usual fractional derivative will turn into integer
powers, with some simplifications in these formulae and the computations. In this framework, it is properly used the
Laplace transform. The second definition is related to the spatial variables, thus for this non-local fractional derivative it
is more convenient to work with the Fourier transform [42].

∗ Corresponding author e-mail: mohdfarmanali@gmail.com
© 2025 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/110313


624 K. Yadav et al.: Fractional Derivative without Singular Kernel...

2 A New Fractional Time Derivative

Let us recall the usual Caputo fractional time derivative (D(α)
t ) of order α , given by

D(α)
t f (t) =

1
Γ (1−α)

∫ t

a
(t − τ)−α f ′(τ)dτ (2.1)

with α ∈ [0,1] and a ∈ [−∞, t), f ∈ H1(a,b), b > a. By changing the kernel (t−τ)−α with the function exp(− α

1−α
(t−τ))

and 1
Γ (1−α) with M(α)

1−α
, and we replace exponential function by Mittag-Leffler function, we obtain the following new

definition of fractional time derivative NFD

D(α)
t f (t) =

M(α)

1−α

∫ t

−∞

f ′(τ)Eβ ,γ

(
−α(t − τ)

1−α

)
dτ (2.2)

where M(α) is a normalization function such that M(0) = M(1) = 1. According to the definition (2.2), the D(α)
t is zero

when f (t) is constant, as in the D(α)
t , but, contrary to the D(α)

t , the kernel does not have singularity for t = τ . The new
D(α)

t can also be applied to functions that do not belong to H1(a,b). Indeed, the definition (2.2) can be formulated also
for f ∈ L1(−∞,b) and for any α ∈ [0,1] as

D(α)
t f (t) =

αM(α)

1−α

∫ t

−∞

( f (t)− f (τ))Eβ ,γ

(
−α(t − τ)

1−α

)
dτ (2.3)

Now, it is worth observing that if we put σ = 1−α

α
∈ [0,∞], α = 1

1+σ
∈ [0,1], the definition (2.2) of D(α)

t assumes the form

D(α)
t f (t) =

N(σ)

σ

∫ t

a
f ′(τ)Eβ ,γ

(
− (t − τ)

σ

)
dτ (2.4)

where σ ∈ [0,∞] and N(σ) is the corresponding normalization term of M(α), such that N(0) = N(∞) = 1. Moreover,
because

lim
σ→0
β→1

1
σ

Eβ ,γ

(
− (t − τ)

σ

)
= δ (t − τ) (2.5)

and for α → 1,β = 1,γ = 1 we have σ → 0. Then (see [35] and [36])

lim
α→1

k→1

D(α)
t f (t) =

M(α)

1−α

∫ t

a
f ′(τ)Eβ ,γ

(
−α(t − τ)

1−α

)
dτ (2.6)

lim
α→1
k→1

D(α)
t f (t) = lim

σ→0

N(σ)

σ

∫ t

a
f ′(τ)Eβ ,γ

(
− (t − τ)

σ

)
dτ (2.7)

Otherwise, when α → 0,β = 1,γ = 1 then σ →+∞. Hence

lim
α→0

D(α)
t f (t) = lim

α→0

M(α)

1−α

∫ t

a
f ′(τ)Eβ ,γ

(
−α(t − τ)

1−α

)
dτ (2.8)

lim
α→1

D(α)
t f (t) = lim

σ→∞

N(σ)

σ

∫ t

a
f ′(τ)Eβ ,γ

(
− (t − τ)

σ

)
dτ = f (t)− f (a) (2.9)

Theorem 1.For D(α)
t , if the function f (t) is such that f (s)(a) = 0, s = 1,2, . . . ,n then, we have

Dn
t (D

(α)
t f (t)) = D(α)

t (Dn
t f (t)) (2.10)

Proof.We begin considering n = 1, then from definition (2.2) (applied to f ′(t)), we obtain

D(α)
t (D1

t f (t)) =
M(α)

1−α

∫ t

a
f ′′(τ)Eβ ,γ

(
−α(t − τ)

1−α

)
dτ (2.11)
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Hence, after integration by parts and assuming f ′(a) = 0, we have

Dα
t (D

1
t f (t)) =

M(α)

1−α

∫ t

a

(
d

dτ
f ′(τ)

)
Eβ ,γ

(
−α(t − τ)

1−α

)
dτ

=
M(α)

1−α

[∫ t

a

(
d

dτ
f ′(τ)

)
Eβ ,γ

(
−α(t − τ)

1−α

)
dτ

− α

1−α

∫ t

a
f ′(τ)Eβ ,γ

(
−α(t − τ)

1−α

)
dτ

]
=

M(α)

1−α

[
f ′(t)− α

1−α

∫ t

a
f ′(τ)Eβ ,γ

(
−α(t − τ)

1−α

)
dτ

]
Otherwise

D1
t (D

α
t f (t)) =

d
dt

(
M(α)

1−α

∫ t

a
f ′(τ)Eβ ,γ

(
−α(t − τ)

1−α

)
dτ

)
=

M(α)

1−α

[
f ′(t)− α

1−α

∫ t

a
f ′(τ)Eβ ,γ

(
−α(t − τ)

1−α

)
dτ

]
It is easy to generalize the proof for any n > 1.

In the following, we suppose the function M(α) = 1.

3 The Laplace Transform of the NFDt

To study the properties of the NFDt , defined in equation (2.4) with a = 0, has priority the computation of its Laplace
transform (L ) given with p variable.

L [D(α)
t f (t)](p) =

1
1−α

∫
∞

0
e−pt

∫ t

0
f ′(τ)Eβ ,γ

(
−α(t − τ)

1−α

)
dτ dt

Hence, from the property of Laplace transform of convolution, we have

L [D(α)
t f (t)](p) =

1
1−α

L [ f ′(t)](p)L
[

Eβ ,γ

(
− αt

1−α

)]
(p)

=
pL [ f (t)](p)− f (0)

p+α(1− p)
(3.1)

Similarly (interpreting D(α+1)
t likely as D(α)

t D1
t , based on Section 2 structure and result)

L [D(α)
t (D1

t f (t))](p) =
1

1−α
L [ f ′′(t)](p)L

[
Eβ ,γ

(
− αt

1−α

)]
(p)

=
p2L [ f (t)](p)− p f (0)− f ′(0)

p+α(1− p)
(3.2)

Finally, (interpreting D(α+n)
t likely as D(α)

t Dn
t )

L [D(α)
t (Dn

t f (t))](p) =
1

1−α
L [ f (n+1)(t)](p)L

[
Eβ ,γ

(
− αt

1−α

)]
(p)

=
pn+1L [ f (t)](p)− pn f (0)− pn−1 f ′(0)−·· ·− f (n)(0)

p+α(1− p)
(3.3)
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4 Fractional Gradient Operators

In this section, we introduce a new notion of fractional gradient able to describe non-local dependence in constitutive
equations (see [39] and [40]). Let us consider a set Ω ⊂ R3 and a scalar function u(·) : Ω → R, we define the fractional
gradient of order α ∈ [0,1] as follows

∇
(α)u(x) =

α

(1−α)
√

πα

∫
Ω

∇u(y)Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy (4.1)

with x,y ∈ Ω . It is simple to prove from definition (4.1) and by the property

lim
α→1

α

(1−α)
√

πα
Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
= δ (x−y)

that ∇(1)u(x) = ∇u(x) and ∇(0)u(x) =
∫

Ω
∇u(y)dy. So, when α = 1, ∇(1)u(x) loses the non-locality, otherwise ∇(0)u(x)

is related to the mean value of ∇u(y) on Ω . In the case of a vector u(x), we define the fractional tensor by

∇
(α)u(x) =

α

(1−α)
√

πα

∫
Ω

∇u(y)Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy (4.2)

Thus, a material with the non-local property may be described by fractional constitutive equations. As an example, we
consider an elastic non-local material, defined by the following constitutive equation between the stress tensor T and
∇(α)u(x, t)

T(x, t) = A : ∇
(α)u(x, t), α ∈ (0,1]

where A is a fourth order symmetric tensor, or in the integral form

T(x, t) =
α

(1−α)
√

πα

∫
Ω

A : ∇u(y, t)Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy

Likewise, we introduce the fractional divergence, defined for a smooth u(x) : Ω → R3 by

∇
(α) ·u(x) = α

(1−α)
√

πα

∫
Ω

∇ ·u(y)Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy (4.3)

Theorem 2.From definitions (4.1) and (4.3), we have for any u(x) : Ω → R, such that

∇u(x) ·n|∂Ω = 0 (4.4)

the following identity

∇ · (∇(α)u(x)) = ∇
(α) · (∇u(x)) (4.5)

Proof.Employing (4.1), we obtain

∇ · (∇(α)u(x)) = ∇x ·
(

α

(1−α)
√

πα

∫
Ω

∇u(y)Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy

)
=

α

(1−α)
√

πα

∫
Ω

∇u(y) ·∇xEβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy

Since ∇xK(∥x−y∥2) =−∇yK(∥x−y∥2) for a kernel K,

∇ · (∇(α)u(x)) =− α

(1−α)
√

πα

∫
Ω

∇u(y) ·∇yEβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy
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Using integration by parts (divergence theorem in y):
∫

Ω
F ·∇gdV =

∫
∂Ω

g(F ·n)dS−
∫

Ω
g(∇ ·F)dV . Let F = ∇u(y) and

g = Eβ ,γ (...).

∇ · (∇(α)u(x)) =− α

(1−α)
√

πα

[∫
∂Ω

Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
(∇u(y) ·n)dSy

−
∫

Ω

Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
(∇ ·∇u(y))dy

]
=

α

(1−α)
√

πα

∫
Ω

(∇2u(y))Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy

− α

(1−α)
√

πα

∫
∂Ω

Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
(∇u(y) ·n)dSy

Hence, from the boundary condition (4.4), the boundary integral vanishes, and the identity (4.5) is proved, because the
remaining term coincides with

∇
(α) · (∇u(x)) =

α

(1−α)
√

πα

∫
Ω

∇ · (∇u(y))Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy

5 Fourier Transform of Fractional Gradient and Divergence

For a smooth function u(x) : R3 → R the Fourier transform (F ) of the fractional gradient is defined by

F (∇(α)u(x))(ξξξ ) =
∫
R3
(∇(α)u(x))e−2πiξξξ ·x dx

Thus, if we consider the gradient definition (4.1) (with Ω = R3), the Fourier transform is given by

F (∇(α)u)(ξξξ ) = F

(
α

(1−α)
√

πα

∫
R3

∇u(y)Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy

)
(ξξξ )

=
α

(1−α)
√

πα
F ((∇u)∗Kα)(ξξξ )

where Kα(x) = Eβ ,γ

(
− α2∥x∥2

(1−α)2

)
. Using the convolution theorem F ( f ∗g) = F ( f )F (g):

F (∇(α)u)(ξξξ ) =
α

(1−α)
√

πα
F (∇u)(ξξξ )F (Kα)(ξξξ )

where (using the text’s provided result for the FT of the kernel):

F (Kα)(ξξξ ) =
(1−α)

√
π

α
Eβ ,γ

(
−π2(1−α2)∥ξξξ∥2

α2

)
Thus, we obtain:

F (∇(α)u)(ξξξ ) =
√

π1−αF (∇u)(ξξξ )Eβ ,γ

(
−π2(1−α2)∥ξξξ∥2

α2

)
(5.1)

The Fourier transform of fractional divergence is defined similarly using (4.3):

F (∇(α) ·u)(ξξξ ) = F

(
α

(1−α)
√

πα

∫
R3
(∇ ·u(y))Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy

)
(ξξξ )

=
α

(1−α)
√

πα
F ((∇ ·u)∗Kα)(ξξξ )

=
α

(1−α)
√

πα
F (∇ ·u)(ξξξ )F (Kα)(ξξξ )

from which we have

F (∇(α) ·u)(ξξξ ) =
√

π1−αF (∇ ·u)(ξξξ )Eβ ,γ

(
−π2(1−α2)∥ξξξ∥2

α2

)
(5.2)
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6 Fractional Laplacian

In the study of partial differential equations, there is a great interest in fractional Laplacian. Using the definitions of
fractional gradient and divergence, we can suggest the representation of fractional Laplacian for a smooth function f (x) :
Ω → R3, such that ∇ f (x) ·n|∂Ω = 0, as

(∇2)(α) f (x) =
α

(1−α)
√

πα

∫
Ω

(∇ ·∇ f (y))Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy (6.1)

By Theorem 2, we have (∇2)(α) f (x) = ∇ · (∇(α) f (x)) = ∇(α) · (∇ f (x)). Now, we suppose that f (x) = 0 on ∂Ω . Then we
extend the function f (x) = 0 on R3 \Ω . So, we consider the Fourier transform

F ((∇2)(α) f (x))(ξξξ ) = F

(
α

(1−α)
√

πα

∫
R3
(∇2 f (y))Eβ ,γ

(
−α2∥x−y∥2

(1−α)2

)
dy

)
(ξξξ )

=
α

(1−α)
√

πα
F (∇2 f )(ξξξ )F (Kα)(ξξξ ) (6.2)

=
α

(1−α)
√

πα
(−4π

2∥ξξξ∥2F ( f )(ξξξ ))
(
(1−α)

√
π

α
Eβ ,γ

(
−π2(1−α2)∥ξξξ∥2

α2

))
=−4π

2∥ξξξ∥2F ( f )(ξξξ )
√

π1−α Eβ ,γ

(
−π2(1−α2)∥ξξξ∥2

α2

)
Finally, if α = 1 (and assuming β = γ = 1), we obtain from (6.2)

F (∇2 f (x))(ξξξ ) = lim
α→1
β→1
γ→1

(
−4π

2∥ξξξ∥2F ( f )(ξξξ )
√

π1−α Eβ ,γ

(
−π2(1−α2)∥ξξξ∥2

α2

))

=−4π
2∥ξξξ∥2F ( f )(ξξξ ) ·

√
π0 ·1

=−4π
2∥ξξξ∥2F ( f )(ξξξ ).

This completes the analysis.

7 Conclusion

In this work, we have derived the new results by using advanced definition of fractional derivative without singular kernel.
The advanced definition of fractional derivative without a singular kernel yields results consistent with prior work [43,44,
45,46].
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