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Abstract: Earthquake prediction is still a nightmare in terms of minimizing losses during seismic catastrophes. This research seeks

to apply machine learning techniques for classifying and forecasting earthquakes using synthetic seismic records. It is observed that

key time-series features including Root Mean Square (RMS) amplitude and spectral peak frequency were extracted from time-series

waveforms and then used for training a Support Vector Machine (SVM) classifier. The model was able to attain an accuracy rate

of 90% which shows how efficient the presented features were in distinguishing different seismic events. There was a geographic

visualization of predicted events that generated insights that were useful in locating places prone to seismic hazards. The synthetic

database engendered a laboratory-like test setting, but the shortcomings in practical relevance underline the necessity for inclusion of

real earthquake data sets. This research adds to the increasing body of literature about data driven seismic analysis and paves the way

to strengthen predictive models which would contribute to better earthquake preparedness.

Keywords: Earthquake prediction; Machine learning; Synthetic seismic data; RMS amplitude; Spectral analysis; Support Vector
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1 Introduction

Earthquakes are one of the natural disasters with
debilitating effects; a threat to human lives, buildings and
economies globally. Due to the absence of predictability
of such occurrences, many attempts have been made to
study the causes and lessen their impacts. Earlier, a
combination of geological and geophysical data was
utilized to devise various strategies for predicting
earthquakes. However, machines and exposure to new
technologies have revolutionized this approach. New
technology opens up new opportunities for exploring
seismic phenomena and enhances the prospects of
prediction.

The challenge of earthquake prediction is linked to
the complicated nature of the seismic processes which are
affected by several geophysical and tectonic components.
Instead, a machine learning approach offers a perspective
for processing plenty of seismic data and recognizing

patterns which are rather hard to identify with the
conventional methods. Hitherto, a number of researchers
have illustrated the effectiveness of ML algorithms,
especially ANNs, SVMs and deep learning models on
decoding seismic waveforms and estimating the
likelihood of earthquakes. This study seeks to capitalize
on these developments by utilizing synthetic seismic data
for feature extraction and machine learning model
evaluation aimed at earthquake prediction.

This study aims at achieving two goals: first, it seeks
to ascertain how effective parameters like RMS amplitude
and spectral peak frequency are in classifying seismic
events; the second goal of the study is to assess the
efficiency of the various scopes of machine learning
models in predicting earthquakes. In using synthetic data,
this study seeks to create a clean laboratory for model
development and evaluation that can be coupled with real
seismic data in later work. Therefore, this introduction
paves the way for discussions on how effective machine
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learning methods can be in predicting earthquakes taking
into account other studies in this field.

2 Related Studies

2.1 Machine Learning in Seismic Prediction

The functionality of machine learning in earthquake
prediction has come under focus with several papers
showing its efficacy in augmenting the confidence of
forecasts. Asgarkhani et al. (2024) used ML algorithms
for predicting seismic responses of steel buckling
restrained braced frames. Their work highlighted the
significance of feature engineering in improving model
performance for seismic analysis, particularly advocating
for relevance feature selection. In the same fashion, Birky
et al. (2022) relied on artificial neural networks to
estimate the dynamic response structures, thus proving
the use of data-driven methods for structural safety
evaluation.

Hait et al. (2020) investigated the application of ANN
networks in seismic damage evaluation of RC structures
with irregularities. Their study emphasized the
significance of incorporating building characteristics in
the models of predicting the behavior of buildings under
seismic conditions. In 2022, Stefanini et al. enhanced this
direction of research and created artificial neural networks
that enable a rapid assessment of the seismic resistance of
existing RC constructs. The inclusion of
frequency-domain features in their study is compatible
with the feature selection scheme employed in the present
investigation.

2.2 Feature Selection and Model Optimization

In machine learning-based seismic prediction, feature
selection makes a big difference. Kazemi et al. (2023)
drew attention to the need to develop features that are
crucial for assessing the seismic performance of RC
buildings. Their research work used machine learning
approaches to study the effects of individual structural
and material properties on seismic behavior of the
structures. Along the same lines, metaheuristic algorithms
were used by Kaveh and Khavaninzadeh (2023) in
developing ANN training for structural prediction and
good predictive accuracy was achieved through feature
selection.

The use of optimization algorithms in conjunction
with machine learning models has also been considered in
the field of seismic analysis. Jbury and Hejazi (2023)
proposed a combined optimization and
performance-based design approach for structures with
vibration damper devices. The authors confirmed the
effectiveness of combining optimization algorithms and
machine learning in strengthening the model. Erdem

Çerçevik et al. (2021) used metaheuristic search
approaches for the distribution of viscous wall dampers in
RC frames citing optimization techniques as handy for
enhancing seismic resistance.

2.3 Advances in Seismic Data Analysis

There has been remarkable evolution in the analysis of
seismic data due to the improvement in body
computational methods. Fu et al. (2023) traced the most
recent developments in the field of dynamic load
identification, indicating the possibilities provided by
using machine learning techniques. Alanani and Elshaer
(2023) presented an artificial neural networks-based
optimization framework to construct wind load resisting
systems for high-rise buildings, thus demonstrating the
use of machine learning in designing structures subjected
to dynamic loads.

Spectral analysis has gained importance for the
analysis of seismic data as it assists in identifying the
dominant frequency bands related with the seismic
events. The current study’s consideration of spectral peak
frequency is consistent with the methodologies adopted
by Kazemi et al. (2023) and Stefanini et al. (2022) who
focused on frequency features of seismic signals. The
present research, therefore, adds to the volume of
literature that is already dealing with data driven seismic
analysis by utilizing these features.

2.4 Real-World Applications and Limitations

Although synthetic data allows developing models in a
more controlled setting, there is still the challenge of
implementing machine learning models to real-world
cases such as seismic occurrences. A similar sentiment
was shared by Alanani and Elshaer (2023), who argued
that practical validation is important while analyzing
wind load-resisting systems, a point which Fu et al.
(2023) also maintained, it is essential to utilize real
datasets in dynamic load identification approaches. In the
examination of synthetic data, Sharma et al. (2023)
further argue that all future research efforts should use
actual seismic datasets, citing, for example, their
simulations of fluid viscous dampers’ performance in
high-rise structures using real-world inputs.

Though integrating real-world data within a machine
learning model can be a challenging task in ensuring the
quality and availability of the data, Vaidyanathan et al.
(2005) were able to overcome this challenge by
developing ANNs to predict the response of structural
systems with viscoelastic dampers through the use of
quality experimental data on the model being developed.
Yucel et al. (2019) have also proven the possibility of
using machine learning to determine optimum parameters
for tuned mass dampers, further underscoring the
usefulness of data in structural engineering.
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The related studies reviewed herein draw attention to
the progress made towards machine learning applications
in seismic prediction as well as the difficulties
encountered when working with real data. The present
study advances such efforts by working with synthetic
seismic data to train and test machine learning models. In
particular, by concentrating on the model design and its
features, this research intends to add to the discussion
about the role of machine learning technologies in
predicting earthquakes. Synthetic data limitations should
be addressed in future studies together with the use of
real-world datasets to improve the scope and credibility of
predictive models.

3 Methodology

3.1 Data Collection

Collect historical seismic data from sources like the USGS
or local seismic networks. The data includes:

–Seismic waveforms (W(t)): Time-series data of ground
motion.

–Earthquake metadata: Magnitude (M), depth (D),
location (latitude φ , longitude λ ), and occurrence
time (T ).

3.2 Data Preprocessing

Normalize the input seismic waveform data:

Wnorm(t) =
W (t)− µ

σ

where:

–µ : Mean of the waveform data.
–σ : Standard deviation of the waveform data.

Convert seismic waveform data into the
time-frequency domain using Short-Time Fourier
Transform (STFT):

S( f , t) =
∫ ∞

−∞
W (τ) ·h(t − τ) · e− j2π f τ dτ

where:

–h(t): Windowing function.
–S( f , t): Spectrogram representation.

Feature Extraction

Temporal Features:

–Root Mean Square (RMS):

RMS =

√

1

N

N

∑
i=1

W (ti)2

–Power Spectral Density (PSD):

P( f ) = |S( f )|2

3.2.1 Spatial and Magnitude Features:

–Event clustering based on time gaps:

∆T = Ti+1 −Ti

–Spatial clustering using Euclidean distance:

d =
√

(φi+1 −φi)2 +(λi+1 −λi)2

3.2.2 Frequency-Domain Features:

–Peak frequency fpeak: Frequency with the maximum
amplitude in S( f , t).

3.3 Model Development

Use Recurrent Neural Networks (RNN), particularly
Long Short-Term Memory (LSTM) networks, for
time-series prediction:

ft = σ(Wf · [ht−1,xt ]+ b f )

it = σ(Wi · [ht−1,xt ]+ bi)

ot = σ(Wo · [ht−1,xt ]+ bo)

Ct = ft ·Ct−1 + it · tanh(WC · [ht−1,xt ]+ bC)

ht = ot · tanh(Ct)

where:

– ft , it ,ot : Forget, input, and output gates.
–W,b: Weight matrices and biases.
–Ct : Cell state.
–ht : Hidden state.

3.4 Model Training

Define the loss function (e.g., Mean Squared Error for
regression):

L =
1

N

N

∑
i=1

(yi − ŷi)
2

where:

–yi: True label (earthquake occurrence or magnitude).
–ŷi: Predicted label.

Optimize using gradient descent to update weights:

θ = θ −η ·∇θ L

where:

–η : Learning rate.
–∇θ L: Gradient of loss with respect to parameters.
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3.5 Prediction

For a new seismic waveform input, extract features and
input them into the trained model. The output ŷ predicts:

–Earthquake occurrence (binary classification).
–Magnitude or time-to-event (regression).

3.6 Visualization

Plot predictions on a geographic map:

Map Point (φ ,λ ) = Predicted Event Location

Mathematical Basics

Seismic Wave Propagation (Huygens’ Principle):

Wave motion is approximated by:

∇2u−
1

v2

∂ 2u

∂ t2
= 0

where:

–u: Displacement field.
–v: Wave velocity.

Richter Magnitude (for reference):

M = log10(A)− log10(A0(∆))

where:

–A: Amplitude of seismic waves.
–A0(∆): Reference amplitude at distance ∆ .

Event Prediction Probability (Bayes’ Theorem):

P(E | F) =
P(F | E) ·P(E)

P(F)

where:

–P(E | F): Probability of an earthquake given features
F .

–P(F | E): Likelihood of features given an earthquake.

4 Results of Earthquake Prediction

Simulation

The prediction of an earthquake was achieved in this
study through a simulation using synthesized seismic data
for a period of 10 seconds. The data included time series
sequences which were disturbed by added noise in order
to resemble what is expected in real-life conditions.
Parameters such as the Root Mean Square (RMS)
amplitude and the peak frequency of the spectrum were
calculated from recorded seismic waveforms and used as
features to a Support Vector Machine (SVM) classifier.
This subsection highlights the outcomes of the simulation
including images and graphs of the quantitative results.

4.1 Seismic Waveform Analysis

The recorded seismic events have shown a clear emission
of signals that have frequencies of 2 Hertz and 5 Hertz.
What made the event more realistic was the additional
inclusion of noise. The above still gives us one of the
illustrations whereby wide band noise is present along the
10 second sequence of fluctuating amplitudes within the
waveform. The analysis of the fundamental waveforms
enabled the authors to assist in the extraction of relevant
features that would aid in making predictions of
earthquake occurrences.

Fig. 1: Simulated Seismic Waveform

4.2 Spectrogram Analysis

A spectrogram was constructed to measure the frequency
content of the waveform. The method used gave success
in time-localization of the prominent frequencies and
their shifts with time. Remember the spectrogram in
Figure 2 which has substantiated the dominance of 2 Hz
and 5 Hz components over the other frequencies. Such
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representation proved useful in discriminating between
important spectral features that delineate earthquakes
from non-earthquakes.

Fig. 2: Spectrogram of Simulated Seismic Waveform

4.3 Feature Extraction and Quantitative Results

The study engaged in feature extraction which was
centered on two aspects namely the RMS amplitude and
the spectral peak frequency. The RMS amplitude was
used to measure the ‘strength’ or energy of the signal,
whereas the spectral peak frequency referred to as the
frequency located at the peak within the spectrogram’s
structure. This table presents the features that were
obtained in five simulated seismic events.

Table 1: Extracted Features for Seismic Events

Event ID RMS Amplitude Peak Frequency (Hz)

1 0.45 2.00

2 0.38 5.00

3 0.50 2.00

4 0.40 5.00

5 0.48 2.00

4.4 Machine Learning Model Performance

An SVM classifier was developed a second time for the
purpose of predicting the occurrence of earthquakes. The
test dataset achieved a model accuracy of 90%, which
demonstrates that the model is effective for classifying
seismic events. Table 2 presents the confusion matrix
which summarizes the performance of the classifier. The
matrix illustrates the quantity of true positive, true
negative, false positive and false negative predictions.

Table 2: Confusion Matrix

Predicted:

Earthquake

Predicted: No

Earthquake

Actual:

Earthquake

4 1

Actual: No

Earthquake

0 5

4.5 Geographic Visualization of Predictions

Predictive events made in regard to the classifier were
exercised using a simulated map, to illustrate the spatial
occurrence of predicted events which in this case were
earthquakes. In Figure 3, the predicted locations of events
are presented visually, different symbols are used for the
predicted events with and without earthquake. This
illustration, on the other hand, helps in understanding
spatial disparities of seismic occurrences which are
important in resource distribution or disaster
management.

Fig. 3: Geographic Distribution of Predicted Earthquakes

4.6 Spectral Feature Comparison

To contrast the differences between earthquake and
non-earthquake events, a comparative analysis of the
spectral features was undertaken. Two histograms were
constructed in relation to the peak frequency
distributions, contained in Figure 4, for both categories.
The analysis showed that the frequency characteristics
indeed differed and, therefore, substantiated the relevance
of the selected features to classification tasks.

The findings of the simulation point out the
significance of RMS amplitude and spectral peak
frequency as parameters that are useful in forecasting
earthquakes. There is hope in the use of machine learning
models when analyzing seismic data due to the high
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Fig. 4: Comparison of Spectral Features

accuracy of the SVM classifier. Maps showing the
predictions offer great insights for their practical use. Yet,
the use of synthetic data in the study limits the study since
it is overly simplistic and may not encompass the
intricacies surrounding actual seismic activity. In the
coming efforts, actual seismic datasets will be adopted,
and the feature set will be more extensive to include more
relevant data points and hypotheses in machine learning
to improve the precision and consistency of predictions.

The most recent results of this simulation clearly
point towards the usefulness of machine learning in terms
of integrating with signal processing, specifically in
regard to the prediction of seismic activities. As a result,
the scope for building reliable models which can assist in
reducing the aftermath effects of seismic catastrophes is
established in this perspective.

5 Discussion

The results of this work, which applied AI techniques on
artificial seismic data to forecast earthquakes, are in
agreement with and build upon previous works in the field
of seismic forecasting and analysis. The combination of
the key features RMS amplitude and peak frequency
spectrum achieved satisfactory results, with an efficiency
rate of 90 in classifying the events of a seismic event and
of a non-event. Such findings will be related to other
available works, but the focus will be on learning
something new.

5.1 Machine Learning Approaches in Seismic

Prediction

The application of machine learning for seismic event
prediction is becoming more common. Asgarkhani et al.
(2024) investigated how machine learning techniques
could be used to forecast the seismic response of steel
buckling restrained braced frames, attaining considerable

accuracy via feature engineering techniques. Likewise,
Birky et al. (2022) used artificial neural networks (ANNs)
in the development of a system that predicts the dynamic
response of structures, affirming the ability of data-driven
techniques in augmenting structural safety.

The previous work has now been built upon in the
present study by concentrating on the forecasting of
earthquakes instead of the prediction of the dynamic
responses of built structures. Moreover, they seemed
simple, yet impactful since relevant features like the RMS
amplitude and spectral peak frequency helped capture the
center of those informative features. These features made
a contribution without having complicated datasets which
is similar to the examinations conducted by Hait et al.
(2020) who used ANNs for procedures of seismic damage
assessment of RC buildings.

5.2 Feature Selection and Model Performance

Feature selection is an important aspect of seismic
prediction particularly in the work of Kazemi et al. (2023)
who applied machine learning in evaluating the seismic
performance of reinforced concrete buildings. The RMS
amplitude and spectral peak frequency discussed in this
research reinforce the critical indicators as has been
observed in previous studies. For example, Stefanini et al.
(2022) showed that features in the frequency domain
substantially increase the speed of a seismic evaluation on
existing RC buildings. These features were adopted in
this study and resulted in classification accuracy of 90%
which is quite similar to the results obtained by Kaveh
and Khavaninzadeh (2023) in which metaheuristic
algorithms were used to optimize ANN training for
structural prediction.

5.3 Geographic Mapping of Predictions

The graphical representation of earthquake prediction
with the help of geo-informatics facilitates better planning
for disaster management. This seems to be a similar
position to that of Sharma et al. (2023), studying how
spatial relations contribute to overcoming challenges of
torsion on tall buildings during earthquakes. In the
present study, the predicted number of events
complemented the trends’ visual representation, which
allowed the determination of the areas with the highest
risk. This corresponds with the approaches of Erdem
Çerçevik et al. (2021), who employed metaheuristic
methods for the optimal arrangement of viscous dampers
in RC frames and also supported the concept of spatial
decision making.

5.4 Limitations and Future Research Directions

Although the application of artificial seismic data for
model testing gave a controlled situation for the study, it,
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nevertheless, brings about constraints on the natural
world. This issue has been resolved in several works,
including Alanani and Elshaer (2023) who employed
ANN based frameworks in the design of wind load
resisting structures and used real data sets. Future work is
encouraged to use actual seismic datasets as noted by Fu
et al. (2023) who stressed the significance of real-life data
with regard to improving techniques for the identification
of dynamic loads.

Further, the incorporation of both more parameters
and sophisticated machine learning models may improve
the accuracy of the predictions even more. For instance,
Asgarkhani et al. (2024) employed multiple features and
used deep learning techniques which improved their
predictions of how well the structure would perform
under seismic forces. The use of hybrid optimization
algorithms as shown by Jbury and Hejazi (2023) could in
a smaller measure enhance the strength of the earthquake
prediction models as well.

6 Conclusion

The study at hand develops a basic method of predicting
earthquakes with the use of machine learning algorithms
and stresses the necessity of determining position and
drawing up relevant features. The results, when placed
vis-a-vis the existing literature, show considerable
convergence with and extend many earlier reports,
especially in relation to the issues of features as well as
the models. The scope of future studies should be directed
towards overcoming the barrier created by artificial data
and fusing advanced models with real-time data sets to
broaden the usability and the precision of the systems
developed for the seismic prediction systems.
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