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Abstract: This study develops a comprehensive stochastic framework to examine the impact of Lévy perturbations on the dynamics of

the SIRS (Susceptible-Infectious-Recovered-Susceptible) model. Initially, we established the existence and uniqueness of the solution,

ensuring a solid foundation for our analysis. We identified the critical conditions for disease persistence, which are essential for

evaluating the applicability of the model in real-world scenarios. Additionally, we determined the criteria for disease extinction. To

support our theoretical findings, we conducted extensive computer simulations.
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1 Introduction

During the early 20th century, epidemiology underwent a
significant transformation, driven by the groundbreaking
contributions of eminent scientists such as Anderson Gray
McKendrick and Janet Leigh. Their pioneering work
introduced the concept of mathematical modeling, which
has since evolved into an indispensable tool in the field.
This mathematical modeling has profoundly impacted the
management of outbreaks and epidemics, playing a
pivotal role in guiding evidence-based public health
interventions. Epidemiology has evolved significantly,
owing to notable physicians such as Quinto Tiberio
Angelerio, who demonstrated remarkable proficiency in
managing the plague outbreak in Alghero, Sardinia, in
1582. However, the actual emergence of modern
epidemiology as a formal scientific discipline occurred
during the 19th century. Often referred to as the ”father of
modern epidemiology,” John Snow made a meaningful
breakthrough when he meticulously traced a devastating
cholera outbreak in London to water contamination from
the Broad Street pump. This groundbreaking investigation
is the pivotal moment that laid the cornerstone for
contemporary epidemiology, shaping it into the scientific
field we recognize today. Epidemiology is a scientific
discipline investigating epidemics, diseases, and various
health-related conditions, including those unrelated to
diseases. Its roots can be traced to ancient Greece, notably

through the influential work of Hippocrates of Kos, a
renowned physician who made notable contributions by
distinguishing between epidemic and endemic diseases.
Epidemiology, in its broader scope, also encompasses the
study of diseases affecting plants, domestic animals, and
livestock. An epidemic is characterized by a significant
and abnormal surge in the occurrence of a specific disease
within a population, typically manifesting rapidly. Many
factors influence the intricate disease transmission
process [1–5], encompassing the infectious agent’s
characteristics and the host population’s complex
dynamics. Regarding the infectious agent, its inherent
characteristics, such as its mode of transmission (e.g.,
respiratory droplets, direct contact), the duration of
infectivity, and its responsiveness to medical interventions
like treatments and vaccines, are crucial factors that
determine its ability to spread among individuals. Equally
important are the host population elements that influence
the dynamics of an epidemic. Factors such as social
interactions, demographics (e.g., age, gender), cultural
practices, geographic distribution, and economic
conditions are pivotal in determining a population’s
susceptibility and resilience in the face of the disease.
Across the pages of recorded history, human civilization
has wrestled with recurrent epidemics and pandemics.
These outbreaks of infectious diseases have inflicted
significant human suffering, societal upheaval, and
economic turbulence. Given the formidable nature of
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these challenges, the precise prediction of outbreak
progression becomes paramount to effectively mitigating
their adverse impacts. Epidemiologic modeling is at the
heart of this pursuit, a fundamental tool for
comprehending the intricacies of disease transmission
dynamics and formulating informed strategies for
containment and prevention. Infectious diseases continue
to exert substantial effects on communities worldwide,
notwithstanding the era of modern medicine and
advancements in medical science. These impacts extend
to various facets, including public health, healthcare
infrastructure, the economy, education, population
dynamics, and international cooperation. The
investigation of epidemic models holds considerable
importance across multiple domains due to its numerous
advantages. These benefits encompass enhanced
comprehension and forecasting of epidemics,
optimization of public health resource allocation, more
effective planning of emergency responses, advancement
of public health research, heightened public awareness,
and the development of training programs in public
health. This, in turn, facilitates informed public health
decision-making, enhances epidemic readiness, and
ultimately contributes to saving lives. This curious
problem has attracted mathematicians since the 18th
century. Kermack and McKendrick established the
classical deterministic SIR model in 1927 [6], serving as
a fundamental framework for analyzing epidemic
dynamics within a closed population, categorizing
individuals into three compartments: The SIR model,
delineating individuals into susceptible S, infected I, and
recovered R compartments, does not account for
individuals who lose immunity post-recovery. To address
this deficiency, an extended version known as the SIRS
model has been introduced [7–12]. In the SIRS model,
individuals who have previously recovered from an
infection are susceptible to becoming infected again.
Mathematically, this phenomenon is expressed as follows:



dSt

dt
= [ρ(1− St)+ηRt −αStIt ] ,

dIt

dt
= [αStIt − (ρ +λ )It ] ,

dRt

dt
= [λ It − (ρ +η)Rt ] .

(1.1)

In this context, the parameter ρ represents the rate of
births and deaths in the population, α signifies the
infection coefficient, λ represents the recovery rate of
infected individuals, and η characterizes the rate at which
recovered individuals lose their immunity, transitioning
back to a susceptible state. Later, many studies used the
stochastic approach to treat these models [13, 14]. Adding
Lévy perturbations to the SIRS model can enrich
epidemiological modeling by better capturing the
complexity of real epidemic phenomena, including
stochastic variations and rare events that significantly
impact disease dynamics. This can provide valuable

information for public health decision-making and
epidemic management. The reader can refer to [15–19].
In this study, we examine a system modeled as a
stochastic SIRS
(Susceptible-Infectious-Recovered-Susceptible) model
incorporating a jump perturbation:




dSt = [ρ(1− St)+ηRt −αStIt ]dt

−
∫

D

ςυ S(t−)I(t−)Ñ (dt,dυ),

dIt = [αStIt − (ρ +λ )It ]dt

+

∫

D

ςυ S(t−)I(t−)Ñ (dt,dυ),

dRt = [λ It − (ρ +η)Rt ]dt,

(1.2)

where, dt is Lebesgue measure, and Ñ (dt,dυ) is the
compensated Poisson measure, such that

Ñ (dt,dυ) = N (dt,dυ)−π(dυ)dt.

In this context, N (dt,dυ) denotes a Poisson counting
measure, while π represents a Lévy measure defined on
D ⊂ R

+. Additionally, the continuously differentiable
function ς(·) characterizes the impact of random jumps
within the population. It is essential to ensure that
−1 < ςυ < 1 for every υ ∈ D. Additionally, S(s−) and
I(s−) represent the left-hand limits of the functions Ss and
Is, respectively. Henceforth, we will refer to these limits
as Ss and Is for practicality. This work stems from the
need to enhance traditional epidemiological models by
incorporating Lévy perturbations, which account for
sudden, random changes in disease dynamics. The
research aims to understand better disease persistence and
extinction by developing a more realistic stochastic SIRS
model, leading to improved strategies for managing
infectious diseases in unpredictable environments. The
manuscript is organized systematically, beginning with
Section 2, which discusses the positivity and existence of
solutions for the system described in equation (1.2). In
Section 3, we derive the necessary conditions for disease
persistence. Section 4 delves into a detailed analysis of
disease Extinction. Next, Section 5 presents a series of
computer simulations to confirm the accuracy of the
analytical results. Section 6 thoroughly analyzes the
results and outlines potential directions. Finally, the paper
concludes in Section 7 with a thorough discussion of our
findings and possible avenues for future research.

2 Positivity and Existence

This section will explore the global existence and
positivity within the SDE system (1.2).

Definition 1(Meyer Angle Bracket). Let (Mt)t≥0 be a

continuous local martingale. The Meyer’s Angle-Bracket,

or the predictable quadratic variation of M, denoted by
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〈M〉t , is a unique increasing predictable process such that

M2
t −〈M〉t is a local martingale.

Lemma 1.Let Mt be a local martingale that starts from

zero at time 0. For t ≥ 0, we define

ϕMt :=
∫ t

0
(1+ s)−2d〈M〉s.

Here, 〈M〉t represents the Meyer angle bracket process.

Then we have,

P

(
lim
t→∞

Mt

t
= 0

)
= 1,

if we establish

P

(
lim
t→∞

ϕMt < ∞
)
= 1.

Proof.See for example [20].

First, we aim to ensure both the existence and uniqueness
of the solution to our model within the set ∆ , defined as
follows:

∆ =
{
(x1,x2,x3) ∈ (0,1)3; x1 + x2 + x3 = 1

}
,

and (α,η ,λ ,ρ) ∈ (0,1)4. Thus, we rely on the following
theorem:

Theorem 1.Let υ ∈ D, (S, I) ∈ (0,1)2, and we define

Ψ(υ ,S, I) = [1− ςυ I] [1+ ςυS] ,

if

sup
0<S,I<1

∫

D

ln
[
Ψ−1(υ ,S, I)

]
π(dυ)< ∞. (2.1)

So for each initial value (S0, I0,R0) ∈ ∆ , we have unique

solution (St , It ,Rt) ∈ ∆ for equation (1.2).

Proof.Define N = S+ I +R the total population, and we
identify the values taken (the numbers) by S, I, R and N

with their frequencies, and by the equation (1.2),

dNt = dSt + dIt + dRt =−ρ(Nt − 1)dt.

By integration for any s ∈ [0, t], we obtain

Ns − 1 = [N0 − 1]exp(−ρs) a.s.,

from which for all s ∈ [0, t],

(Ss, Is,Rs) ∈ (0,1)3 and Ns = 1 a.s.. (2.2)

On the other hand, since the coefficients of the equations
are locally Lipschitz continuous (see, e.g., [10, 21–25] for
more information), it follows that there exists a unique
local maximum solution (St , It ,Rt) for t ∈ [0,τe), where τe

denotes the timing of the explosion. Let ε,ε0 > 0, for
ε ≤ ε0, we define the stopping time:

τε = inf{t ∈ [0,τe), (St ∧ It ∧Rt)≤ ε}. (2.3)

Define for all (S, I,R) ∈ ∆ ,

Σs = Σs(Ss, Is,Rs) =− ln(SsIsRs) .

By the Itô formula for every t ≥ 0 and s ∈ [0, t ∧ τε ], we
obtain

dΣs =

[
3ρ +λ +η −

ρ

Ss

+αIs −
ηRs

Ss

−αSs−
λ Is

Rs

]
ds

−

∫

D

{
ln [(1+ ςυSs) (1− ςυIs)]

+(Is − Ss)ςυ

}
π(dυ)ds

−

∫

D

ln
[
(1+ ςυSs) (1− ςυIs)

]
Ñ (ds,dυ).

Using equations (2.1) and (2.2), one obtains

dΣs≤

[
3ρ +λ +η +α +π(D) (2.4)

+ sup
0<S,I<1

∫

D

ln
[
Ψ−1(υ ,S, I)

]
π(dυ)

]
ds

−
∫

D

ln
[
(1+ ςυSs)(1− ςυ Is)

]
Ñ (ds,dυ).

If we integrate (2.4) and the mathematical expectation
property, this yields for each t ≥ 0,

E [Σt (St∧τε , It∧τε ,Rt∧τε )] ≤ Σt (S0, I0,R0)+κt,

≤ κt − 3ln(ε0) , (2.5)

where

κ=3ρ +λ +η +α +π(D)

+ sup
0<S,I<1

∫

D

ln
[
Ψ−1(υ ,S, I)

]
π(dυ).

Suppose τe < ∞, so there is t > 0, where P({τe < t})> 0,
implying P({τε < t})> 0. For ω ∈ {τe < t} and equation
(2.3), one obtains

− ln(ε) ≤ Σt

[
St∧τε (ω), It∧τε (ω)Rt∧τε (ω)

]
.

Hence

− ln(ε)P({τε ≤ t}) ≤ E
[
Σt (Sτε , Iτε ,Rτε ) I{τε≤t}

]
,

≤ E [Σt (St∧τε , It∧τε ,Rt∧τε )] . (2.6)

By using τε ≤ τe, (2.5) and (2.6), we get

P({τe ≤ t}) ≤ P({τε ≤ t}) ,

≤
3

ln(ε)
[ln(ε0)−κt] .

Letting ε → 0, obtaining the contradiction P({τe ≤ t}) =
0, we conclude that τe = ∞.

In the following section, we will examine the concept of
disease persistence, focusing on determining the critical
threshold conditions required for effective disease control
and long-term management. This analysis will provide
vital insights into the factors influencing the sustained
presence of the disease within a population.
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3 Persistence

It is essential in epidemiological studies of the disease to
focus on cases where it persists and does not disappear
spontaneously, as these cases can provide valuable
information on its long-term impact and management. In
what follows, we will demonstrate the persistence of the
disease [26–28]. Let us define




H(S) =−(ρ +λ )+αS−

[
1

4

∫

D

ς2
υ π(dυ)

]
S2,

T 1 = α

[
ρ +λ +

1

4

∫

D

ς2
υ π(dυ)

]−1

,

Π(S) =−(ρ +λ )+αS−

[
1

2

∫

D

ς2
υ π(dυ)

]
S2,

T 2 = α

[
ρ +λ +

1

2

∫

D

ς2
υ π(dυ)

]−1

.

(3.1)

Theorem 2.Let (2.1) and

sup
0<y<1

∫

D

ln2 [1+ ςυy]π(dυ)< ∞, (3.2)

hold. For (S0, I0,R0)∈ ∆ , if T 1 > 1, T 2 > 1 and |ςυ |< 1
for each υ ∈ D, then

(i)limsup
t→∞

St ≥ ρ , a.s.,

(ii)liminf
t→∞

It ≤ (ρ +η)(ρ +η +λ )−1(1−ρ) , a.s.,

(iii)liminf
t→∞

Rt ≤ λ (ρ +η +λ )−1(1−ρ), a.s.,

(iv)liminf
t→∞

St ≤ ρ ′, a.s.,

(v)limsup
t→∞

It ≥ (ρ +η)(ρ +η +λ )−1(1−ρ ′), a.s.,

(vi)limsup
t→∞

Rt ≥ λ (ρ +η +λ )−1(1−ρ ′), a.s.,

where, ρ and ρ ′ denote the positive roots on the interval

(0,1) of equations H(S) = 0 and Π(S) = 0, respectively.

Remark.Since −1 < ςv < 1 for all v ∈D, as a result, for all
S ∈ (0,1), Π(S)< H(S), therefore, ρ < ρ ′.

Proof.(i)From (1.2), and using Itô formula, one obtains

ln(It)=ln(I0)−

∫ t

0
[(ρ +λ )−αSs]ds

+

∫

D

∫ t

0

[
ln(1+ ςυSs)− ςυSs

]
π(dυ)

+
∫

D

∫ t

0
ln
[
1+ ςυSs

]
Ñ (ds,dυ). (3.3)

Applying the following inequality:

ln(1+ x)− x < −
x2

4
, −1 < x ≤ 1. (3.4)

Hence

ln(It) ≤ ln(I0)+

∫ t

0
H(Ss)ds

+

∫

D

∫ t

0
ln [1+ ςυSs]Ñ (ds,dυ). (3.5)

As H(0) = −(ρ + λ ) < 0, when T 1 > 1 it follows
that H(1) > 0. Consequently, the equation H(S) = 0
possesses a unique root ρ ∈ (0,1), because if T 1 > 1,
we will have H ′(S0) = 0 for a S0 > 1. Therefore, H

exhibits a monotonic increase on the interval (0,1) in
particular (0,ρ). For any sufficiently small ε > 0, when
0 < S ≤ ρ − ε , we get

H(S)≤ H(ρ − ε) < 0. (3.6)

Now, we begin the proof of assertion (i). Assume the
contrary, implying that there exists a sufficiently small
strictly positive ε , where

P

[
limsup

t→∞
St ≤ ρ − 2ε

]
> 0.

Consider

Ω1 =

{
limsup

t→∞
St ≤ ρ − 2ε

}
.

For every ω ∈ Ω1, there exists τ(ω)> 0, such that

St ≤ ρ − ε < 1, for each t ≥ τ(ω). (3.7)

By (3.6) and (3.7), we get for each s ≥ τ(ω),

H(Ss)≤ H(ρ − ε)< 0. (3.8)

By equation (3.2) and Lemma (1), we can easily prove
the existence of a set Ω2 ⊂ Ω , with P(Ω2) = 1, where
for each ω ∈ Ω2, one has

lim
t→∞

∫

D

∫ t

0

ln [1+ ςυSs]

t
Ñ (ds,dυ) = 0. (3.9)

Now, fix any ω ∈ Ω1 ∩Ω2. Hence, by (3.5) and (3.8),
for t ≥ τ(ω), we obtain

ln(It)− ln(I0)

≤

∫ τ(ω)

0
H(Ss)ds+

∫ t

τ(ω)
H(ρ − ε)ds

+

∫

D

∫ t

0
ln [1+ ςυSs]Ñ (ds,dυ). (3.10)

Based on (3.9) and (3.10), we deduce

limsup
t→∞

ln(It)

t
≤ H(ρ − ε),

< 0. (3.11)

Whence,

lim
t→∞

It = 0. (3.12)

By integrating the last equation of (1.2), one obtains

Rt = R0 exp{−(ρ +η)t}

+λ

∫ t

0
I(t−s) exp{−(ρ +η)s}ds. (3.13)
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Using (3.13) and the Fatou lemma, we deduce

limsup
t→∞

Rt ≤ λ (ρ +η)−1 limsup
t→∞

It . (3.14)

Furthermore, in conjunction with (3.12), this implies
lim
t→∞

Rt = 0 and thus lim
t→∞

St = 1. However, this

contradicts (3.7).
(iv)In the same way, based on Itô formula as in (3.3) and

applying

−
x2

2
≤ ln(1+ x)− x, for each x ≥ 0.

Thus

ln(It) ≥ ln(I0)+

∫ t

0
Π(Ss)ds (3.15)

+

∫

D

∫ t

0
ln [1+ ςυSs]Ñ (ds,dυ).

Suppose (iv) is contradicted, implying the existence of
a sufficiently small ε ′ > 0 with P(Ω3)> 0, where

Ω3 =
{

liminf
t→∞

St ≥ ρ ′+ 2ε ′
}
.

So, for each ω ∈ Ω3, there exist τ ′(ω)> 0 such that

St ≥ ρ ′+ ε ′, for each t ≥ τ ′(ω). (3.16)

Similar (3.8), it is straightforward to confirm, by
selecting ε ′ > 0 adequately small, that

Π(Ss)≥ Π(ρ ′+ ε ′)> 0, for s ≥ τ ′(ω). (3.17)

Using (3.9), (3.15), (3.17), and following a similar
reasoning as in (3.10), we obtain

limsup
t→∞

ln(It)

t
≥ H(ρ ′+ ε ′)> 0.

Thus,

lim
t→∞

It = ∞.

This contradicts the condition I < 1.
(ii)By (i) and (2.2), one has

liminf
t→∞

It + liminf
t→∞

Rt ≤ 1−ρ , a.s.. (3.18)

Using (3.13) and Fatou lemma, yields

liminf
t→∞

It ≤ λ−1(ρ +η) liminf
t→∞

Rt . (3.19)

By combining equations (3.18) and (3.19), we
establish the necessary assertion (ii).

(v)Similar to (ii), the conclusion follows from equations
(3.14), (iv), and (2.2).

(iii)-(vi)These outcomes stem directly from equations
(2.2), (i), (iv), (ii), and (v).

In the next section, we will analyze the extinction of the
stochastic differential equation (SDE) (1.2) to determine
the critical threshold necessary for achieving disease
control or complete eradication.

4 Extinction

This section will examine the extinction phenomenon in
the SDE system (1.2).

Theorem 3.Let (S0, I0,R0) ∈ ∆ and (2.1) holds. Assume

that

sup
0<y<1

∫

D

ln2 [1+ ςυy]π(dυ)< ∞. (4.1)

We define the new threshold

T
3 = α

[
ρ +

1

4

∫

D

ς2
υ π(dυ)

]−1

, (4.2)

and

T
4 =

1

2

∫

D

ς2
υ π(dυ). (4.3)

If T 3 < 1 and α ≥ T 4, then the system governed by (1.2)
exhibits extinction with an exponential decay rate.

Proof.Let

Σt(Zt) = ln(Zt) ,

where, Zt = It +Rt . Using the Itô formula, one obtains

dΣt =
1

Zt

[−ρIt − (ρ +η)Rt +αStIt ]dt

+
∫

D

[
ln

(
1+ ςυ

StIt

Zt

)
− ςυ

StIt

Zt

]
π(dυ)dt

+

∫

D

ln

(
1+ ςυ

StIt

Zt

)
Ñ (dt,dυ). (4.4)

Using (3.4) and the following inequalities:

−1 < ςυ < 1,
SI

Z
≤ 1, (4.5)

and

1

Z
[−ρI− (ρ +η)R] ≤ −ρ .

Thus

dΣt ≤

[
−ρ +α

St It

Zt

−
1

4

∫

D

ς2
υ π(dυ)

(
St It

Zt

)2
]

dt

+

∫

D

ln

(
1+ ςυ

St It

Zt

)
Ñ (dt,dυ), (4.6)

≤ sup
0<δ≤1

Φ(δ )dt +
∫

D

ln

(
1+ ςυ

StIt

Zt

)
Ñ (dt,dυ),

where

Φ(δ ) = −ρ +αδ −
1

4

∫

D

ς2
υ π(dυ)δ 2

.

If α ≥
1

2

∫

D

ς2
υ π(dυ), then Φ is increasing on (0,1). By

integration, we get

Σt ≤ Σ0 +

∫ t

0

(
−ρ +α −

1

4

∫

D

ς2
υ π(dυ)

)
ds

+Mt , (4.7)
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where, Mt is a real-valued local martingale such that

Mt =

∫

D

∫ t

0
ln

(
1+ ςυ

SsIs

Zs

)
Ñ (ds,dυ).

Or

〈M〉t =

∫

D

∫ t

0
ln2

(
1+ ςυ

SsIs

Zs

)
π(dυ)ds,

≤

[
sup

0<y<1

∫

D

ln2(1+ ςυy)π(dυ)

]
t < ∞.

From (4.1) and (1), we get

limsup
t→∞

Mt

t
= 0 a.s.. (4.8)

The assertion is validated with (4.7) and (4.8).

Next, we will examine the SDE (1.2) computer simulations
to validate and reinforce our theoretical findings.

5 Computer Simulations

In this section, we propose a few examples of numerical
computer simulations to illustrate the theoretical results
of Theorem 2 for persistence and Theorem 3, which prove
the extinction of the disease by using the Maruyama Euler
method (see, e.g., [29] for further information and the
references cited therein).

5.1 Graphical representations in case of

persistence theorem 2

The graphical representation plots the proportions of
susceptible, infected, and recovered individuals over time.
Each case specified in the cases list corresponds to a set
of parameter values defining the transmission rate ρ ,
infection rate α , recovery rate λ , reintroduction rate η ,
and volatility parameter ς . For each case, the model is
simulated, and the results are plotted on separate graphs,
with the time on the x-axis and the proportion of
individuals on the y-axis. The plots provide insights into
how different parameter combinations affect the disease
dynamics, allowing for comparative analysis.

5.2 Analysis, comparison and interpretation in

case of persistence theorem 2

The variations in the dynamics of susceptible, infected,
and recovered populations are analyzed concerning the
values of T 1 and T 2, particularly when T 1

> 1 and
T 2 > 1, see figures 1 and 4, as well as in the case of the
negation of these conditions, see figures 2 and 3. The
parameters T 1 and T 2 are derived from the model’s
equations and represent critical thresholds related to
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fig. 1. Trajectories of S(t), I(t), and R(t) for system 1.2
with respect to Theorem 2.
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fig. 2. Trajectories of S(t), I(t), and R(t) for system 1.2
with respect to Theorem 2.

transmission, infection, and recovery rates. By comparing
the simulations under different parameter conditions,
insights are gained into how parameter changes impact
the disease spread, including the emergence of endemic
or epidemic behaviors.

5.3 Graphical representations in case of

theorem extinction 3

The graphical representation plots the proportions of
susceptible, infectious, and recovered individuals over
time for each simulated case. Each case corresponds to a
different set of parameter values defining transmission
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fig. 3. Trajectories of S(t), I(t), and R(t) for system 1.2
with respect to Theorem 2.
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fig. 4. Trajectories of S(t), I(t), and R(t) for system 1.2
with respect to Theorem 2.

rates ρ , infection α , recovery λ , reintroduction into the
susceptible population η , and volatility ς . The plots
provide visual insights into how changes in these
parameters affect the dynamics of the disease spread,
allowing for comparative analysis across different
scenarios.

5.4 Analysis, comparison, and interpretation in

case of theorem extinction 3

The variations in the susceptible, infectious, and
recovered populations are analyzed concerning the values
of T 3 and T 4, particularly when T 3 < 1 and T 4 ≤ α ,
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fig. 5. Trajectories of S(t), I(t), and R(t) for system 1.2
with respect to Theorem 3.
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fig. 6. Trajectories of S(t), I(t), and R(t) for system 1.2
with respect to Theorem 3.

see figures 6, as well as in the case of the negation of
these conditions, see figures 5, 7, and 8. The parameters
T 3 and T 4 are derived from the model’s equations and
represent critical thresholds related to the rates of
transmission and infection. By comparing the simulations
under different parameter conditions, insights are gained
into how changes in these parameters impact the disease
dynamics, including the emergence of endemic or
epidemic behaviors.

6 Perspective

In recent years, the study of stochastic dynamics in
epidemiology has gained significant traction, particularly

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


678 K. El Bakkioui et al.: Exploring the Impact of Jump Perturbations...

1000.0 1002.5 1005.0 1007.5 1010.0 1012.5 1015.0 1017.5 1020.0
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n:
 S

, I
 a

nd
 R

ρ= 0.021000000 α= 0.018000000 λ= 0.430000000
η= 0.050000000 ςυ = 0.999999999

3 = 0.066420664 4 = 0.499999999

Stochastic Simulation of SIRS Model: Extintion case
 Initial Values: (S=0.5, I=0.4, R=0.1)

Susceptible
Infected
Recovered

fig. 7. Trajectories of S(t), I(t), and R(t) for system 1.2
with respect to Theorem 3.
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fig. 8. Trajectories of S(t), I(t), and R(t) for system 1.2
with respect to Theorem 3.

in understanding the complexities of infectious disease
transmission [38–62]. One such model, the stochastic
model (SIRS), provides a valuable framework for
investigating the dynamics of infectious diseases in
populations where individuals move between susceptible,
infectious, and recovered states. However, traditional
SIRS models often assume continuous transitions
between these states, overlooking the potential impact of
sudden, large-scale perturbations or ”jumps.” Exploring
the effects of jump perturbations on stochastic SIRS
dynamics presents a novel avenue for understanding the
behavior of infectious diseases in real-world scenarios.
Unlike gradual transitions, jump perturbations can arise
from various factors, such as sudden changes in

environmental conditions, mass gatherings, or
interventions like vaccination campaigns or policy
changes. These perturbations can significantly alter
disease transmission dynamics, leading to non-intuitive
outcomes and challenging traditional modeling
assumptions. From a scientific perspective, investigating
jump perturbations in stochastic SIRS dynamics offers
insights into the resilience and vulnerability of
populations to abrupt changes in disease dynamics.
Researchers can capture the inherent uncertainty and
variability observed in real-world epidemiological data by
incorporating stochasticity and jump processes into SIRS
models. This allows for more accurate predictions of
disease spread, improved assessment of intervention
strategies, and a better understanding of the underlying
mechanisms driving disease emergence and persistence.
Professionally, this research has far-reaching implications
for public health policy, infectious disease surveillance,
and epidemic preparedness. Understanding how jump
perturbations influence stochastic SIRS dynamics can
inform the development of more effective disease control
measures and response strategies. By identifying critical
thresholds, tipping points, and high-risk scenarios,
policymakers and public health officials can proactively
mitigate the impact of sudden perturbations and minimize
the risk of epidemic outbreaks or resurgence. In
conclusion, exploring the impact of jump perturbations on
stochastic SIRS dynamics represents a valuable
interdisciplinary endeavor at the intersection of
epidemiology, mathematics, and complex systems
science [30–37]. Through rigorous scientific inquiry and
collaboration, researchers can advance our understanding
of infectious disease dynamics, enhance predictive
capabilities, and ultimately contribute to more resilient
and adaptive public health systems.

7 Conclusion

In conclusion, the stochastic SIRS model with jump
perturbation provides a valuable framework for exploring
and understanding the dynamics of infectious diseases
with abrupt changes in transmission rates. This model
offers insights into the potential impact of sporadic events
or interventions on disease spread within a population. Its
mathematical rigor and stochastic nature make it a
valuable tool for researchers and policymakers in
assessing and devising disease control and prevention
strategies in dynamic and uncertain environments. Further
research and refinement of this model may continue to
contribute to our understanding of epidemiological
processes and the development of effective public health
measures.
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noise perturbation, Physica A, 523 677–690, (2019).

[20] R. Lipster, A strong law of large numbers for local

martingales, Stochastics, 3, 217-228, (1980).

[21] D. Zhou, X. Shi, X. Zhou, Dynamic Analysis of a Stochastic

Delayed SEIRS Epidemic Model with Lévy Jumps and the
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