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Abstract: This review concerns one of the spectral methods, which is the pseudo-spectral method. The pseudo-spectral method can
be considered adequate for solving several types of IBVP of integer and fractional order. This method expresses the unknown variable
of the differential equation in terms of the unknown variables at the chosen collocation points. Two traditional numerical integration
techniques and the Gauss-Lobatto Quadrature method have been used for that purpose. In addition, several differentiation and
integration matrices constructed using the pseudo-spectral method for some orthogonal polynomials have been presented.
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1 Introduction

Differential Equations (DEs) are important in many fields like physics [1, 2], engineering [3], chemistry [4, 5], fluid [6],
nanofluid [7, 8], and biology [9, 10]. However, in several cases, the exact solution of differential equations is not obtained
using specific methods. So, we use the numerical and the approximated methods to solve the differential equations. There
are many numerical methods, such as finite element [11], finite difference [12], and runge kutta methods. However, the
spectral techniques are used to get semi-analytic or approximated solutions. The spectral methods are used to find the
approximate solutions in many applications as nanofluid flow [13], and three lakes pollution system [14]. As observed,
these methods can deal with initial and boundary problems of fractional order [15] and integer order [16]. In this review,
we will focus only on the pseudo-spectral method. The pseudo-spectral method was first introduced by El-gendi [17]. He
introduced a matrix that was used as an integral operator and used it to solve differential, integral, and integro-differential
equations via Chebyshev polynomials.

The idea of spectral methods is to expand the unknown function of the given differential problem into a finite sum of
basis functions multiplied by unknown constants [18]. Then, substitute into the differential problem to convert it into an
algebraic system of the unknown constants. Hence, solving that system to get the values of the constants and substituting
them back into the finite expansion to get an approximate solution to the differential problem. However, in the pseudo-
spectral method, the obtained algebraic system’s unknowns are the values of the unknown function itself at chosen extreme
points. So, we obtain the approximate solution directly.

The primary purpose of the pseudo-spectral method is to construct pseudo-spectral matrices for differentiation [19]
and integration [20-22]. Besides the several advantages of the pseudo-spectral matrices, they can be used as differentiation
and integration tools to get the derivatives and integrals of specific given functions. This aim can be achieved by expanding
the unknown function of the given problem in terms of the unknown function itself at specific extreme points.
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Unfortunately, to the best of our knowledge, the pseudo-spectral method can be used only via orthogonal polynomials.
This is due to the usage of the orthogonal relations of the used polynomials in the construction process. Consequently, the
challenge is converting the inner product of the used orthogonal relations to the discrete inner product. Several authors
used different approaches to calculate the desired relations, which will be presented throughout the review.

The rest of the review consists of the following: in section 2, we discuss the principle of the pseudo-spectral method.
The transformation methodologies from definite integration into finite summation have been introduced in section 3. Two
methodologies depend on regular numerical integration, and the third on Gauss—Lobatto quadrature. In section 4, the
construction process of the pseudo-spectral matrices is presented. Problem formulation and the solution Methodology are
shown in section 5. Section 6 is devoted to presenting several forms of pseudo-spectral matrices for differentiation and
integration in the cases of integer and fractional order. Conclusion and future work directions are presented in section 7.

In the following section, the basic concepts of the pseudo-spectral method will be introduced.

2 Pseudo-spectral method

This section is devoted to explaining the main principle of the pseudo-spectral method. As known, the spectral expansion
of a well-defined continuous function G(s) on the interval [a, b] is [23]:

G(s) =Y 1mQuls), e))

n=0

where {Q,(5)},>0 is a set of orthogonal polynomials that defined on the interval [a,b], and {7,},>¢ are unknown
constants.

The above expansion can be approximated to N + 1 to be:

N
G(s) = GN($) = > _ W Qn(s). )

n=0

Classically, the constants can be determined by multiplying both sides of Eq. (2) by Q,(s), wg(s), and integrating over
the interval [a, b] to get:

1 b
=R /a G(s) Qn(s) wo(s) ds, .

where || Q,(5)||? is the inner product that defined as:

b
[ Qn(9)]|? = / (Qn())? wo(s)ds, 4

such that wg(s) is the weight function of the orthogonal polynomials {Qn(s)}nzo, andn=0,1,---,N.

However, in the case of differential problems, the function Gy(s) is an unknown function. Hence, the integration (3)
can not be calculated, and the constants can not be determined.

The forthcoming section will present various methods to calculate the integral (3).

3 Weighted Residual methods

As mentioned above, the problem of the integration (3) is the unknown function Gy(s). The main purpose of the following
is to convert that integration (3) to a finite summation. However, the function is still unknown. This process will expand
the integration in terms of the unknown function at specific points G(sy) = Gn; n =0, 1,- -+, N. The points {sy, }8’ will be
defined and determined depending on the method used. We will introduce three approaches to converting the integral into
finite summation in the three subsections.
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3.1 Numerical Integration

In this subsection, any classical numerical method can be used. The authors in [16, 20] used the traditional trapezoidal
rule:

b N
/ F(s)ds=h fésn)’ 5)
a n=0 n
where h = %, and
1,n=1,2,...,N—-1,
en: (6)

3.2 Clenshaw—Curtis quadrature formula

To reduce the truncation error caused by round-off, the authors in [23] developed a weighted method to enhance the value
of the approximated integration as follows:

b N
| Foas~ Y wiren. )
a n=0
where,
5 Nodd,
Wo =Wy = (8
ﬁ, N even,
[N/2] .
2 2 2nim
W, = 1- cos , 1<n<N-1I, 9
"7 NG, ; O (42 1) N ©)

and 6, defined as in Eq. (6).

3.3 Gauss—Lobatto quadrature

The third type that will be presented is the Gauss—Lobatto quadrature. In this method, the integration will be expanded
exactly to a finite summation [18]. First, the extreme collocation points of the used orthogonal polynomials are discussed.
As defined in [18], the authors introduce the following polynomial:

On+1(8) + an On(s) + By Qn-1(5)

ZN-1(s) = G_a)b_3) (10)
where oy and Sy are the solution of the equations:
On+1(@) + ayQn(a) + By QOn-1(a) =0, (11
and
Qn+1(b) + an Qn(b) + By Qn-1(b) = 0. (12)
The Gauss—Lobatto quadrature points are the ends points a and b and the zeros of the polynomial Zy_q(s), i.e.,:
Zn_1(s) = 0. (13)
Also, Gauss—Lobatto quadrature points {sn}’a’ are the roots of the equation:
(s—a) (b-5) Q'N(5) = 0. (14)
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Finally, the integration can expanded as follows:

b N
/ FW()ds =Y Fls)Wai  VF € Poyoy, (15)
a n=0

where {s, }3’ are the Gauss—Lobatto quadrature points defined in (13), and

b
m JL(b=5) Zy_1(swgo(s)ds, n=0,

_ k1| Zv20)113;, . 16
Wi =9 Gty ke 2ty 206" I<jsN-1 (16)

b
m [(s—a) Zy_1(wols)ds, n=N,
such that ky, is the leading coefficient of Zy_;, and
W(s) = (s —a)(b— )wg(s). 17)

Unfortunately, the degree of the unknown function, G(s), is not guaranteed to satisfy the condition of the integration
(15). So, according to the definition of the discrete inner product:

N
||Qn|\12v,w = Z(Qn(sz'))2 W, 0<n<N. (18)
i=0

Moreover, since the degree of the orthogonal polynomials, Q,(s), is known, the discrete inner product can be
determined in terms of the inner product itself (4) with the aid Eq. (15). Hence, by returning to the expansion (2) and
summing it from the 0 to N after multiplying it by Gauss—Lobatto quadrature Whn to get:

1 N
———— 3 G(s) Qu(si) Wi. (19)

Tn =
19l S

After converting the integration into a finite summation, it is easy to setup the pseudo-spectral expansion. The
following section will discuss pseudo-spectral expansion, problem formulation, and the solution method.

4 Pseudo-spectral matrices

In this section, we will start with theoretically constructing the pseudo-spectral expansion, which enables us to create the
pseudo-spectral matrices. Consider the expansion (2) with the integration (3). Then, according to section 3, the integration
(3) will be converted into:

N
=Y Ani G(si) Qnlsi), (20)
i=0

where {4, ,}8’ are constants that are determined according to the methods described in Section 3.
Substitute from Eq. (20) into Eq. (2) to get the following:

N
G(s) =D T()G(s), @1
i=0
where
N
Ti(s) =Y Api Qu(5)Qn(s)- (22)
n=0
© 2025 NSP
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Differentiating (22) with respect to s to get:

d” I(s)
ds?

Z/lm Qs L Q”(S), 23)

where v may be integer or fractional order.
In the fractional order case, the interval [a, b] must be shifted to [0, 1].

Differentiating Eq. (21), collocating it chosen N + 1 points according to Section 3, and substituting from Eq. (23) to
obtain:

G (si) = Z 030G (s, 24)
where:
VF.
5,E”i)=d—’y(s) ., Lk=0,1,---,N. (25)
ds =Sk
The matrix form of Eq. (24) can be written as:
G"s) = DM Gs), (26)
where
G(s0) G¥)(s0) O oy’ - dg
G(sy) g(l/)(sl) 511) 51/) 51‘]’\]
go=| . |.6= . ,DW) = M. 27
Gsn) GW(sy) 5(1/) 5<u> . 5}(&
ands = (807 Sty s SN)T'

The matrix D) is called the pseudo-spectral differentiation matrix or the D-matrix.
A similar procedure can be achieved to get the pseudo-spectral integration matrix or the B-matrix. From Eq. (21):

Sk N
[ 90as=3sigo0. 28)
a i=0

where:

Sk
Bkl:/ E(S)dsv iyk:()’]»"'sN' (29)
a

While, the matrix form of Eq. (28) can be written as:

/ G(s)ds = BG(S), (30)
where
L0 G(s)ds 0 0 -0
fs' Q(S)ds 510 B -+ Bin
/ G(s)ds = ,B= |- (31)
LN Q(S) ds ﬂNO Bn1 -+ BN

The above integration can be of fractional order, but the interval must also be considered.
The problem formulation and the solution method will be discussed in the next section.
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5 Problem formulation and the solution Methodology

In this section, the application of the pseudo-spectral matrices will be introduced. It will be shown that the method is
reliable and easy to apply. As a sample, an IBVP of integer order will be introduced.
We consider the following IBVP of integer order v:

L (s, G(s), G'(s), G"(s),- -~ ,g<“><s)) =0, s¢ab], (32)

under the appropriate initial boundary conditions. The conditions can be Dirichlet, Neumann, or Robin boundary
conditions.
Without any loss of generality, consider the following initial boundary conditions:

G(a) = cayr G(B) = Coy»
G'(a)=ca;, G'(b)=cp,,

: : (33)
G™(a) = cq,, G™(b) = cp,,»
where c,,, Ch; € R, a;, bj € {0} UN.
Substitute form Eq. (26) into Eq. (32) and collocated it to get:
L (s, Gg(s), DVG(s), DPG(s), - - ,D<”>g<s>) =0. (34)
While, the initial boundary conditions will be:
0 0
Ko 857 Glsi) = cas 1o O} G(s) = iy
ZO 5(()1,-) G(s;) = cay, ﬁo 5,(\}3 G(s;) = cp,» (35)

N o0 Glsi) = cays SN0 0 G(si) = e, s

The system of algebraic equations (34) and (35) will be solved to get the values of the unknown function G at the
Gauss—Lobatto quadrature.

Similar steps can be performed to obtain the solution of the integral, intgro-differential equations of integer or
fractional order.

The next section will present several forms of the pseudo-spectral matrices introduced by different researchers.

6 Pseudo-spectral Matrices Examples

Many researchers investigated different forms of pseudo-spectral matrices. These forms developed via several orthogonal
polynomials and different techniques, as shown in Section 3. We collected some types of pseudo-spectral matrices and
classified them using orthogonal polynomials.

6.1 Chebyshev basis functions of the First Kind

Herein, in this subsection, the first kind of Chebyshev basis will be introduced in several forms to construct the pseudo-
spectral matrices.
The well-known Chebyshev polynomials of the first kind 7,,(s) of degree n (CH-Ps) satisfy the recurrence relation [24]:

Tn+1(s) = 25Tn($) = Tp1(s), (36)

where 7p(s) =1, Ti(s) =s,s € [-1,1],and n=1,2,3, - - -.
The CH-Ps are orthogonal polynomials under the relation:

1
/ Tal)Ton(s)——sds =
_1

m
T m, 37
Vi-s z m
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The CH-Ps Gauss—Lobatto quadrature points are:
™
sn=cosﬁ, n=0,1,---,N. (38)

On the other hand, another orthogonal polynomial generated from CH-Ps called the monic Chebyshev polynomial
(Monic-CH-P) is defined as [24]:

=)= {2n T ne N (39)

The Monic-CH-Ps satisfy the recurrence relation:
1
7MW =T - 7T 6. n=34.-, (40)

with the initials 7;"!(s) = s and 7" (s) = s> - L.

6.1.1 Chebyshev Pseudo-spectral B-matrix

In [17], the author used the principle of Clenshaw and Curtis [23] to approximate the function G(s) in terms of CH-Ps as
follows:

N
1
G(s)=2_ 7= Tals), (41)
n=0 "
where 0, as defined in (6),
Ezlea ) Tr(si) 42)
N e 9[ sl n Sl )

and s; are the CH-Ps Gauss—Lobatto quadrature points.
The elements of the Chebyshev pseudo-spectral B-matrix can be obtained by simplifying the coefficient of G(sp) for
the equation:

N+1
/ G(s)ds = Zc Tilsp), (43)
where ]
1 N (1y*
0-gN Tt 129((2)11)71, i=0,
i1 Z—’YHI 1_1’2,...,N_2’
Ci= VNQ%&(EE)’YN’ i=N-1, 44)
nt i=N
0% -
TN:%’ l=N+1,

such that v, denied as in Eq. (42). Later, this method and its associated matrix are called El-gendi method [25].

6.1.2 CH-Ps Higher order pseudo-spectral D-matrix

The authors in [19], based on Clenshaw and Curtis [23] and an explicit formula for higher derivatives of Chebyshev
polynomials, investigate the following higher-order D-matrix:

07 = NG, Z Z o ﬁ,f,)7}(s ) Tn(s1), (45)
(n+} lx)even
where v € N, 0, is defined in Eq. (6), and

p(,,) 2Yjcy (x—n+v-Dlx+v-1)!
o (v-1)! x!(x—n)!

= {

) (46)

such that 2x =j+n—-v, and

’ (47)

— O

n=0,
n=12,---

bl
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6.1.3 Monic-CH-Ps Higher order pseudo-spectral D-matrix

Another higher-order differentiation matrix was investigated in the [26] via Monic-CH-Ps (39). This matrix was
constructed using Gauss—Lobatto quadrature principals. They proved and determined Gauss—Lobatto quadrature items as
the following:

N+1(S) 4T 1(5)

Zn_ = , 48
N-1(8) = 2 (48)
and
i
=—, 49
W o N (49)
where 6, as defined in Eq. (6). The elements of that matrix can be considered as follows:
@) _ . 27 ) M
5y Z Z g Pl T 60 T s (50)
(n+j—y)even
where v € N,
2,j=0,
G=yyplzhao (51)
7/ =N,
and
22n—2x . _ _ 1) —_ 1)
W) _ jx=—-n+v-Dlx+rv-1)! (52)

nT (= 1) x! (x—n)!

suchthat 2x =j+n—-v.

6.1.4 Monic-CH-Ps pseudo-spectral B-matrix

The authors in [27] also use the monic-CH-Ps. However, they used them to generate the integration matrix. The B-matrix
was created by Clenshaw and Curtis method. The following represents the elements of v € N successive integrations
B-matrix:

B = gy OSkis<N, (53)
1 -~
M
Byj = Ne(sk+1)+N9sJ(sk+1)+ Hjnz_;cnznn (s})

(mmsk) Tl | ™

s k,.:O,],...,N.
2n+ 1) 2m-1) T n2—1> J

I,0<n<N,
cn-{%,nzN, , (54)

and 6, is defined as in Eq.(6).

6.1.5 Shifted fractional CH-Ps pseudo-spectral differentiation matrix

The authors in [28] investigated a novel differentiation matrix of non-integer order. Therefore, according to the domain
of the fractional derivatives operators, the shifted polynomials 7,(s); s € [0, 1], must be used instead of the normal ones
Ta(s), where:

TiH(s) = Ta2s - 1), (55)

such thatn € {0} UN.
Hence, necessary reformulations for the relations also have been shifted [24].

© 2025 NSP
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The elements of the shifted fractional CH-Ps pseudo-spectral differentiation matrix of fractional order v in the sense
of Clenshaw and Curtis method can be represented as:

(l/) 1 T*(s: * (v
e = N3, Za— )T @ (510, (56)

where 6, as defined in Eq. (6), s, = %(1 + cos ”—”), and:
noo (1)K (k- Dk
s
T = "Gy -0l Tk + 1-0)
0, n=0,1,---,[v] -1,

,n=[v][v]+1,---,N, 57)

such that [v] is the smallest integer that grater than v.
The forthcoming subsection is devoted to presenting the pseudo-spectral matrices that are constructed via Legendre
basis functions.

6.2 Legendre basis functions

In this subsection, several pseudo-spectral matrices for both integration and differentiation will be introduced via
different approaches. Those matrices are constructed via Legendre polynomials (L-Ps) as basis functions. Furthermore,
the derivatives of the Legendre polynomials will also be introduced as basis functions.

The L-Ps, £,;1(s) of degree n, that defined on the interval [-1, 1] and its derivatives can be determined via the
recurrence relation as follow [18]:

L1 (s) = s£n(5) —£n 1(5), (58)

and
1
£n+1(5) = ZnT ( n+1(S) En 1(5)) (59)

such that Lo(s) =1, Li(s) =sandn € N.
L-Ps and their derivatives are orthogonal polynomials according to the relations:

1 0, n¥m,
Ly($)Ly(s)ds = 60
[1 (em()ds { ST 1=, 0
/ LLSLL()(1 - s7)ds —{ ey M7 61)
1 el o =M.

Several relations and properties can be found in ( [18]).
In the next subsections, we will present some pseudo-spectral matrices for the integration and differentiation of integer
and non-integer orders.

6.2.1 L-Ps pseudo-spectral higher-order differentiation matrix

In [16], the authors used the trapezoidal rule for the integration and the explicit form for higher derivatives of the
polynomial to get the following differentiation matrix of integer order v:

N (G- V)/2]
I=v  r=0
where
o _ _(l—2r— v(-2r-v-1) )
v T TG D@I—2r— 1) (63)
and
40 @n!
= —. 64
N Y TITY ©4)
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6.2.2 Shfited fractional L-Ps pseudo-spectral differentiation matrix

Herein, a fractional matrix will be presented. Therefore, the basis functions must first be shifted to be compatible with the
domain of the fractional operators. Thus:

LE(s)=La(2s—1), ne{0}UN. (65)

Accordingly, the recurrence relations, orthogonal relations, and properties must be modified.

Using the shifted functions, the authors in [29] constructed the shifted fractional L-Ps pseudo-spectral differentiation
matrix in the sense of Gauss-Lobatto Quadrature. Consequently, they calculated the shifted Legendre Gauss-Lobatto
Quadrature as follows:

Ly () =Ly ()
s(s—1) ’

Zn-1(s) = (66)

and
W = L (©7)
NN + 1) [L3(sn)]

where s, =2t;, — 1 are the shifted Legendre Gauss-Lobatto Quadrature points, such that Legendre Gauss-Lobatto
Quadrature points, #,, are the solution of:

(1 - t2) L) = 0. (68)

Hence, the elements of the fractional D-matrix of order v will be:

5,(5) [ ﬁ( )]2 Ze L)L (s, (69)
where
. N n=0,1,2,...,N~1, .
ﬁ, n=N,
and

n 1n+l\ !
Z’_:]%k ,n:(y] (V‘|+1,"',N,
k=

0, n=0,1,---,[v]-1.

L) = 1)

6.2.3 Shfited fractional L-Ps pseudo-spectral integration matrix

The author here used the same shifted L-Ps and the same approach, which is shifted Legendre Gauss-Lobatto Quadrature.
However, the pseudo-matrix is an integration matrix of fractional order v [30]. The elements of the matrix are:

B = 7 ( VI Ze L) TY L3 (sp), 72)
where
W) e " D" (n + k)! .
= L”(S)‘k;] (n—k)!k!F(k+1+y)S+ : (73
© 2025 NSP
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6.2.4 pseudo-spectra matrices via first derivative Legendre polynomials (FDLPs)

Elbarbary first introduced the derivatives of the orthogonal polynomials as basis functions in the spectral expansion, and he
has since introduced the derivatives of the Chebyshev polynomials [31]. Hence, the authors in [32] assigned the derivative
of the L-Ps as new basis orthogonal polynomials. Thus, consider the derivative of £,,,;(s) to be:

Lo (s) = % (74)
Furthermore, they determined that the first derivative of Legendre Gauss-Lobatto quadrature as follow:
/ N+2)(N+3
2y 9= 2207 (1N_(1)f§ ALY )
and
: N(N+1)(N+2)5 (76)

W L)

W-17 . _
5n={ 7 »n=0,N, )
2, 0<n<N.

In addition, the authors investigated two pseudo-matrices. The first one is for integer differentiation of order v, whose
elements are:

N
57 = D Wi L () L3060, kj=0.1. N, (78)
n=0

On the other hand, the elements of the first derivative Legendre pseudo-spectral integration matrix (FDLPs B-Matrix)
are:

N
Brj = Z en W, Lyt )Ly (1) + D", kj=0,1,...,N, (79)
n=0
where o)
+
T n=012. . N-1,
n= (80)
1 n=N,

SN oLl SOPW;

and s, are the first derivative Legendre Gauss-Lobatto quadrature, which are the zeros of:

(1 —s2) £l (s) =0. 81)

6.3 Mixed Pseudospectral Chebyshev and Legendre differentiation matrices

As the best of our knowledge, all pseudo-spectral matrices via Gauss-Lobatto quadrature are built via orthogonal
polynomials and one kind of polynomial for each matrix. However, the authors [33] mixed two polynomials, CH-Ps and
L-Ps, to generate another one. They developed polynomials whose even terms are CH-Ps and whose odd terms are L-Ps,
ie.

) Ta(s), n=2m, _
an(x)_{ﬁn(s), n=2m+l. m=0,1, . (82)

These polynomials are called (CH-L)Ps.

© 2025 NSP
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Other conjugate polynomials, (L-CH)Ps, are created by assigning the even terms for L-Ps and the odd terms for
(CH-L)Ps to be:

) La(s), n=2m, a
Wn(x)—{,];l(s), n=mal, m=0,1, . (83)

While their recurrence relations are:

2_
B05) [2(2s2-1)+5g1 <—4n+3 ), An?=14n+9 )] 5,20

nn-1)" " n(ni-1)2n-5)
(84)

4n® —12n+6
- 1=y —————— | P , =4,5,...,N,
l = H(2n - 5)1 na(s)on
1
where g =GCD (n,2), o(s) = 1, D1 (s) = 5, Py(s) = 25* — 1 and P3(s) = 5(5s3 —3s), and
—4n+3 4n2 - 14n+9
Wa(s) = [2Q2s> = 1) + 6 24 7,
n(s) l (25" = 1) + 02 <n(n_])s n(n—l)(2n—5)> n-2(2)
) (85)
4dn“-12n+6
l-0pp————— | , =4,5,...,N,
[ 82 p(n— 1)(2n—5)‘| na(s)
1
where g =GCD (n, 2), Yy(s) = 1, ¥1(s) = s, ¥r(s) = 5(3s2 —1) and 5(s) = 4s> - 3s.
Unfortunately, the two polynomials are not orthogonal. However, they satisfy the following relations:
0. fn-ml=2i-1. w()= ——— orw() =1
> n-m|=2z2—-1, w(s)= orw(s)=1,
] V1-s2
1 , n=m=0, w(s)= 5
/ Dy ()P (s)w(s)ds = - 1 1 s (86)
-1 -, n=m=2, w(s)= s
2 5 VA S2
2n+],n-m=21—1, wis)=1,
0 | |=2i+1 (s) ] or w(s) =1
s n—m|=4=a , w(s)= w(s)=1,
1 5 V1-s2
/ Y, ()W (s)w(s)ds = ,n=m=2i, w()=1, (87)
-1 2n+1 |
T
=, n=m=2i+1, w(s)= .
2 V1-s2

wherei=1,2,---.
As usual, the pseudo-spectral matrices are N + 1 x N + 1. Nevertheless, in the case of the mixed polynomials, the
matrices will be 2N + 2 x 2N + 2. In addition, two sets of Gauss-Lobatto quadrature points are used, Chebyshev {xi}fi 0

and Legendre {yi}fi o Gauss-Lobatto quadrature points.
6.3.1 CH-L pseudo-spectral differentiation matrices

Here, we will introduce the pseudo-spectral differentiation that was constructed by (CH-L)Ps, @,(s). The derivative of the
function G(x) at the Chebyshev Gauss-Lobatto quadrature points {xi}fi o cab be expressed as:

G(y)
where DG(x) = (G'(x0), G'(x1), -+ » G'w)) ", GX) = (Glxo), Glx), -+ » G,

DG(x)- [Plcu] - [Q(X)} , (88)
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G(y) = (G00), GO, -+ GO,
Dlcy = [011612],

51109 611gy -~ Sllgy

51149 0115y -+ 811y
511 = . . .

E}

51150 611xy -+ 611n

N2
ol = ——— D, (x)) D, (xp),
oJ g 92n9jN n\’rj n

51200 61201 -+ 5120y

81210 01241 -+ 6121x
6]2: . . . ’
§12x0 612x1 -+ 612yN
and
val 5
012, = D1 ()P (),
J ; ot NN+ DLy 2!
such that:
g~ [2.n=0N, o - %, n=N,
"TALO<n<N, "7 52, 0<n<N.

(89)

(90)

oD

92)

93)

(94)

Another matrix can be achieved via (CH-L)Ps, @,(s). The derivative of the function G(y) will be determined at the

Legendre Gauss-Lobatto quadrature points {y,-}f.\; o according to the following matrix:

pow- o] - |g)].

where DG(y) = (G'(vo), G'G1). -+ . G'ow))
D1y = [613 614]

51300 5301 "'5130N

61319 0134y -+ 5131y
513: . . .

b}

513x50 013n1 -+ 13xn

N2
013y = Z dem(xj)@én()’k),
n=0

5140 6141 -+ Sldgy

01419 01411 --- 0141y
6]4: . . .

b}

514n0 614y -+ 14Ny

[N2] |

2
4= o1 (7)) P :
K Paut NN+ DLy 107201 0%)

n=1
such that 6, and r;, are s defined in (94).

95)

(96)

7)

(98)

99)

(100)

© 2025 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

276 N S e S. Mahmoud et al. : Review on the pseudo-spectral method ...

6.3.2 L-CH pseudo-spectral differentiation matrix

Similar steps will be introduced to construct the two pseudo-spectral differentiation matrices that are constructed by (L-
CH)Ps, W,(s). The first matrix to find the derivative of the function G(x) at the Chebyshev Gauss-Lobatto quadrature points
{x;}Y,, can be expressed as:

DG(x)= [D2cH] - [ggﬂ : (101)
where,
D2cy = [021 622], (102)
521 ~—L§Ji;w N, (xx) (103)
W L NN DGy

NI2

822 = (Z] — Uy ()T, (k) (104)
kj = 92n—19jN 2n-1\Xj)¥ 21\ Ak )-
n=1

While the derivative at Legendre Gauss-Lobatto quadrature points {yi}fi o 1s:

G(x)
DG(y)= [D2L] - [g(y)} ; (105)
where,
D2y = [023 624], (106)
[N/2] : )
623 = —_—— U, ()P, (1), 107
ki 2; o N+ IR 200 (107)
[N/2]

4= m%_l Y3, %) (108)

n=1 =17

7 Conclusion

This review discusses the differentiation and integration Matrices developed using the pseudo-spectral method. Choosen
trial basis functions have been selected, such as Chebyshev polynomials of the first kind and their shifted type, monic
Chebyshev polynomials, Legendre polynomials, shifted Legendre polynomials and first derivatives of Legendre
polynomials. Also, the mixed Chebyshev-Legendre and Legendre-Chebyshev polynomials have been presented.
Consequently, some matrices have been presented for differentiation and integration in the case of integer order.
Meanwhile, the shifted polynomials are used to create fractional-order matrices. The problem in the construction process
is how to transform an integration into finite summation. Two methodologies are presented for this transformation. The
first one depends on classical numerical integration. So, we delivered the trapezoidal rule and Clenshaw—Curtis
quadrature formula. The second methodology is Gauss—Lobatto quadrature. As future work, the survey will be extended
to cover other polynomials and methodologies rather than the Gauss—Lobatto quadrature, such as the Gauss-Radau
quadrature.
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