
Appl. Math. Inf. Sci. 19, No. 3, 713-723 (2025) 713

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/190319

A New Generalized Local Derivative of Two Parameters

Miguel Vivas-Cortez1,∗, Janneth Velasco-Velasco2 and Harold David Jarrı́n2

1Facultad de Ciencias Exactas, Naturales y Ambientales, Pontificia Universidad Católica del Ecuador, Laboratorio FRACTAL
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Abstract: We introduce a novel generalized derivative, the biparametric derivative, which constitutes an extension of the deformable

derivative introduced by Ahuja Priyanka et al. (2017). This generalization is achieved when the secondary parameter, denoted by ψ ,

assumes the value of unity. Fundamental properties of the biparametric derivative are rigorously examined, and generalized forms of

Rolle’s theorem and the mean value theorem are derived within this new framework. The biparametric integral, intrinsically associated

with the biparametric derivative, is defined, and a version of the fundamental theorem of calculus adapted to this setting is established.

Finally, we address and solve certain biparametric fractional differential equations as illustrative applications of the proposed operator.

Keywords: biparametric, generalized derivative, Rolle’s theorem.

1 Introduction

When the definition of a mathematical concept is varied,
it is possible to obtain new results, as is the case with the
fractional derivative. Several definitions of fractional
derivatives have been introduced since the time when
L’Hôpital asked Leibniz for an explanation about d1/2n

dm1/2 in

a letter [7] in 1695; including those defined in the
nineteenth century using the integral, such as the
Riemann-Liouville and Caputo derivatives:

Definition 1.Riemann – Liouville fractional derivative
For ϕ ∈ [n− 1,n), the ϕ-derivative of g is defined by

Dϕ
a (g)(t) =

1

Γ (n−ϕ)

dn

dtn

∫ t

a

g(x)

(t − x)ϕ−n+1
dx

Definition 2.Caputo fractional derivative
For ϕ ∈ [n− 1,n), the ϕ-derivative of g is defined by

Dϕ
a (g)(t) =

1

Γ (n−ϕ)

∫ t

a

g(n)(x)

(t − x)ϕ−n+1
dx

These derivatives can be found in [5,9], but they have
some drawbacks.

1.The Riemann-Liouville derivative does not satisfy
D

ϕ
a (1) = 0

2.The two fractional derivatives do not satisfy the rule
for the derivative of the product of two functions

Dϕ
a ( f ·g) = f Dϕ

a (g)+ gDϕ
a ( f )

A new definition of fractional derivative was recently
introduced by R. Khalil [6] in 2014. This derivative,
unlike the Riemann-Liouville and Caputo derivatives, is
defined as a local fractional operator and is called the
conformable fractional derivative. Related work on the
conformable derivatives, non conformable derivatives and
fractionals derivatives can be found in [2,3,4,8,11,12,17,
13,14,15,16]

Definition 3.Conformable Fractional Derivative
Given a function g : [0,∞) −→ R. Then the conformable

fractional derivative of g of order ϕ is defined by

Tϕ(g)(t) = lim
ε→0

g(t + εt1−ϕ)− g(t)

ε

for all t > 0 and ϕ ∈ (0,1).

This definition does not include zero or negative
numbers, in the domain of the functions. In 2017, F.
Zulfeqarr in [18] introduced a new derivative that
overcomes the drawback of the conformable fractional
derivative, called the deformable derivative.
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Definition 4.Deformable Derivative
Given a function ϕ ∈ [0,1], the deformable Derivative de

g :R−→R is defined by

Dϕg(t) = lim
ε→0

(1+ ε(1−ϕ))g(t+ εϕ)− g(t)

ε

always whenever the limit exists.

In this article, a generalization of the deformable
derivative is presented, called the V-derivative or
biparametric derivative, as it depends on two parameters.

Definition 5.Let g : R −→ R, ϕ ≥ 0, ψ > 0, the

V-derivative (Biparametric) is defined as

V ϕ,ψ (g(t)) := lim
h→0

(ψ + h(ψ −ϕ))g

(

t + h
ϕ

ψ

)

−ψg(t)

ψ ·h
(1)

equivalently

V ϕ,ψ (g(t)) := lim
h→0

(

1+ h

(

1− ϕ

ψ

))

g

(

t + h
ϕ

ψ

)

− g(t)

h
(2)

always whenever the limit exists.

Remark.For some values of ϕ and ψ the following results
are obtained:

1.6.1.If ψ = 1, we obtain

V ϕ,1(g(t)) = lim
h→0

(1+ h(1−ϕ))g(t+ hϕ)− g(t)

h

= Dϕg(t)

1.6.2.If ϕ = ψ and g is differentiable, then

V ϕ,ϕ (g(t)) = lim
h→0

ψ(g(t + h))−ψg(t)

ψh

= lim
h→0

(g(t + h))− g(t)

h
= g′(t)

1.6.3.If ϕ = 0 and ψ = 1 , we obtain

V 0,1(g(t)) = lim
h→0

(1+ h)g(t+ 0)− 1g(t)

1 ·h

= lim
h→0

hg(t)

h
= g(t)

1.6.4.If ϕ = 1 and ψ > 0, then

V 1,ψ(g(t)) = lim
h→0

(ψ + h(ψ − 1))g

(

t +
1

ψ

)

−ψg(t)

ψ ·h

Remark.It is worth noting that the V-derivative of order
(φ ,ψ) is different from the V-derivative of order (ψ ,φ).

2 Preliminary Results

In this section, the relationship between the biparametric
derivative, the function and its ordinary derivative is
exposed. The first theorem states that differentiability
implies V-differentiability of order (ϕ ,ψ). In this section
and the following ones, we assume that ϕ ≥ 0 and ψ > 0.

Theorem 1.A function g differentiable at a point t ∈ (µ ,ν)
is always V-differentiable of order (ϕ ,ψ) at t, moreover,

V ϕ,ψ(g(t)) =
ϕ

ψ
g′(t)+

(ψ −ϕ)

ψ
g(t) (3)

Proof.

V ϕ,ψ (g(t)) = lim
ε→0

(ψ + ε(ψ −ϕ))g

(

t + ε
ϕ

ψ

)

−ψg(t)

ψ · ε

= lim
ε→0

ψ g

(

t + ε
ϕ

ψ

)

−ψg(t)

ψ · ε +

ε(ψ −ϕ)g

(

t + ε
ϕ

ψ

)

ψ · ε

= lim
ε→0

g

(

t + ε
ϕ

ψ

)

− g(t)

ε
+

ψ −ϕ

ψ
g

(

t + ε
ϕ

ψ

)

=
ϕ

ψ
g′(t)+

(ψ −ϕ)

ψ
g(t)

The second result of this section gives answers the
question of whether V-differentiability of order (ϕ ,ψ)
implies continuity, the answer is affirmative, but before
proving the result, we must demonstrate the following
proposition, for which we recall the definition of a locally
bounded function.

A function is locally bounded at t ∈ (µ ,ν) if there exist
positive constants N y γ , such that

|g(t + ε)| ≤ N, if |ε|< γ

γ is taken to be sufficiently small such that t + ε ∈ (µ ,ν).

Proposition 1.Suppose g is V-differentiable of order

(ϕ ,ψ) at t ∈ (µ ,ν), then g is locally bounded at t.

Proof.If g is V-differentiable of order (ϕ ,ψ) at t ∈ (µ ,ν),
then there exists γ > 0 such that

∣

∣

∣

∣

∣

∣

∣

∣

(ψ + ε(ψ −ϕ))g

(

t + ε
ϕ

ψ

)

− g(t)

ψ · ε −V ϕ,ψ (g(t))

∣

∣

∣

∣

∣

∣

∣

∣

< ρ = 1
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Whenever |ε|< γ , where ρ is as small as desired.
Thus, for |ε|< γ , it is found that

∣

∣

∣

∣

(ψ + ε(ψ −ϕ))g

(

t + ε
ϕ

ψ

)

− g(t)−

ψ · εV ϕ,ψ(g(t))|< |ψ · ε|

Then,
∣

∣

∣

∣

(ψ + ε(ψ −ϕ))g

(

t + ε
ϕ

ψ

)∣

∣

∣

∣

≤

|ψ · ε||V ϕ,ψ (g(t))+ 1|+ |g(t)|

and it is found that

∣

∣

∣

∣

g

(

t + ε
ϕ

ψ

)∣

∣

∣

∣

≤ |ψ · ε||V ϕ,ψ(g(t))+ 1|
|ψ + ε(ψ −ϕ)| +

|g(t)|
|ψ + ε(ψ −ϕ)| , |ε|< γ.

The last inequality proves that g is locally bounded at t.

The next theorem states that V-differentiability of
order (ϕ ,ψ) implies continuity.

Theorem 2.Let g be an V-differentiable of order (ϕ ,ψ)
function at t ∈ (µ ,ν) for some ϕ ∈ [0.1] and ψ > 0, then

g is continuous at t.

Proof.It can be proven, solely that

lim
ε→0

(

g

(

t + ε
ϕ

ψ

)

− g(t)

)

= 0

Now,

lim
ε→0

(

g

(

t + ε
ϕ

ψ

)

− g(t)

)

= lim
ε→0

ψ

(

g

(

t + ε
ϕ

ψ

)

− g(t)

)

ψ

= lim
ε→0

[

(ψ + ε(ψ −ϕ))g

(

t + ε
ϕ

ψ

)

−

1

ε(ψ −ϕ)g

(

t + ε
ϕ

ψ

)

−ψg(t)

]

ε

ψ · ε

= lim
ε→0















[

(ψ + ε(ψ −ϕ))g

(

t + ε
ϕ

ψ

)

−ψg(t)

]

ε

ψ · ε −

[

ε(ψ −ϕ)g

(

t + ε
ϕ

ψ

)]

ε

ψ · ε















=
1

ψ
lim
ε→0

[

(ψ + ε(ψ −ϕ))g

(

t + ε
ϕ

ψ

)

−ψg(t)

]

ε

ε
−

lim
ε→0

ε
ψ −ϕ

ψ
g

(

t + ε
ϕ

ψ

)

=
1

ψ
V ϕ,ψ(g(t)) · lim

ε→0
ε − ψ −ϕ

ψ
lim
ε→0

ε g

(

t + ε
ϕ

ψ

)

=−ψ −ϕ

ψ
lim
ε→0

ε g

(

t + ε
ϕ

ψ

)

= 0

The last equality is derived from Proposition 1.

Thus g is continuous at t ∈ (µ ,ν).

Corollary 1.A function g that is V-differentiable of order

(ϕ ,ψ) at t ∈ (µ ,ν) is also differentiable.

Proof.To prove the existence of the derivative, we will use
the following definition

g′(t) =
ψ

ϕ
lim
ε→0

g

(

t + ε
ϕ

ψ

)

− g(t)

ε

=
1

ϕ
lim
ε→0

ψ

(

g

(

t + ε
ϕ

ψ

)

− g(t)

)

ε

=
1

ϕ
lim
ε→0

ψ

(

g

(

t + ε
ϕ

ψ

))

−ψg(t)

ε

=
1

ϕ
lim
ε→0

[

ψ g

(

t + ε
ϕ

ψ

)

+ ε(ψ −ϕ)g

(

t + ε
ϕ

ψ

)

−

1

ε(ψ −ϕ)g

(

t + ε
ϕ

ψ

)

−ψg(t)

]

ε
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=
1

ϕ
lim
ε→0

[

(ψ + ε(ψ −ϕ))g

(

t + ε
ϕ

ψ

)

−ψ g(t)

]

ε
−

lim
ε→0

ψ −ϕ

ϕ
g

(

t + ε
ϕ

ψ

)

Since g is V-differentiable of order (ϕ ,ψ) and by
Theorem 2, it follows that

g′(t) =
ψ

ϕ
V ϕ,ψ(g(t))− ψ −ϕ

ϕ
g(t)

Remark.It is found that from

g′(t) =
ψ

ϕ
V ϕ,ψ (g(t))− ψ −ϕ

ϕ
g(t),

we can obtain

V ϕ,ψg(t) =
ϕ

ψ
g′(t)+

ψ −ϕ

ψ
g(t).

Theorem 3.Let g defined on (µ ,ν). It is found that g is

V-differentiable of order (ϕ ,ψ) if and only if g is

differentiable.

Remark.Although it is true that the function g is
V-differentiable of order (ϕ ,ψ) and g is differentiable,
the values of the two derivatives are different.

3 Properties of the V-Derivative

This section is dedicated to establishing some fundamental
properties of the V-derivative.

Theorem 4.Let a and b be constants, and f and g be

V-differentiable of order (ϕ ,ψ) functions. The operator

V ϕ,ψ (g(t)) satisfies the following properties:

1. V ϕ,ψ(a f + bg)(t) = aV ϕ,ψ f (t)+ bV ϕ,ψg(t)

2. V ϕ,ψ( f ·g)(t) = ϕ

ψ

[

f ′(t)g(t)+ f (t)g′(t)
]

+

ψ −ϕ

ψ
f (t)g(t).

3. V ϕ,ψ

(

f

g

)

(t) =
ϕ

ψ

[ f ′(t)g(t)+ f (t)g′(t)]
[g(t)]2

+

ψ −ϕ

ψ

f (t)

g(t)
, g(t) 6= 0.

4. V ϕ,ψ(k) =
ψ −ϕ

ψ
k, k constant.

5. V ϕ1,ψ1V ϕ2,ψ2 =V ϕ2,ψ2V ϕ1,ψ1

Proof.1. It is evident, thanks to the definition.

2. V ϕ,ψ ( f ·g)(t) =

lim
h→0

(ψ + h(ψ −ϕ)) f

(

t + h
ϕ

ψ

)

g

(

t + h
ϕ

ψ

)

−

ψ ·h
ψ f (t)g(t)

ψ ·h

= lim
h→0

ψ f

(

t + h
ϕ

ψ

)

g

(

t + h
ϕ

ψ

)

+

ψ ·h

h(ψ −ϕ) f

(

t + h
ϕ

ψ

)

g

(

t + h
ϕ

ψ

)

−ψ f (t)g(t)

ψ ·h

= lim
h→0

f

(

t + h
ϕ

ψ

)

g

(

t + h
ϕ

ψ

)

− f (t)g

(

t + h
ϕ

ψ

)

h
+

f (t)g

(

t + h
ϕ

ψ

)

− f (t)g(t)

h
+

h(ψ −ϕ) f

(

t + h
ϕ

ψ

)

g

(

t + h
ϕ

ψ

)

ψ ·h

= lim
h→0

[

f

(

t + h
ϕ

ψ

)

− f (t)

]

g

(

t + h
ϕ

ψ

)

h
+

lim
h→0

f (t)

[

g

(

t + h
ϕ

ψ

)

− g(t)

]

h
+

lim
h→0

ψ −ϕ

ψ
f

(

t + h
ϕ

ψ

)

g

(

t + h
ϕ

ψ

)

If h
ϕ
ψ = ε , then h = ε ψ

ϕ , if h → 0 then ε → 0 and it is

found that

V ϕ,ψ( f ·g)(t) = ϕ

ψ
lim
ε→0

[ f (t + ε)− f (t)]

ε
g(t + ε)+

lim
ε→0

ϕ

ψ
f (t)

g(t + ε)− g(t)

ε
+

lim
h→0

ψ −ϕ

ψ
f

(

t + h
ϕ

ψ

)

g

(

t + h
ϕ

ψ

)

=
ϕ

ψ
f ′(t)g(t)+

ϕ

ψ
f (t)g′(t)+

ψ −ϕ

ψ
f (t)g(t)

=
ϕ

ψ
[ f (t) ·g(t)]′+ ψ −ϕ

ψ
f (t)g(t)

3. Applying (3) from Theorem 1, it is found

c© 2025 NSP
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V ϕ,ψ

(

f

g

)

(t) =
ϕ

ψ

(

f

g

)′
(t)+

ψ −ϕ

ψ

(

f

g

)

(t)

=
ϕ

ψ

[ f ′(t)g(t)− g′(t) f (t)]

[g(t)]2
+

ψ −ϕ

ψ

(

f

g

)

(t)

4.

V ϕ,ψ (k) =
ϕ

ψ
(k)′+

ψ −ϕ

ψ
k

=
ϕ

ψ
(0)+

ψ −ϕ

ψ
k =

ψ −ϕ

ψ
k

5. If (3) from Theorem 1 is applied once again, we
obtain the following

V ϕ1,ψ1V ϕ2,ψ2(g(t)) =V ϕ1,ψ1

(

ϕ2

ψ2

g′(t)+
ψ2 −ϕ2

ψ2

g(t)

)

=
ϕ1

ψ1

(

ϕ2

ψ2

g′′(t)+
ψ2 −ϕ2

ψ2

g′(t)

)

+

ψ1 −ϕ1

ψ1

(

ϕ2

ψ2

g′(t)+
ψ2 −ϕ2

ψ2

g(t)

)

=
ϕ2

ψ2

ϕ1

ψ1

g′′(t)+
ϕ2

ψ2

(

ψ1 −ϕ1

ψ1

)

g′(t)+
ψ2 −ϕ2

ψ2

ϕ1

ψ1

g′(t)+
(

ψ2 −ϕ2

ψ2

)(

ψ1 −ϕ1

ψ1

)

g(t)

=
ϕ2

ψ2

[

ϕ1

ψ1

g′′(t)+
ψ1 −ϕ1

ψ1

g′(t)

]

+

ψ2 −ϕ2

ψ2

[

ϕ1

ψ1

g′(t)+
ψ1 −ϕ1

ψ1

g(t)

]

=
ϕ2

ψ2

[

ϕ1

ψ1

g′(t)+
ψ1 −ϕ1

ψ1

g(t)

]′
+

ψ2 −ϕ2

ψ2

[

ϕ1

ψ1

g′(t)+
ψ1 −ϕ1

ψ1

g(t)

]

=V ϕ2,ψ2

[

ϕ1

ψ1

g′(t)+
ψ1 −ϕ1

ψ1

g(t)

]

=V ϕ2,ψ2V ϕ1,ψ1(g(t))

Parts 2 y 3 violate the Leibniz rule for derivatives,
which is why V ϕ,ψ is considered a fractional derivative.
Interested readers can refer to [10].

Proposition 2.The following V-derivatives can be

obtained:

1.V ϕ,ψ(tn) = n
ϕ

ψ
tn−1 +

ψ −ϕ

ψ
tn, n ∈R

2.V ϕ,ψ(et) = et

3.V ϕ,ψ(sin(t)) =
ϕ

ψ
cos(t)+

ψ −ϕ

ψ
sin(t)

4.V ϕ,ψ (ln(t)) =
ϕ

ψ
· 1

t
+

ψ −ϕ

ψ
ln(t) t > 0

Proof.The four V-derivatives can be obtained using (3)
from theorem 1.

4 Theorems of the V-Derivative

Next, we will demonstrate some classical results from
calculus for the V-derivative, including the Mean Value
Theorem, the Rolle’s Theorem, and the Chain Rule, as
well as present some examples of their application.

Theorem 5.Rolle’s Theorem for the V-Derivative
Let g : [µ ,ν]−→R a function that satisfies:

1.g is continuous in [µ ,ν]
2.g is V-differentiable of order (ϕ ,ψ) in (µ ,ν)
3.g(µ) = g(ν)

Then, there exists c ∈ (µ ,ν) such that

V ϕ,ψ(g(c)) =
ψ −ϕ

ψ
g(c).

Proof.Since g is V-differentiable of order (ϕ ,ψ), then g

is differentiable and therefore satisfies the hypotheses of
Rolle’s Theorem for ordinary derivatives, so there exists
c ∈ (µ ,ν) such that g′(c) = 0.

Then, from

V ϕ,ψ(g(t)) =
ϕ

ψ
g′(t)+

ψ −ϕ

ψ
g(t)

it is found that,

V ϕ,ψ(g(c)) =
ϕ

ψ
g′(c)+

ψ −ϕ

ψ
g(c) =

ϕ

ψ
(0)+

ψ −ϕ

ψ
g(c)

Therefore,

V ϕ,ψ(g(c)) =
ψ −ϕ

ψ
g(c).

Example 1.Given the function g(t) = t − t3, ϕ = 1
9
, and

ψ = 1
3
, the function g(t) satisfies the conditions of the

Rolle’s Theorem for V-derivatives, since g is continuous
on [0,1] and V-differentiable of order (ϕ ,ψ) on (0,1). It
is also true that g(0) = g(1).

Therefore, we can apply the Rolle’s Theorem for V-
derivatives. Then, we can find a c ∈ (0,1) such that

V
1
9 ,

1
3 (g(c)) =

1
3
− 1

9
1
3

g(c)

When calculating the V-derivative of order (ϕ ,ψ) of g,
we have

V
1
9 ,

1
3 (t − t3) =

1

3
+

2

3
t − t2 − 2

3
t3
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which, when evaluated at c, gives us

V
1
9 ,

1
3 (c− c3) =

1

3
+

2

3
c− c2− 2

3
c3

and we equate this with

V
1
9 ,

1
3 (c− c3) =

1
3
− 1

9
1
3

(c− c3) =
2

3
(c− c3)

which gives

1

3
+

2

3
c− c2 − 2

3
c3 =

2

3
(c− c3)

implying
1

3
− c2 = 0

So c =
√

1
3
.

Theorem 6.Mean Value Theorem for the V-Derivative

Let g : [µ ,ν]−→R be a function that satisfies:

1.g is continuous in [µ ,ν]
2.g is V-differentiable of order (ϕ ,ψ) in (µ ,ν)

Then, there exist c ∈ (µ ,ν) such that

V ϕ,ψ (g(c)) =
ϕ

ψ

g(ν)− g(µ)

ν − µ
+

ψ −ϕ

ψ
g(c).

Proof.Let’s consider the auxiliary function

h(t) = g(t)− g(µ)− g(ν)− g(µ)

ν − µ
t

it is found that h satisfies the hypotheses of the Rolle’s
Theorem, so there exists c ∈ (µ ,ν) such that

V ϕ,ψ (h(c)) =
ψ −ϕ

ψ
h(c)

Additionally, it is found that,

V ϕ,ψ(h(t)) =
ϕ

ψ
h′(t)+

ψ −ϕ

ψ
h(t)

=
ϕ

ψ

[

g′(t)− g(ν)− g(µ)

ν − µ

]

+
ψ −ϕ

ψ
h(t)

Then, it is found that

ψ −ϕ

ψ
h(c) =

ϕ

ψ

[

g′(c)− g(ν)− g(µ)

ν − µ
h(c)

]

+
ψ −ϕ

ψ
h(c)

By simplifying, we obtain,

ϕ

ψ

[

g′(c)− g(ν)− g(µ)

ν − µ

]

= 0

which implies

ϕ

ψ
g′(c) =

ϕ

ψ

g(ν)− g(µ)

ν − µ
(4)

From V ϕ,ψ (g(c)) = ϕ
ψ g′(c)+ ψ−ϕ

ψ g(c) it follows that

ϕ

ψ
g′(c) =V ϕ,ψ(g(c))− ψ −ϕ

ψ
g(c)

Thus, from (4) it is found that

ϕ

ψ

g(ν)− g(µ)

ν − µ
=V ϕ,ψ(g(c))− ψ −ϕ

ψ
g(c)

then,

V ϕ,ψ(g(c)) =
ϕ

ψ

g(ν)− g(µ)

ν − µ
+

ψ −ϕ

ψ
g(c).

Remark.If in the Mean Value Theorem for the
V-Derivative, it is found that ϕ is equal to ψ , the Mean
Value Theorem for ordinary derivatives is obtained.

Example 2.For the function and the V-derivative of order
(ϕ ,ψ) of the Rolle’s Theorem example g(t) = t − t3, with

ϕ = 1
9

and ψ = 1
3
, it is observed that the function g

satisfies the conditions of the Mean Value Theorem for
V-derivatives, since g is continuous on [0,2] and
V-differentiable of order (ϕ ,ψ) on (0,2).

Therefore, the Mean Value Theorem for V-derivatives
can be applied. Then, we can find a c ∈ (0,2) such that

V
1
9 ,

1
3 (g(c)) =

1
9
1
3

g(2)− g(0)

2− 0
+

1
3
− 1

9
1
3

g(c)

When calculating the V-derivative of order (ϕ ,ψ) of g, we
have

V
1
9 ,

1
3 (t − t3) =

1

3
+

2

3
t − t2 − 2

3
t3

which, when evaluated at c, gives us

V
1
9 ,

1
3 (c− c3) =

1

3
+

2

3
c− c2 − 2

3
c3

and we equate this with

V
1
9 ,

1
3 (c− c3) =

1
9
1
3

· g(2)− g(0)

2− 0
+

1
3
− 1

9
1
3

(c− c3)

=
1

3

(

−6

2

)

+
2

3
(c− c3)

which gives

1

3
+

2

3
c− c2 − 2

3
c3 =−1+

2

3
(c− c3)

implying
4

3
− c2 = 0

So c = 2√
3
.
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Theorem 7.Chain Rule for V-Derivatives
If g is an V-differentiable of order (ϕ ,ψ) function and f is

differentiable at g(t), then f ◦ g is V-differentiable at t of

order (ϕ ,ψ) and

V ϕ,ψ ( f ◦ g)(t) =
ϕ

ψ
f ′(g(t))g′(t)+

ψ −ϕ

ψ
f (g(t))

Proof.By the definition of the V-derivative of f ◦ g, it is
found

V ϕ,ψ ( f ◦ g)(t)

= lim
ε→0

(ψ + ε(ψ −ϕ))( f ◦ g)

(

t + ε
ϕ

ψ

)

−ψ( f ◦ g)(t)

ψ · ε

= lim
ε→0

(ψ + ε(ψ −ϕ)) f

(

g

(

t + ε
ϕ

ψ

))

−ψ f (g(t))

ψ · ε

If h = g(t + ε ϕ
ψ )− g(t) and y = g(t), it is found that

g(t + ε ϕ
ψ ) = y+ h.

By Theorem 2, if g is V-differentiable at t of order
(ϕ ,ψ), then g is continuous at t, which ensures that
g(t + ε ϕ

ψ )→ g(t) when ε → 0, thus h → 0.

Therefore, it can be written

V ϕ,ψ( f ◦ g)(t)

= lim
ε→0

(ψ + ε(ψ −ϕ)) f (y+ h)−ψ f (y)

ψ · ε

= lim
ε→0

f (y+ h)− f (y)

ε
+ lim

ε→0

ε(ψ −ϕ) f (y+ h)

ψ · ε

= lim
ε→0

f (y+ h)− f (y)

h
· h

ε
+ lim

ε→0

ψ −ϕ

ψ
f

(

g

(

t + ε
ϕ

ψ

))

= lim
h→0

f (y+ h)− f (y)

h
· lim

ε→0

g

(

t + ε
ϕ

ψ

)

− g(t)

ε
+

lim
ε→0

ψ −ϕ

ψ
f

(

g

(

t + ε
ϕ

ψ

))

= f ′(y) · ϕ

ψ
g′(t)+

ψ −ϕ

ψ
f (g(t))

=
ϕ

ψ
f ′(g(t))g′(t)+

ψ −ϕ

ψ
f (g(t))

The following are some examples that illustrate the use
of the Chain Rule Theorem for the V-derivative.

Example 3.If h(t) = cos2(t) = ( f ◦g)(t), where f (t) = t2 y
g(t) = cos(t), then using the Chain Rule Theorem for the
V-derivative, it is found

V ϕ,ψ (h(t)) =
ϕ

ψ
f ′(g(t))g′(t)+

ψ −ϕ

ψ
f (g(t))

=
ϕ

ψ
f ′(cos(t))(cos(t))′+

ψ −ϕ

ψ
cos2(t)

=
ϕ

ψ
2cos(t) · sin(t)+

ψ −ϕ

ψ
cos2(t)

=
ϕ

ψ
sin(2t)+

ψ −ϕ

ψ
cos2(t)

Example 4.If h(t) = cos(t3) = ( f ◦ g)(t), where
f (t) = cos(t) y g(t) = t3, then using the Chain Rule
Theorem for the V-derivative., it is found

V ϕ,ψ (h(t)) =
ϕ

ψ
f ′(t3)(t3)′+

ψ −ϕ

ψ
cos(t3)

=
ϕ

ψ
sin(t3)(3t2)+

ψ −ϕ

ψ
cos(t3)

= 3
ϕ

ψ
t2 sin(t3)+

ψ −ϕ

ψ
cos(t3)

5 V-Integral(Biparametric Integral)

In this section, the inverse operator to the V-derivative is
defined, along with some properties of the V-integral.

Definition 6.Let g be a continuous function defined on

[µ ,ν]. The V-integral of order (ϕ ,ψ) (Biparametric

integral of order (ϕ ,ψ)), denoted by I
ϕ,ψ
µ (g), is defined

by the expression;

I
ϕ,ψ
µ (g)(t) =

ψ

ϕ
e
− ψ−ϕ

ϕ t
∫ t

µ
e

ψ−ϕ
ϕ y

g(y)dy.

Remark.If ψ =ϕ , the Biparametric integral of order (ϕ ,ψ)
coincides with the Riemann integral.

Theorem 8.Let c, d, ϕ1, ψ1, ϕ2, ψ2 ∈ R and g , h be

continuous functions, then:

1.I
ϕ,ψ
µ (cg+ dh) = cI

ϕ,ψ
µ g+ dI

ϕ,ψ
µ h (linearity)

2.I
ϕ1,ψ1
µ I

ϕ2,ψ2
µ = I

ϕ2,ψ2
µ I

ϕ1,ψ1
µ (commutativity)

Proof. 1.Linearity follows from the definition.
2.For commutativity, the following procedure is

followed.

I
ϕ1,ψ1
µ I

ϕ2,ψ2
µ g(t) = I

ϕ1,ψ1
µ

(

ψ2

ϕ2

e
− ψ2−ϕ2

ϕ2
t
∫ t

µ
e

ψ2−ϕ2
ϕ2

π
g(π)dπ

)
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=
ψ1

ϕ1

e
− ψ1−ϕ1

ϕ1
t

∫ t

µ
e

ψ1−ϕ1
ϕ1

y

(

ψ2

ϕ2

e
− ψ2−ϕ2

ϕ2
y
∫ t

µ
e

ψ2−ϕ2
ϕ2

π
g(π)dπ

)

dy

=
ψ1

ϕ1

ψ2

ϕ2
e
− ψ1−ϕ1

ϕ1
t

∫ t

µ

∫ y

µ
e

(

ψ1−ϕ1
ϕ1

− ψ2−ϕ2
ϕ2

)

y
e

ψ2−ϕ2
ϕ2

π
g(π)dπ dy

=
ψ1

ϕ1

ψ2

ϕ2
e
− ψ1−ϕ1

ϕ1
t

∫ t

µ

∫ y

µ
e

(

ψ1−ϕ1
ϕ1

− ψ2−ϕ2
ϕ2

)

y
e

ψ2−ϕ2
ϕ2

π
g(π)dydπ

=
ψ1

ϕ1

ψ2

ϕ2
e
− ψ1−ϕ1

ϕ1
t

∫ t

µ
e

ψ2−ϕ2
ϕ2

π
g(π)

(

∫ t

π
e

(

ψ1−ϕ1
ϕ1

− ψ2−ϕ2
ϕ2

)

y
dy

)

dπ

=
ψ1ψ2

(ψ1 −ϕ1)ϕ2 − (ψ2 −ϕ2)ϕ1

(

e
− ψ2−ϕ2

ϕ2
t

∫ t

µ
e

ψ2−ϕ2
ϕ2

π
g(π)dπ − e

− ψ1−ϕ1
ϕ1

t
∫ t

µ
e

ψ1−ϕ1
ϕ1

π
g(π)dπ

)

=
ψ1ψ2

(ψ1 −ϕ1)ϕ2 − (ψ2 −ϕ2)ϕ1
(

ϕ2

ψ2

I
ϕ2,ψ2
µ g(t)− ϕ1

ψ1

I
ϕ1,ψ1
µ g(t)

)

When ϕ1, ψ1 is exchanged for ϕ2, ψ2 you have to

I
ϕ2,ψ2
µ I

ϕ1,ψ1
µ g(t) =

ψ1ψ2

(ψ2 −ϕ2)ϕ1 − (ψ1 −ϕ1)ϕ2
(

ϕ1

ψ1

I
ϕ1,ψ1
µ g(t)− ϕ2

ψ2

I
ϕ2,ψ2
µ g(t)

)

= I
ϕ1,ψ1
µ I

ϕ2,ψ2
µ g(t)

This completes the proof.

The following theorem is an adaptation of the
fundamental theorem of calculus for the V-integral of
order (ϕ ,ψ), and establishes that it is the inverse
operation to V-differentiation of order (ϕ ,ψ).

Theorem 9.Let g be a continuous function defined on

[µ ,ν]. Then I
ϕ,ψ
µ g is V-differentiable of order (ϕ ,ψ) in

(µ ,ν), and it holds that

V ϕ,ψ (I
ϕ,ψ
µ g(y)) = g(y)

Additionally, if h is a continuous function and h is an V-

antiderivative of order (ϕ ,ψ) of g in (µ ,ν), that is, h =
V ϕ,ψ g, then it holds that

I
ϕ,ψ
µ (V ϕ,ψ g(t)) = g(t)− g(µ)e

ψ−ϕ
ϕ (µ−t)

(5)

Proof.The first part of the theorem’s proof is obtained
from the fact that g is continuous, which implies that g is
differentiable, and thanks to Theorem 3, it follows that g

is V-differentiable of order (ϕ ,ψ). If we let h = I
ϕ,ψ
µ , then

it follows that

V ϕ,ψ(I
ϕ,ψ
µ g(t)) =V ϕ,ψ (h(t)) =

ϕ

ψ
h′(t)+

ψ −ϕ

ψ
h(t)

Since a particular solution of the differential equation

g =
ϕ

ψ
h′(t)+

ψ −ϕ

ψ
h(t),

is given by

g(t) =
ψ

ϕ
e
− ψ−ϕ

ϕ t
∫ t

µ
e

ψ−ϕ
ϕ y

g(y)dy

the first part of the theorem is proven.
For the second part, if

h(t)=V ϕ,ψ(g(t))=
ϕ

ψ
g′(t)+

ψ −ϕ

ψ
g(t),

we have

I
ϕ,ψ
µ (h(t)) = I

ϕ,ψ
µ

(

ϕ

ψ
g′(t)+

ψ −ϕ

ψ
g(t)

)

=
ψ

ϕ

∫ t

µ

ϕ

ψ
e

ψ−ϕ
ϕ (y−t)

g′(y)dy+
ψ −ϕ

ψ
I

ϕ,ψ
µ g(t)

= e
− ψ−ϕ

ϕ t
∫ t

µ
e

ψ−ϕ
ϕ y

g′(y)d(y)+
ψ −ϕ

ψ
I

ϕ,ψ
µ g(t)

= e
− ψ−ϕ

ϕ t

[

g(y)e
ψ−ϕ

ϕ y
∣

∣

∣

t

µ
−

∫ t

µ

ψ −ϕ

ϕ
e

ψ−ϕ
ϕ y

g(y)d(y)

]

+
ψ −ϕ

ϕ
I

ϕ,ψ
µ g(t)

= g(t)− g(µ)e
ψ−ϕ

ϕ (µ−t)

− ψ −ϕ

ϕ
· ψ

ϕ
e
− ψ−ϕ

ϕ t
∫ t

µ
e

ψ−ϕ
ϕ y

g(y)d(y)+
ψ −ϕ

ϕ
I

ϕ,ψ
µ g(t)

= g(t)− g(µ)e
ψ−ϕ

ϕ (µ−t)

− ψ −ϕ

ϕ
I

ϕ,ψ
µ g(t)+

ψ −ϕ

ϕ
I

ϕ,ψ
µ g(t)

= g(t)− g(µ)e
ψ−ϕ

ϕ (µ−t)

We apply the V-integral of order (ϕ ,ψ) to some functions,
resulting in the following proposition.
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Proposition 3.The following results hold

1.I
ϕ,ψ
µ (sin(t))

=
ϕψ

(ψ −ϕ)2 +ϕ2

[(

ψ −ϕ

ϕ
sin(t)− cos(t)

)

+
(

cos(µ)− ψ −ϕ

ϕ
sin(µ)

)

e
ψ−ϕ

ϕ (µ−t)
]

2.I
ϕ,ψ
µ (et) = et − eµe

ψ−ϕ
ϕ (µ−t)

3.I
ϕ,ψ
µ (λ ) =

ψλ

(ψ −ϕ)

[

1− e
ψ−ϕ

ϕ (µ−t)
]

Proof.The proof of the four equalities is obtained from the
definition of the V-integral of order (ϕ ,ψ).
For 1), we have that

I
ϕ,ψ
µ (sin(t)) =

ψ

ϕ
e
− ψ−ϕ

ϕ t
∫ t

µ
e

ψ−ϕ
ϕ y

sin(y)dy

To solve the V-integral of order (ϕ ,ψ) of sin(t), we
integrate by parts.

∫ t

µ
e

ψ−ϕ
ϕ y

sin(y)dy

=
(

−cos(y)e
ψ−ϕ

ϕ y
)
∣

∣

∣

t

µ
+

ψ −ϕ

ϕ

∫ t

µ
cos(y)e

ψ−ϕ
ϕ y

dy

=−cos(t)e
ψ−ϕ

ϕ t + cos(µ)e
ψ−ϕ

ϕ µ +
ψ −ϕ

ϕ
[

(

sin(y)e
ψ−ϕ

ϕ y
)
∣

∣

∣

t

µ
− ψ −ϕ

ϕ

∫ t

µ
sin(y)e

ψ−ϕ
ϕ y

dy

]

=−cos(t)e
ψ−ϕ

ϕ t + cos(µ)e
ψ−ϕ

ϕ µ +
ψ −ϕ

ϕ
sin(t)e

ψ−ϕ
ϕ t

− ψ −ϕ

ϕ
sin(µ)e

ψ−ϕ
ϕ µ − (ψ −ϕ)2

ϕ2

∫ t

µ
sin(y)e

ψ−ϕ
ϕ y

dy

Then,

∫ t

µ
e

ψ−ϕ
ϕ y

sin(y)dy =
ϕ2

(ψ −ϕ)2 +ϕ2

×
[(

−cos(t)+
ψ −ϕ

ϕ
sin(t)

)

e
ψ−ϕ

ϕ t+

(

cos(µ)− ψ −ϕ

ϕ
sin(µ)

)

e
ψ−ϕ

ϕ µ

]

Therefore,

I
ϕ,ψ
µ (sin(t)) =

ψ

ϕ
e
− ψ−ϕ

ϕ t

[

ϕ2

(ψ −ϕ)2 +ϕ2

((

−cos(t)+
ψ −ϕ

ϕ
sin(t)

)

e
ψ−ϕ

ϕ t
+

(

cos(µ)− ψ −ϕ

ϕ
sin(µ)

)

e
ψ−ϕ

ϕ µ

)]

=
ϕψ

(ψ −ϕ)2 +ϕ2

[

ψ −ϕ

ϕ
sin(t)− cos(t)+

(

cos(µ)− ψ −ϕ

ϕ
sin(µ)

)

e
ψ−ϕ

ϕ (µ−t)
]

For 2) we have that

I
ϕ,ψ
µ (et) =

ψ

ϕ
e
− ψ−ϕ

ϕ t
∫ t

µ
e

ψ−ϕ
ϕ y

ey dy

=
ψ

ϕ
e
− ψ−ϕ

ϕ t

(

ϕ

ψ
e

ψ−ϕ
ϕ y

ey

)∣

∣

∣

∣

t

µ

=
ψ

ϕ
e
− ψ−ϕ

ϕ t

(

ϕ

ψ

(

e
ψ−ϕ

ϕ t
et − e

ψ−ϕ
ϕ µ

eµ
)

)

= et − eµe
ψ−ϕ

ϕ (µ−t)

For 3), whenever ϕ 6= ψ , we have that

I
ϕ,ψ
µ (λ ) =

ψ

ϕ
e
− ψ−ϕ

ϕ t
∫ t

µ
e

ψ−ϕ
ϕ y

λ dy

=
ψ

ϕ
λ e

− ψ−ϕ
ϕ t

[

ϕ

ψ −ϕ
e

ψ−ϕ
ϕ y

]∣

∣

∣

∣

t

µ

=
ψ

ψ −ϕ
λ
[

1− e
ψ−ϕ

ϕ (µ−t)
]

6 Application to V-Ordinary Differential

Equations of order (ϕ,ψ)

It is important to highlight that writing

V ϕ,ψ g(t) =
ϕ

ψ
g′(t)+

ψ −ϕ

ψ
g(t)

makes it possible to convert V-ordinary differential
equations of order (ϕ ,ψ). In fact, if we consider the
V-differential equation of order (ϕ ,ψ).

V ϕ,ψ (g(t))+R(t)g(t) = 0

where R(t) is continuous, then the equation can be written
as

ϕ

ψ
g′(t)+

ψ −ϕ

ψ
g(t)+R(t)g(t) = 0,

that is
ϕ

ψ
Dz+

ψ −ϕ

ψ
z+Rz = 0,

which implies

Dz+
(ψ −ϕ)+ψRz

ϕ
= 0

which is a first-order differential equation, whose solution
is

z = ce
−
(

ψ−ϕ
ψ t+ ψ

ϕ

∫

R(t)dt
)
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Example 5.Given the equation V
1
4 ,

1
2 z+z = te−t , to find the

solution, it is necessary to

1
4
1
2

z′+
1
2
− 1

4
1
2

z+ z = te−t

which implies,

z′+ z+ 2z = 2te−t

then z′+ 3z = 2te−t has the solution

z = ce−3t +

(

t − 1

2

)

e−t

Example 6.For V
1
9 ,

1
3 z+ 3z = 4te−5t , we have to

1
9
1
3

z′+
1
3
− 1

9
1
3

z+ 3z = 4te−5t

1

3
z′+

2

3
z+ 3z = 4te−5t

z′+ 2z+ 9z = 12te−5t

z′+ 11z = 12te−5t

Whose solution is

z = ce−11t +
12

6

(

t − 1

6

)

e−5t

z = ce−11t + 2

(

t − 1

6

)

e−5t .

7 Conclusion

In this article, a new generalized derivative has been
proposed. The set of differentiable functions and the set
of V-differentiable of order (ϕ ,ψ) functions coincide;
however, the values of the derivatives are different.
Properties of the V-derivative of order (ϕ ,ψ) were also
studied, and an integral operator, which is the inverse of
the V-derivative of order (ϕ ,ψ), was introduced. This
allows us to consider in the future the study of the partial
V-derivative of order (ϕ ,ψ), of integral transforms
associated with the defined integral operator, to extend the
definition of V-derivative of order (ϕ ,ψ) to the field of
complex numbers, among other potential works.
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Universidad Católica del Ecuador. Sede Quito, Ecuador.

Janneth Alexandra
Velasco-Velasco Janneth
Velasco earned her Master’s
degree in Mathematics from
the Faculty of Engineering,
Mathematics, and Physical
Sciences at the Central
University of Ecuador.
She is a Mathematics
professor at the Armed Forces

University-ESPE. Her research focuses on mathematical
analysis, and she has published articles in the field of
fractional calculus.

Harold David Jarrı́n
studied Civil Engineering
at the Universidad San
Francisco de Quito, he
is a Mathematics Professor
at Universidad de las
Fuerzas Armadas ESPE, with
research interests focused
on mathematical analysis,

particularly in fractional calculus.

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminary Results 
	Properties of the V-Derivative 
	Theorems of the V-Derivative
	 V-Integral(Biparametric Integral)
	Application to V-Ordinary Differential Equations of order (, )
	Conclusion 

