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Abstract: This paper aims to examine the limitations of an N-bipolar soft mapping and analyze how the N-bipolar soft separation
axioms are affected by N-bipolar soft continuous, N-bipolar open, and N-bipolar closed mappings. Ultimately, we propose a
mathematical system that utilizes N-bipolar soft mappings to diagnose symptoms of OMICRON disease.
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Nomenclature
Abbreviations
NBS-set N-bipolar soft set
NBS-sets N-bipolar soft sets
NBS-subsets N-bipolar soft subsets
NBS-mapping N-bipolar soft mapping
NBS-bijection N-bipolar soft bijection
NBS-continuous mappings N-bipolar soft continuous
NBS-open N-bipolar soft open
NBS-closed N-bipolar soft closed
NBS-separation axioms N-bipolar soft separation axioms
NBS-homeomorphisms N-bipolar soft homeomorphisms
NBSTSg N-bipolar soft topological spaces
NBSTS N-bipolar soft topological space
NBS-relative topology N-bipolar soft relative topology
NBS-sub-topology N-bipolar soft sub-topology
NBS-interior N-bipolar soft interior
NBS-image N-bipolar soft image
NBS-inverse image N-bipolar soft inverse image

NBSTj -space N-bipolar soft Tj -space, i=0,1,2,3,4

1 Introduction

N-bipolar soft sets (NBS-sets) provide an enhanced
framework for bipolar soft set theory, empowering
decision-makers to articulate their uncertainties,
inconsistencies, and imprecisions throughout the
decision-making process. In NBS-set theory, elements in

the soft set are assigned to several categories or decision
classes based on their positive, negative, or neutral
characteristics. This enables the decision-makers to
model more complex decision-making situations and take
into account the different perspectives and preferences of
the stakeholders involved in the decision-making process.
NBS-sets find extensive application in diverse domains
including but not limited to medical diagnosis,
engineering, business administration, and other areas.
Fatia Fatimah et al. [1] were the first to propose the
concept of the N-soft set while Heba Mustafa [2] is
credited for originating the ideas behind the NBS-set. An
idea of the N-soft mappings and some of their properties
with examples and counterexamples are investigated in
[3]. They also described a mathematical system design for
diagnosing the purpose of the COVID-19 disease. But our
work aims to study new properties of NBS-continuous
mappings and we unveiled an innovative OMICRON
diagnostic  approach  within the framework of
NBS-mappings. The paper is organized as follows: In
Section 1, we review the history of the point, its
importance, and related paper. In Section 2, we mention a
few key antecedent concepts that are important in this
study. Section 3 presents the idea of N-bipolar soft
continuous mappings notions and describes them in
relation to significant theorems and specific features. In
Section 4, we analyze the impact of certain
NBS-separation axioms when applied to NBS-continuous,
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NBS-open and NBS-closed mappings. In Section 5, this
part of medical diagnosis, we showcase the practical
implementation of NBS-mappings. Finally, we conclude
our results in Section 6.

2 Preliminaries

The NBS-sets, and N-bipolar soft topological space
(NBSTgs) concepts will be delved into more depth in this
section. Throughout this work, 2° is the power set of an
initial universe . Additionally, S (which is not equal to
¢) stands for the collection of parameters that are being
considered, and ¢ # Y, D are subsets of S. We repeat the
following definitions, but in more detail, we refer to [4],
[5], [6], [11, [7] and [2] respectively.

Definition 2.1. [2] It can be stated that (£, Q2,1 ,N) is an
N-bipolar soft set (NBS-set) if certain conditions are
satisfied. These conditions involve two functions, £ :
Y — 20Xk and Q : =T — 20%R, Additionally, for each
a €Y and u € U, there must exist unique pairs (U, t
a), (L, t¢) € U x R such that (u, t,) € g(a);(u, t
—a) € Q(—a), tg #tg and 0 <t,+t ¢ <N —1,1,4
—a € R. Tt will be represented as

(p,.Q,T,N) = {(§,<@(§),Q(_'§),N) is€EY, s € _‘T}

The set of all NBS-sets on U (briefly BSY (U5,1)).
Definition 2.2. [2] A group of NBS-subsets of an NBS-set
(92,9,8,N) is called N-bipolar soft topology (NBST) on
(,2,8,N) (briefly ). It is characterized by the
fulfillment of the conditions:

(i) ¢, 0¥ € 7l

i) If (p,Q,SN) € ,j € I,
(9),9;,8,N) € 1.

then

U
Jel
(i) If (pj,Qj,S,N) € ‘L'év,l < j < nmn €N, then

N (jaj,Qj,S,N)ETQJ.

1<j<n

The NBSTs is denoted by ((2,2,S,N),1). Each
element in ‘L'év is referred to as an NBS-open set. In
addition, the NBS-closed set is the complement of
NBS-open set.
Definition 2.3. [2] Let ((#2,2,S,N),t}') be an NBSTs
and (2,2)1 = (#1,921,5,N)C(2,2,S,N). Then the
collection
), = 1@:2)in(21,21,8,N) : (2,2) € 7} is
called NBS-relative topology or an NBS-sub-topology on
(#1,€1,S,N). The pair ((pl’QI’S’N)’%IZo,Q)l) is called

(

an NBS-sub-space of ((#2,2,5,N),1}).
Proposition 2.4. [2] For the two NBS-sets (1,2,1,N)
and (»,€2,,Y,N) on U, we get

(1) ((Wla'leTaN) Ug (WZ)Q%T’N))C =
(((@I,Ql,T,N))Cﬂg( ((WZ?QZaTvN))C?

(2) ((#1,21,T,N) Ng (#2,2,7,N))* =
((t@la‘leTaN))CUS ((4@2)9271‘)]\7))6)

(3) (jal,Ql,T,N) ﬂngz (1,21,T,N).

Remark 2.5. For the two NBS-sets (,€1,1,N) and
($2,€22,T,N) on 0, we obtain
(pl,Ql,T,N)g((@z,.Qz,T,N) iff
(@a QQ,T,N)CQ(p] 7-(2] ) TvN)C'

Definition 2.6.[2] Suppose ((2,2,S,N),t}) is an NBSTs
and (#1,9Q1,S,N), (§,,€,,5,N) are two NBS-subsets of
(#,9,S,N) such that (@1,21,5,N)C(»,£,S,N). Let
($1,€2,,5,N) be an NBS-neighborhood of (g, Q;,S,N),
then (g1,€;,5,N) is an NBS-interior of (,€2,,5,N) .
Furthermore, the wunion of all NBS-interior of
($2,€2,,5,N) is referred to as the NBS-interior for
($2,£2,,8,N), also symbolized as (»,2,,5,N)°.
Definition 2.7. [2] Let ((2,£,S,N), t}’) be an NBSTs and
(WILQMSaN)

C(g,02,S,N). The NBS-closure for (f,0;,5,N)
which is denoted by cl((g1,21,S,N)) or (1,21,S,N) is
the intersection of all NBS-closed superset of
(t@lthSaN)'

Definition 2.8. [2] For an NBSTs ((2,2,5,N), V), we
have

(1) OY and ¢ are NBS-closed sets.

(2) The NBS-closed sets are preserved when taking the
finite unions of them

(3) The sets resulting from taking arbitrary
intersections of NBS-closed sets are also NBS-closed sets.
Definition 2.9. [8] Let (#,2,S,N) be an NBS-set over U
and u € U. When u € po(s),u € Q(—s) for all g€ S, —g€
—S, we state that 4 € (2,Q,S,N).

Note that if u ¢ @(s),v ¢ Q(—s) for some g€ S, —s€
=S, then forevery u € U, u ¢ (#2,Q2,S,N).

Definition 2.10. [8] Let ((#,Q,S,N),7Y) be an NBST
over (,Q,S,N) and U, x € (,2,S,N) such that u # .

(1) If (g21,£21,S,N) and (g2,,,S,N) are NBS-open
subsets of (#,Q,S,N) such that u € (#y,€;,S,N) and
K ¢ (pI,Ql,S,N) or K € (@,QQ,S,N) and
u ¢ (#2,2,8,N), then ((@,2,5,N),7Y) is called an
NBSTy-space.

(2) If (¢1,£21,S,N) and (,£2,,5,N) are NBS-open
subsets of (#,Q,S,N) such that u € (#y,€;,S,N) and
K ¢ (¢,2,5N) and kx € (,2,5,N) and
U ¢ (2,,5.N), then ((9,92,S,N),7Y) is called an
NBST;-space.

(3) If (¢1,£21,S,N) and (g2,,,S,N) are NBS-open
subsets of (#,Q,S,N) such that u € (#,Q;,S,N),
K € (§,0,8,N) and (1,921,5,N) N (62,922,5,N) = ¢
, then ((2,2,5,N), %) is called an NBST>-space.

3 N-bipolar soft continuous mappings

In this part, our first focus will be on examining the
properties of N-bipolar soft continuous mappings
between two NBSTs,. Additionally, some fresh insights
into the qualities of NBS-continuous, NBS-open, and
NBS-closed mappings are provided.

Definition 3.1. Let BSY(U,S) and BSY(x,S') with
characteristics from S and S’ be the families of all
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N-Bipolar soft sets on U and y respectively. If p: U — x
is an injective function, and 1 : S — §',q : =S — 5 are
two mappings, where g(—g) = —n(s) for all - € =S,
then an NBS-mapping &,n, : BS" (U,5) — BV (x, ") is
defined as: for any NBS-set (©,Q,5,N) in BSN (U, S) the
image of (©,Q,S,N) under §,,,, as follows

Epng(@,2,8,N) = {Epmqg(0(a)), Epng (2(—a)),S',N :
acs ~ae—SY,

is an NBS-set in BSY(x,S’) given as, for all §' € " and
“§/ c ﬁS/

Ema(©(@))(x) = { (k. png (O (K))) : K € 1}
and
Ena(@(2a)) (k) = { (. (Q5)(K)) : K € 1},
where
max{@(s)(u) :s € n~'(¥),
pep(x),
Emq(O(5)(x)) =  if n~'(§) NS # 9,
P (k) # ¢;
0, otherwise,
min{Q(~s)(4) : 7y € q (=),
pep(x),
Epmq(R(—8")(x)) = { if g (=) N=S# ¢,

p~(x) # ¢

0, otherwise.
Epnq(©,2,8,N) is called an NBS-image of (0,2,S,N)
under &,

Definition 3.2. Let p : U — ) be an injective function,
and n: 8 — §,q: =S — —S be two mappings, where
q(—s) = —n(s) for all - € =S. We defined a mapping
Epng : BSY(U,S) — BSN (x,8') as follows: if (y,®,S',N)
is an NBS-set in BSV(x,S’), the inverse image of
(v,®,S',N) under ‘g',jnlq, written as

‘:;nlq(WawaS,aN) = {‘:;nlq(lll(a))v51;n1q(w(ﬁa))asvlv:
o € S,-ae S},

is an NBS-set in BSV (U, S) given as, for all € S and —s €
-S

Example 3.3. Let U = {u, o, w3}, x = {K1,%,%3},5 =

{s1,80,83}, 78 = {=81, 785,783}, 8" = {8, 83} and =8" =
{—s},—s5}. Define the mapping p : U — x,n : S — §" and
q:—S——Sby

p(2) =K p(u3) =1
n(s)=s1 N(s) =9
q(=s,) =85 q(—s3) = —sh.

p() = K
n(s1) = s
q(=s1) = )

Take two 5BS-sets on U and y with parameters from S to
S’ respectively, as

(0,2,8,5) = {((s1,{(11,4), (12,2), (13,0)}) ,
(=81, {(11,0), (2, 1), (43,2) 1)),
({82, {(11,0), (2, 1), (13,2)}),
(=82, {(111,3), (12,2), (13,0 })),
((s3,{(101,3), (2, 1), (u3,0)}),

(=83, { (1, 1), (42,3), (13,4) 1))}

and

(v, 0,5,5) = {({s),{(x1,3),(x2,1),(%3,2)}),,
(=81, (1, 1), (12, 2), (53, 1)})),
({52, {(%1,0), (x2,2), (3,4)}),
(=82, {(x1,3), (%2,2), (%3,0)})) }.

So, the 5BS-image of (®,£2,S,5) under the 5BS-mapping
Epng 1 BS°(U,S) — BS3(x, ) is obtained as the following:

Table 1 The tabular form of £,,,(©,Q,S,5)

épnq(@a‘QvSaS) (§/laﬁ§/l) (§/27ﬁ§/2)
Ki 4, 3,1
K (2,1) (2,0)
K3 (0,0) (0,0)

Therefore, we can write a 5BS-image of (©,£2,S5,5) under
Epng as

Epna(0,92,5,5) = (Epng(@(@)), Epng(2(~)),5",5)

= {(<§lv{(K1a ) (szz)v(K370)}>v
<ﬁ§17{(K170)7(K251)5(K370)}>)a

EanaW(00)() = {(. &ty (W(s) (W) s 1 €T} ({52, 4(x1,3), (k2:2), (13, 01),
and <_'§l27{(K171)7(K2a0)a(K370)}>)}'
égnlq(w(_‘a))(_@) _ {(ﬂa(é;nlq(w(ﬁ§)(ﬂ))) e U} , ljvoevrv,);e:t us compute the 5BS-inverse image of (v, ®,5',5)
where
1 _ Table 2 The tabular form of £ ! (©,Q,5',5)
Sl VIR)) = Ve LON () B V-0.5'5) | G150 | Goos2) | ()
Eonq(@(—3) (1)) = @p(u)q(-s). I 83 8 ;% Egg
fg}qlz()lg/w&?.’,N) is said to be an NBS-inverse image of Zi (1:2) (1.2) (2:2)
© 2025 NSP
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Therefore, the 5BS-inverse image of (v, ®,5’,5) is

(Epng(W()), &y (0(-0)),S,5)
= {({s1, {(11,3), (2, 1), (13, 1) 1),
(=81, { (11, 1), (12,2), (43,2) 1)),
(<§z,{(u1, (M2, 1), (u3, 1))

(=82, {(11,3), (12,2), (43,2)})),
(

(

Epng(W:1,8',5) =

(33, {(11,0), (12,2), (13,2)}),
=83, {(11,3), (12,2), (13,2)})) }

Definition 34. An

Epng - ((@,.Q,S,N),‘L'gv) — ((y,0,8 N ),vg\,’) for an
NBSTs, ((0,2,5,N),7y) and ((v,0,5,N),v)) is
called

(1) NBS-open if &,nq(©y,2,,5,N) € v} for each
(@l,QI,SN) (@.QSN)E‘L'S

(2) NBS-closed if &,,nq(@l,.Q],S N) € vy for each

(©,2,,5,N) C (0,2,S,N) € TV.
Theorem 3.5. Let ((©,Q,S,N),V T0.0), ) be an
NBS-subspace of an NBSTs ((©,Q,S,N),7d) and
(01,21,5,N) be an NBS-open set in W. If W € 7¥Y, then
(@1,91,5,]\7) S Tév.

Proof. Let (©,2;,5,N) be an NBS-open set in W.

Consequently  there exists an NBS-open  set
(y1,01,S,N) C (y,o,5,N) in (8} where
(01,21,S,N) = W¥ N (y1,01,,N). Using the third
axiom  of  the definition of an  NBSTg,
WY N (yi,0,8,N) € @ if WY € 1) Therefore,
(@l,Ql,E,N) S Tév.
Theorem 3.6. Let ((©,2,S,N), " ©.9), )
NBS-subspace of an NBSTs ((©,2,S,N),t)) and
(01,921,5,N) be an NBS-closed set in W. If W& € tlV,
then (@l,QI,S,N) S TgN.

Proof. It can be proved directly.

NBS-mapping

be an

Definition 3.7. An NBS- mapping
érmq : ((@59755N)51§V) - ((l[/,(l) S, )a S/) is
NBS-continuous iff

é;nlq(w17wlvsl7N) c (W,w,S,N) S Tév for
(y1,01,5,N) € v
Example 3.8. Let

C= {”17”25”3}7% = {K17K27K3}5S = {§la§25§3}a_‘s =
{-s1,782,783},8 = {sp.$21,8 = {57}
2 = {98,05,(0,,2,,5,6)}, where (01,9;,5,6) is a
6BS-set on U, defined as follows:

(01,91,5,6) = {({s;,{(1,5), (12,3), (13, 1) }) ,
(=81, {(11,0), (12,2), (43,2) ),
({52, {(11,0), (12,2), (13,3) }) 5
(=82, {(11,4), (12,3), (43, 1)),
((s3: {(m1,4), (12,2), (u3,0)})
(=83, {(1,2), (12,4), (u3,5) 1)}

every

)

v8 = {0525, (w1, @,5,6)}, where (y1,®,5,5) is a
6BS-set on J, defined as follows:

(v, 0,5,6) = {((s){(x1,4), (x2,2), (%3,3)} ),
(=1, {(,1,2), (2,3), (x3,2)})),
((52,{(x1,0), (k2,3), (K3,5)} ),
(=82, {(x1,4), (2,2), (x3,0)})) },

and let ((©,2,5,6),79) and ((y,©,5,6),05) be a
6BSTs;.

Define the mapping p: U — x,n:S— S andg: =S —
—S by

plu) =xki pl) =k pus) =K

n(s)=s1 Nls)=s1 nls3) =%
a(-s1) =51 (o) =% q(-s3) =)
Let&png: ((0,2,5,6),78) = (v, 0,5,6),05) be a 6BS-
mapping. Then (v, ®1,5',6) C (v, ®,5,6) is a 6BS-open
iny and &, (y1,01,5,6) = (61,2,,5,6) C (6,2,5,6)
is a 6BS-open in U. Therefore, ;4 is a 6BS-continuous
mapping from ((©,2,5,6),1¢) to ((w,a),S’,6),v§,).
Definition 3.9. Let ¢ # W C U, then W) denotes the NBS-
set BSY (W, S) over U for which W () =W and W (—g) = W
for all g€ W and —s€ =W
Definition 3.10. Let (©,Q,S.N) BSV(U,S) and
(y,»,8',N) eBSN(x,S'), then &,p, : BSV(U,S) —
BSN(x,S') is an NBS-mapping and

(01,921,5,N)C(0,2,5,N)=(0,Q2), ¢ W CU.

An NBS-mapping of &pnglgsviy.s) from BSY(U,S) to
BSN (x,S') is the restriction of &,n, to BSN (W, S).

This is defined as 1 : @ — §',¢: Q — =S and ply :
W — x, where p|w is the restriction of p to W.
Proposition 3.11. If £, : BS™ (U, S) — BSY(x,$') is an
NBS-mapping and W C U, then
(é[’nq|BSN(W’S))71(V/awaS,aN) épnq(lva Sl )mwsl'vv
N) € 88"(x.5).
xX)=p"

forall (v, ®,S',

Proof. From the equality (p|w)~' "(x")NW for

all ¥’ C y, the proof is finished.

Theorem 3.12. If
érmq : ((@597551\7)5?{“\1) - ((Wawsl )7 S’) is
NBS-continuous, then Epnal BV (W.5) :
(©1.21.5.M). 8 0) = (oSN s

NBS-continuous for every (@,Q); € W CU.
Proof. Using Proposition 3.11. with the definition of

NBS-relative topology, the proof is finished.

Theorem 3.13. For any NBSTg, ((©,Q,S,N),

((y,0,5,N), vS,) the following are satisfied
(1) Let {(WY);}jer be a family of subsets of U with
(W); ’s are NBS -open sets in U and U = Ui (W);.
Then &ppg @ ((0,2,5,N),7) — ((v,0,5,N),vy) is
NBS-continuous iff Epnalag( W),.9) '

&) and

© 2025 NSP
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(0, 25,5.N), 8 0)) — (w0,
N-bipolar soft continuous for every j € I.
(2) Let (W)1, (W), ..., (W), are an NBS-closed

sets in U and U§ = U (WY);, then the NBS-mapping

N), S,) is

5pnq : ((@7Q’S7N)7T§]) - ((W7wvs/7N)7v§{) is
NBS-continuous iff Epnalagy( W)7.5) :
((@jv'ijS’N)’%fV@’Q)j) - ((va S/ )7 S’) is
NBS-continuous foreach j =1,2,....n

Proof. (1) (=) Itis Theorem 3.12.

(<) For an NBS-open set

(y1,01,8N) C (v, 0,5 ,N) € 2. T Epmglugv(wyy.5) 19
NBS-continuous, then (§P"q|BSN((WSN)_,~,S))71 (w1, w1, ,N)
is NBS-open set in (WSN)]- for all j € I. Using Theorem
35, if (WY); € U is NBS-open, then
(épnq|B§N((WSI‘V)j’S))71(lI/] , 01,8 ,N) is NBS-open set in U.
Therefore,

El (w0, S N) = Exl (w0, 8\N) N OY =
Ema(vi, 0,8 N) 0 mamn -
Ujel(i;nlq(l”hwlvslvlv) (W

Uier (Spmalasy (wav),.5)) (‘I/l,wl,S',N) is NBS-open
in O. Now the proof is complete.

(2) It can be demonstrated similarly.
Lemma 3.14. [2] For an NBSTs ((©,2,S,N),
(01,921,5,N),(02,£,,5,N)

eBSY (U,5).

The following are satisfied

(1)  (0,2(,S,N) is
(©1,21,5,N) = (01,,S,N).

(2) (©2,2,,5,N)C(01,,5,N) =
(62792557N)§(@1;QI755N)‘

(3) (©1,21,S,N) 1is an

&) with

NBS-closed set iff

NBS-open set iff

(01,921,5,N)° = (01,2,5,N).
@) I (01,9),5,N)E(0,2,8,N), then
(©1,21,5,N)°C(0,,,S,N)°.

Remark 3.15. Let ((©,Q,S5,N),t
(01,91,5,N) €BSN(U,S). Then
(1) ((@1,£1,5,N)°) = ((01,£1,5,N)°).
(2) ((61,£21,8,N))* = ((01,91,5,N)°)°.
Proof. (1) = By Lemma 2.21
((©1,91,5,N)°)¢ = [U{(03,923,S,N)
1 (053,925,8,N) € rg’ is NBS-open
(01,Q1,8,N)}
N[(©5,23,8,N)"
. (03,93,8,N) € 1 is NBS-open
(01,21,5,N)]
N[(©5,23,8,N)"
. (05,93,5,N)° € 1) is NBS-closed
and (©,,5,N)° Q (03,93,5,N)°]
((©1,21,5,N)°).
(2) = Similar to that of (1).

Y) be an NBSTs and

and (@3,93,5,]\7)

IMe

and (03,03,5,N) Q

As in [3] we have the following definition.
Definition 3.16.

(1) The NBS-mapping &,y is said to be injective if
p, 1N and g are injective mappings.

(2) The NBS-mapping &, is said to be surjective if
p, 1N and ¢ are surjective mappings.

(3) The NBS-mapping &y, is said to be bijective if
p, 1N and g are bijective mappings.
Definition 3.17. Let £, : 8BSV (0,S) — BS" (%, ') be an
NBS-mapping and (0;,2,,S,N), (0,2,,5,N) be
NBS-sets in BSN(U,S). For §' € S, NBS-intersection and
union of NBS-images of (®,Q;,5,N) and (0,,£,,5,N)
in BSN (15, 5) are defined as:

(5pnq(@1791a57N)mépnq(@2792,57N))(§/)
= Epnq (01,215, N)(s) N Epng(@2,0:,5.N)(5'),
(5pnq(@1791a57N) Uépnq(@bgzas N))(§ )
= &mq(01,Q1,8,N)(5") Upmg(02,022,5,N)(5').
Definition 3.18. Let £, : 8BSV (0,S) — BS" (%, ') be an
NBS-mapping and (y, ®1,5",N), (y2,@,,S',N) NBS-sets
in BSY(x,S). Then s€ S, NBS-intersection and union of

NBS-inverse images of (y1,®,S,N) and (y»,®,,S',N)
in BSN (x,S") are defined as:

(Epmg (W1, 01,8 ,N) &, (w2, 02,5, N))
= Epng(W1, 01,8, N)(5) &, (W2, 02,8, N
(Epmg (W1, 01,8, N)U & (W2, 2,5 ,N)) (s)
= &png(W1, 01,8 ,N)(s) U, (W2, 02,5, N)(s).
Theorem 3.19. Let {(0;,Q;,S,N)}ics QBSN(U,S) and

{(y;, 1,8 ,N)}ier  CBSM(,5). Then for an
NBS-mapping &Epng @ BSY(U,S) — BSV(x,S), the
following are true.

(1) If  (61,92,5N)C(02,2,,5,N),  then
Epng(0©1,2,8,N)C épnq(@z,-Qz,S N).

@) 1 (0,8 N)C(yr.0,5'N).  then
él;nlq(WI;wlaS,aN)g épnq(WQvab Sl )

(3) 5Pﬂq((@1791a57N) U (@Za‘QZvSaN)) =
Epng(01,21,8,N)UEpny(02,8,,5,N).

In general,
‘:pnq(Ui(@ia-QiaSaN)):UiépTW(@iv-QiaSyN)-

@) Gng((y, 0,8 N) 0 (y2,0,8.N)) =
Epng(W1, 01,8 ,N)NE . (W2, 0,8, N).

5)  Gmg((yvi, 01,8 N) U (y2,0,8.N)) =
Epmg(W1, 01,8, N)UE, 1, (¥2,0,,5',N).

Proof. Proving only (1) — (3), the other proofs adopt a

similar approach.
(1) Forall§’ € §" and —§' € =5’

$)
(),

mdx{@n s)(w):sen'(¢),nep(x),
Epnq(B1(5)(K)) = Bfn He)NS# ¢, p7' (k) # 93

otherwise

and
min{Q; (—s)(1) : ~s€q ' (-¢),pn € p~ (x),
Epna (1 (=) () = iofq" (-§)N-S#¢,p ' (x) # ¢

otherwise
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We consider the case when 77 !'(s)NS # ¢ and
g~ '(—s') N =S # ¢ as otherwise it is trivial. Then

Ema(@1(5)(x)) = max O (s) (1) E max Oy (s) (1)
= 5pnq(®2(§/)(’€))7

and
Epng(Q1(=8')(x)) = min & (—s) (1) E min 2 (—s) (1)
= épnq(-(b(_‘ ")(x)).
This gives (1).
(2) For all g€ S and —g€ —S
Epng(W1(a))(s) = { (1, Epmg (Wi (8)(W))) : € VY,

and
Epng(o1(~0))(—s) =

where

Epng(W1(5)(1))

{1 Epmg(@1 (=) (1)) : n €T},

= yip(u)n(s)Syap(u)n(s)
=&, (va(s) (1),

and

This gives (2).

(3) For all § € § and —§' € =S, we show that
Eomq((©1,921,5,N) U (02,42,,5,N)) =
Epng(©1,21,5,N) UEpng(02,£;,S,N).

Consider £,n4((01,21,5,N)U (0,,92,,5,N))

=&Epng(h,1,SUS, max(Ny,N,)) =

max{h(s)(u):s €N (s),

uepl(x),
Epnq((s')(K)) = § if n ((3 N(SUS)# ¢
K 0
O7 otherwise

and

min{l(—s)(u): —s € ¢~ (—¢')

We consider the case when n~'(s') N (SUS) # ¢ and

g '(—s') N (=SU=S) # ¢ as otherwise it is trivial. Then
Oi(s) ifse(X-D)ynn'(s)
Oy(s) ifse(D-T1)Nn"'(5)

(1 tg) s.t.t, = max (] ),
where (,I.L,'t;) €0(s)
and (u,7) € Os(s),

énnq(h@/)(’f)) = max

€))

and

Epnq(1(—s") ()

Q(=s) if~se ()~ (=D)Ng (=)
Q(-s) if—ge ((ﬂD) (1) Ng~'(=)
(Motog) sttty = mln(’cw,fw) (2)
where (u,tlg) € Q(-s)
and (. £2,) € ()

= min

Next, for the non-trivial case, using Definition 3.17 and for

s’ €5 and —¢' € =5, we have
(Epnq((61,21,5,N)U(02,£,,5,N)))

= Epnq(01,21,8,N) Upnq(02,£2,,5,N)

= Epng(O1(5')(x)) = max @y (5) (1) Umax O(s) (1)

= Epnag(O2(5) (k)

and

Epnq(21(—s") () = min& (—s) (1) Umin () (1)

Epna(Qa2(=5') (k)

= Epmq(h(s')(x))
Theta)(s) ifs€ (X—D)nn~!(s)
Gus) ifse(D-T)Nn ()
(1 f§) s.t.t; = max(t ,fg),
where (U, ) € 0(s) and (u,tg) € 0a(s),

3)

and
= é[mq(l(ﬁy)(’())

Q;(-s)
Q(-s)

if ~s € (1) = (-D))ng "' (~¢)
if s € (2D) — (1) Ng™ (7))
(Motg) sty = m1n(f£§,fa§),
where (u,t1)) € Qi (-s) and (u,t2) € Qy(-s)

= min

From Equations (1 —4), we have (3).
Theorem 3.20. For an NBS-mapping &,r, : BS" (U, S) —
BSY(x,S"), the following are true.

(1) é;nlq((wlawlasl )c) (épnq(wlvwlvslaN))c for
every (y1,m1,5",N) €BSN (x,S").

(2) épnq(é;nlq(wlvwle/vN))g(WlawlaS/aN) for
every (y1,@1,5",N) €BSN (x,S). If &pny is surjective, the
equality is satisfied.

(3) (©1,Q1,85,N)C &, (Epng(O1,£21,8,N)) for every
(01,21,5,N) €BSN (T, S). If &n, is injective, the equality
is satisfied.

Proof. We have proven (1). The remaining proofs
adhere to analogous approaches.

e p(x),
Epng(l(=s') () = { if g (=) N(=SU=S) # 9,
p~ (k) # ¢:
0, otherwise
where
O(s) ifser—D
O,(s) ifseD-T
h(s)(u) = (/j 1) S.t. i§ rnax(’c1 iz)
where (i,t]) € O (s ) and (U,t3) € Os(s),
and
Qi(-s)  if-s€ (=)~ (D)
D(-s)  if-se (D) - (1)
l(ﬁ§)(“) = (” -tﬁ§) s.L. -tﬁ§ - mln({L§, zg)
where (/,L t! s) € Q2i(-s)
and (%) ¢ Q(-s)
© 2025 NSP
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(1) We will first prove épnq( ‘)= ép’nlq((llll ) n-1(s)
and émq(wl) = émq(( 1)¢ )qf I(~g)- For every s€ S and
—s€ S, we have

0-— é];n]q(wl )(§)(”)a

Epng (W) )10 (5) () = § n(s) €S, uED,
U,n(s) ¢5
{U<”ﬁ§m7]q(llfl(§)(”))) /
= q =0-wip(mn(s)n(y) €5
G,n(s) €5,
and
| 6 = &y (@) (8) (1),
Epma((@01)) 15 (78) (1) = ¢ g(-s) €S, n €T,
U,q(-s) ¢S
U= (1, &g (o1 (=5) (1))
_ ) =0-oip)g(-s),
{ q(-s) €5,
B,q(-s) ¢ 5.
On the other side, for every s€ S and —§ € =S,
5];n]q(x - (V[l)(§)(u))a
Eong(W1))(5) (1) = { n(s) €S, €T,
nis) &5
B (1, Epmg(wi(s) (1))
=93 =0-wipu)n(s)ns) s,
n(s) ¢S
and
] Epng (X — (@1)(=8) (W),
Spng((@1))(-s) (1) = § q(=s) €S, u €T,
U.q(~s) ¢S
{ = (1, g (1 (=) (1))
= =U0-0p(u)q(-s).q(-s) €S,
U,q(-s) ¢S
Consequently,
Epng(W))E) (1) = &g(W1))y1(5)(s) (1) and
Epng((@1))(—s) (1) Epn((01)) 1 sy (28) ().

Hence, é[;nlq((wl ) wlas/vN)C) = épnq((llll » 0y 7S/ N))
Eona (V)11 (@)1 (=517, 5", N))
(Epng (W1, 01,8, N))“.

The proof is complete.
Theorem 3.21. For an NBS-mapping
Emg = ((0,2,5,N),7) — ((v,0.8,N),vy), the
following conditions are equal to each other

(1) &pnq is NBS-continuous;

(2) &png(y1, 01,8 N) € 7" ¥ (y1, 01,5, N) € vg';
(3) &g (w1, 01,8, M) &, (Twr,01,5W) )
Y(y1, 01,8 ,N) €BS" (x.8"):

(4) Epng ((01,21,5,N)) CEpmy (01, 21,5.N),
V(61,921,5,N) €BSV(U,S);

(5) &g (w1, 01,8 ,N)°) € (&l (w1, 01,8 ,N))°

Y(y1,0,8",N) eBSY (x,S").
Proof. (1) = (2) Let (y1,0;,5,N) € vg’. We will

show that é;n'q(wl,wl,s’,N) € V. Since &,py is

NBS-continuous, there exits (0,2;,S,N) € ¥ such that
Emg(©1,21,8,N) < (y1,01,5,N). Then
Eng(W1, 01,8 ,N) € 7.

(2) = (1) Let (y,m,5,N) € v{’. Then,
(y1,01,8' N) € vg,v is an NBS-open set such that
(v1, 01,5 ,N)S(y2, 0,5, N). By (2)
é];nlq(‘II] 9 (D] aSI,N) 6 Tg‘N and
Epng(wi, 01,8 ,N)CE, (W2, 0,,8',N). This shows that
épnq(l//z,(uz §',N) € ©iV. Therefore, we have &pp, is
NBS-continuous for every (v, 1,5 ,N) € v}

(2) = (3) Let (y1,0;,S,N) be an NBS-set on
(y,,S',N). Then (y1,;,S',N)

C(y1,m1,5,N). Therefore, we have
Epng(W1, 01,8 . N)CE, ((Wh w175/7N)) and so, by
using (), we obtain that

Epna(w1,01,8' M) CEs, ((wr,01,5W) )
Coma (m) This

é;nlq(l[/],a)],S',N)ééljnlq ((WI,Q)I,S/,N))

(2) = (4) Let (©,924,5,N) be an NBS-set on
(©,9,S,N). Since (0,92;,S,N)C

Epng (Gpnq(©1,21,8,N)) CE, 0 (énnq(@l,QI,S,N)) €
TS , we have (y, 0,5 ,N)C

gpnq (gpnq(@h-Q],S,N)
Theorem 3.20, we get &,nq ((@1,91,S,N))

gépnq(@thS;N)'

4) = (5) If (y1,0,8,N) is an NBS-set over
(y,,5',N), then él,’nlq((l//],a)l,S',N)c) is an NBS-set on
(©,Q,5,N). From (4), Theorem 3.19(2) and Theorem
3.14(6),

_ épnq(égnlq((w]70)]7S/7N)C))§€an(é[:nlq((w17w17S/7N)C))
C(yr, 01,8 ,N) = ((y1,01,5,N)°) .

Therefore, we have
Epng (w1, 01,8, N))CE (w1, 01,5 ,N)°)) =
(51;n]q((wlvwlvs/aN)o))c'

shows

). By Theorem 3.19 and

Since Epna((W1,@1,8',N)°) =
(é;n]q(l[/],(l)],S',N))c = ((égnlq(wlvwlvs/aN))o)ca by
Remark 2.18 we obtain that

Erna (1, 01,8 . N)*)C(Eph (w1, 01,8, N))°.

(5) & (3) This follows from Theorem 3.20(1) and
Theorem 3.14(6).
Theorem 3.22. If
Epng * ((©,.2,5.N),7) = ((y,0,5'N),vg) is an
NBS-mapping, then the following conditions are equal to
each other

(1) Epng is NBS-open;

(2) érmq ((@l 7'Ql ast)O) g(érmq(@l an 7SaN))ov

v(01,9,,5,N) eBs" (U, S);

(3) (é[:nlq(wlv wle/vN))o gé[;nlq ((le wle/vN)o) )

V(y1,01,8',N) €BSV(x.5).
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(4) é;nlq ((wlvwlvslvN)) g(&,,},lq(wl,wl,S’,N)),

Y(yi, 1,8 ,N) €BSV (2, 5").

Proof. (1) = (2) Let (0,2,S,N) be an NBS-set on
(©,Q,5,N).

Then (01,0;,5,N)° Q(@l,.Q],S N). By using (1), we
have &y ((01,921,5,N)°) C

(Epng(@1,21,5,N))°.

(2) = (3) Let (y1,01,5,N) be an NBS-set on
(v,»,5',N). Then ép’nlq(wl,a)l,S’,N) is an NBS-set on
(©,02,5.N). By ),

énnq((éfnlq(ll/l , 0 ,S',N))O)Q(épnq (éfnlq(ll/l ,01,5',N)))°
(

C(yq, 1,5 ,N)°. Therefore, we have

(é;nlq(WIvwlvslvN))ogél;nlq((wlawlaslvN)o)'

(4) < (3) These follow from Theorem 3.20(1) and
Theorem 3.14(6).

(3) = (1) Let (©,0;,S,N) be an NBS-open set in
(0,Q,S5,N).

Then for Epnq(@1,921,5,N) €BS(2,8), by (3)
(épnq(él’TM(@l ,£21,8,N)))°C

épnq((épn‘Z(@lthSaN)) )
(01,921,5,N) =(0,,Q,5,N)°,

(@1791aEvN)g(é:nlq(épan(@la-leSaN)))o

g;,;nlq((é,mq(@l,.(zl ,S,N))°) and so

épnq(@l,.Ql,S,N)Q(ipnq(@l,.Ql,S,N))O. This shows
that {4 is NBS-open.
Theorem
éong + ((6,2,8,N),7)) — ((v,0,5,N),v§/) be an
NBS-bijection. Then &,;, is NBS-continuous iff
(éprlq(@h‘leSaN))og

énnq((@vaIvSaN)o) for
(01,91,5,N) eBSN(U,S).

Proof. (=) Let (0,2,,5,N) €BSY(U,S). Then for
éprlq(@la‘leSaN) EBSN(ZC,S/),

(é,mq(@l,Q],S,N))og‘g',:nq(@l,QI,S,N) and so
é;nlq((gpﬂq(@la‘leSaN))o)g

&g (Epng(©1,21,8,N)). Since &pn, is injective and
NBS-continuous,

é[;nlq((épnq(@laglvs N))°)< C (©1,92,5,N)°.  Again
since Epnag is surjective,
(Epng(01,84, 58, N)) Cépnq((@l,.Ql,S N)°) as claimed.

(<) Let (y1,0;,8',N) be an NBS-open set in .

Also, since

3.23. Let
N

every

Then since &pp, is surjective, (y1,0,5,N) =
(y1, 01,8 ,N)° = (&png (&;nlq(y/l,a)l,S',N)))o. By using
the hypothesis,

(Wl ) (1)1 ) S/7N)§5an((€[;nlq(lyl ) wl ) S/7N)) o)' Sil’lce éPTIq
is injective, &, (w1,01,8,N)C (&ng(w1, 01,8 ,N))".
This shows that ép’nlq(y/l ,01,5' N) is NBS-open set in U.

Theorem 3.24. An NBS- mapping
érmq ((@agvsaN)aTé‘V) - ((l[/,(l) S, )a S/) iS
NBS-closed iff

érmq(@l an 7SaN)§é[mq ((@l 7-Ql 5S7N)) )
v((’Dl 7'(2] 5S7N) EBSN(U7S)
Proof. Obvious.

Theorem 3.25. Let
épnq : ((@agvsaN)aTgy) ((waw S/ ) v_é\/,) be an
NBS-bijection. Then &py, is NBS-closed iff
é;nlq ((WI , W1 aS,7N)) Q
(Epna (Wi, @1,8',N)), V(1,8 ,N) €BSV (2,5).
Proof. It is similar to that of Theorem 3.23.
Definition 3.26. An NBS-mapping

éong - ((0,2,8,N), 1) — ((v,w,E',N),vY) is called
NBS-homeomorphism if &,n, is NBS-continuous,
NBS-open, surjective and injective.

The next theorem will be obtained.
Theorem 3.27. It
érmq : ((@7Qast)7Tg) ((‘I/aw S, )a S’) is an
NBS-mapping, then the following condltlons are equal to
each other

(1) &pnq is NBS-homeomorphism;

(2) épnq((@lvglasvlv)o)
(Epnq(©1,21,8,N))°,V(01,21,5,N) €BSV (U, S);

(3) (gﬁlq(wlawlas/vlv))o =
Eong (W1, 01,8,N)°) V(w1 @0, 8',N) €BS" (2.5,

(4) é;nlq(wlvwlvs/vN) =
éljnlq(ll/l , 01 7SI7N)7V(II/1 , ] ,S,,N) EBSN(XvsI)'

(5) Epnq(01,21,8,N) =
Eonq(©1,921,5,N),V(0,,2,,5,N) BSV (U, 9).

4 N-bipolar soft mappings and separation
axioms

In this part, we delve into the examination of various
separation axioms that have been explored in [8] under
NBS-continuous, NBS-open, and NBS-closed mappings.
Furthermore, novel characterizations are provided for
them.

Theorem 4.1. If
érmq ((@,Q,S,N),Tg) - ((l[/,(l) S, )7 S’) is
NBS-continuous injection and ((y,®,8',N),vY) is
NBSTy, then ((©,Q,S,N), 1)) is NBSTj-space.

Proof. Suppose that ((y,®,S',N),vY)) is NBST;. For
any distinct points U; and (1, in (@,Q,S,N), there exists
NBS-open sets (y1,01,8',N), (y2,@,5,N) in
(v,0,5,N) such that
p(m) € (vi,01,5 N),p(t2) ¢ (y1,0,5,N) or
p(w) ¢ (va,,8,N),p(uz) € (y2,,5,N). Since
Epng is  NBS-continuous, éljnlq(y/l,a)l,S',N) and
&g (W2,0,8',N) are NBS-open sets in (Y, ®,S',N).

Furthermore, it is apparent that
[N é;nlq(wlvwlvs/aN)auz ¢ (wlvwlvslvN) or
& Epny(W2,0,8' \N), 1ty € &, (W2, @,8',N). This

shows that ((©,Q,S,N), 1Y) is NBSTy.
Theorem 4.2. If
éPTIq ((@,Q,S,N),Tgy) - ((V’aw S/ )7 S’) is

N—Dbipolar soft continuous injection and
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((w,,5',N),vY) is NBST;, then ((©,2,5,N),7}’) is
NBST;-space.

Proof. Similar to Theorem 4.1.

Theorem 4.3. If
51"1q : ((ngast)7T§v) - ((w,a),S’,N),vQ,’) is
NBS-continuous injection and ((y,®,8',N),vY) is
NBST,, then ((©,2,S,N), 1Y) is NBST,-space.

Proof. For p;, i, € (0,Q2,S,N) with u; # U, there

exist disjoint NBS-open sets (y1,@;,5,N) and
(v2,@,,8' N) in (v, 0,5 ,N) where
p(u) € (y1,01,8,N),p(l2) € (Y2,0,5',N). Since
Emq is  NBS-continuous, &, (yi,@,5',N) and
é];nlq(‘VZ;a)Z,S',N) are NBS-open in (©,Q S N)
containing {; and U, respectively. Moreover, it is clear
that &\ (w1, 01,8, N) N & (W2, @,8',N) = ¢. This
shows that ((©,Q,S,N), 1Y) is NBST.
Theorem 4.4. If &,,, is NBS-open function from an
NBSTy-space  ((©,2,S,N),7}) onto an NBSTs
(v, 0,8 N), S,) then ((y,0,8,N), S,) is
NBSTy-space.

Proof. Let k1, k» € (¥, ®,5',N) with k1 # k. Since
p is surjective, there exist y;, U, € (0,Q,S,N) with
My # Mp such that p(u;) = ky and p(Uz) = K. Again
since ((©,9,S,N),t)) is NBSTy-space, there exists
NBS-open sets (0,21,S,N),(0,,92,,5,N) € U such that
W € (0,921,5N), Ww ¢ (0,21,S,N) or
U ¢ (0,92,,S,N), 1ty € (02,0,,5,N). Then 51"1q
(01,21,5,N) and &,y (02,92,,8,N) are NBS-open sets
in (y,®,5',N). Because &y, is NBS-open.

Furthermore, it 18 clear that

K1 € 5an(@17“(21;57N)7K2 ¢ épr,q (@1,91,S,N) or
Ki ¢ épnq(@z,ﬂz,s N),i» € épnq(@z,ﬂz,s N). This
shows that ((y,,$',N),v}) is NBSTy-space.
Theorem 4.5. If §,,, is NBS-open function from an
NBST;-space  ((©,2,5,N),7}) onto an NBSTg
((v,®,8',N),vy), then ((y,0,8 N),0)) s
NBST;-space.

Proof. Similar to Theorem 4.4.

Theorem 4.6. If an NBS-open function &§,;, from an
NBST»-space  ((©,2,5,N),7}) onto an NBSTs
((v,®,8',N),vY) is injective, then ((y,®,S',N),vY) is
NBST;-space.

Proof. The proof is clear and direct.

Definition 4.7. Let ((©,2,S,N), 1)) be an NBSTs over
(0,Q,5,N), (0,2,S, N) be an NBS-closed set in
(0,Q,S;N) and u € (6,Q2,5,N) such that
U ¢ (0,2,S,N). If there exist NBS-open sets

(0,92,,S,N) and (0;3,023,S,N) such that pu €
(@z,Qz,S N), (@l,Ql,S,N)é (@3,.(23,5,]\/) and
(@279255 N) N (@35937551\7) = ¢’ then
((©,92,8,N),7) is called an NBS-regular space. If
((@,.Q,S,N), ) is NBS-regular and NBST;-space, then

itis NBSTg—space.
Theorem 4.8. If §,,, is NBS-continuous and NBS-open
bijection from an NBS-regular space ((©,2,5,N), 1) to

an NBSTs— (v, ®,S',N
NBS-regular.

)7 S’) then ((‘I/aw S, )a é‘\{)

Proof. Let k € (y,0,5,N) and
K& (y,0,5,N) € vy Since p is surjective, there exists
p € (0,Q,8N) with p(u) = k. Since &,py is
NBS-continuous, éﬁlq(l//],a)],S',N) € ¥ and
u ¢ &ng(wi,0,8 N). By NBS-regularity of
((©,92,5,N),7l), there exist disjoint NBS-open sets
(01,21,S,N) and (0,,2,,S,N) such that u €
(01,21,5,N), &yl (W1, 01,5 ,N)C (0,9,,5,N). Thus,
we obtain disjoint NBS-open sets &,n4(01,£;,5,N) and
Epnq(02,92,,8,N) such that k € &,y (01,£2,5,N) and
(y1,01,5 ,N)C&ng (02,£,,5,N). Because &,y is
bijective and NBS-open. Thus, ((y,®,5',N),v}) is
NBS-regular.

Corollary 4.9. If §,,, is NBS-continuous and NBS-open

bijection from an NBSTs-space ((©,2,S,N),t¥) to an
NBSTs ((v,,5',N),v}), then ((w,a) S'.N ), vy s

NBSTx-space.

Definition 4.10. Let ((©,2,S,N), 7)) be an NBSTs over
(0,Q,5,N). (01,21,S,N), (0,,0,,5,N) € (0,2,S,N)
are NBS-closed sets where

(01,21,5,N) N (0,,2,,S,N) = ¢. If there exist
NBS-open sets (03,03,5,N) and (B4, Q4,5,N) such that
(@lvglast)g(@:iaQ:ivSaN)’
(@2,.(22,5,N)§(@4,.Q4,S,N) and
(@3,93,5,]\/) N (@4,94,5,]\7) = ¢, then
((©,2,5,N),7}) is called an NBS-normal space. If
((0,2,8,N),7) is NBS-normal and NBST;-space, then

it is an NBST-space.

Theorem 4.11. If &, is NBS-continuous and NBS-open
bijection from an NBS-normal space ((©,£,S,N), 1Y) to
an NBSTs ((y,,S8',N), S,) then ((v, o, S' N), S,) is
NBS-normal.

Proof. Similar to that of Theorem 4.8.

Corollary 4.12. If £y, is NBS-continuous and NBS-open
bijection from an NBST-space ((©,€,S,N), 7)) to an
NBSTs ((v,®,5',N),vy), then ((w,a) E’' N), vY) s
NBSTj-space.

Theorem 4.13. ((0,2,5,N), 1) is NBS-regular space
iff for every u € (©,Q,5,N) and every NBS-open set
(01,21,S,N) with u € (01,Q;,5,N), there exists an
NBS-open set (@,0,S,N) such that u € (@,0,5,N)C

(w,g7S,N)
C(61,21,8,N).
Proof. Let ((©,2,S,N),7) is NBS-regular,

(0,92;,5,N) is NBS-open in (©,Q,S,N) and p €
(@],.Q],S,N). Then u ¢ (@l,QI,S,N)C and
(0,92;,5,N)° is an NBS-closed set. Therefore,
NBS-open disjoint sets (@, 0,S,N) and (0,,£,,S,N) can
be found with u € (w,0,S,N) and
(@1,.(21,S,N)CQ(GZ,QZ,E,N). Then (@z,Qz,S,N)C is
NBS-closed set containing (@,0,S,N) and contained in
(01,2,5,N). It means that u € (@,0,5,N)C
(@,0,E,N)C(0,92;,5S,N). To prove the opposite
direction, let i ¢ (0,,€,,5,N) which is the NBS-closed
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set. Suppose there is an NBS-open set (@,0,S,N) such
that u € (@,0,5,N)C (@,0,5,N)C(0,,£,,5,N)°. The
NBS-open sets (@,0,5,N) and (@,0,S,N)° are disjoint
NBS-open sets that contain g and (0,,0,,S,N),
respectively.
Theorem 4.14. ((©,Q,S,N),7Y) is NBS-normal space
iff for every NBS-closed set (0,,€2,,S,N) and every
NBS-open set (0,Q,S,N) with (0,,0,,5,N)C
(01,21,S,N), there exists an NBS-open set (@,0,S,N)
such that (0, 0,,S,N)C

(@,0,5,N)C (@,0,5,N)C (01,924,5,N).

Proof. The argument presented in this proof remains
consistent but with one key modification. Replacing the
point i by an NBS-set (0,,£2,,S,N) in its place.

5 N-bipolar soft mappings in medical
diagnosis

The new approach we propose involves utilizing
NBS-mappings to establish a relationship between
diseases and their symptoms. By employing this
methodology, we aim to improve disease diagnosis. In
this approach, diseases are characterized by a set of
symptoms. These symptoms vary in their intensity and
can be graded on an N-bipolar scale, indicating both
positive and negative evaluations. By mapping the
relationship between diseases and symptoms on this
scale, we can represent the complex nature of disease
symptoms more accurately.

By utilizing soft mappings, we can capture the
gradual transition of symptoms from positive to negative
values. This allows for a more nuanced understanding of
how symptoms may manifest in different diseases.
Additionally, the use of N-bipolar scales allows for the
incorporation of uncertainty and ambiguity in symptom
evaluation.

To apply this approach to disease diagnosis, we can
develop a database that stores the mappings between
diseases and their symptoms. This database can be
populated through expert knowledge or by analyzing
medical records. When a patient presents with a set of
symptoms, we can compare their symptom profile with
the established mappings to identify potential diseases.

By incorporating the concept of NBS-mappings, our
approach provides a more comprehensive representation
of the relationship between diseases and symptoms. This
can lead to more accurate and personalized disease
diagnoses, ultimately improving patient care and
outcomes.

To set up this mathematical system, we can define a
set of linguistic variables for each symptom and assign
numerical values that can be readily associated with
numerical representations, such that

No holds for ”0”,

Rare holds for 17,

Mild holds for 27,

Sometimes holds for 3",

Common holds for 74”.

Also, in light of the symptoms given in Table 3, the
doctor’s opinion and the website’s information
https://www.who.int/news-room/fact-
sheets/detail/coronavirus-disease-(covid-19), we classify
the symptoms that the patient has as low significance,
middle significance, high significance and very high
significance. Therefore, we create a 5BS-mapping to
document the relationship between the disease and its
symptoms as follows

Table 3 Comparison of symptoms

Symptoms Cold Influenza Covid-19 Omicron
Fatigue Sometimes Common Common Common
Fever Common Common Common Common
Cough Common Common Common Common
Diarrhea Mild Mild Sometimes Common
Taste loss
Rare Rare Sometimes Rare
or Smell
Throat
Common Sometimes Sometimes Common
ofSore
Breath
Rare Sometimes Common Common
Shortness
Watery eyes
No No Rare Sometimes
or Itchy
Painsand
Sometimes Common Sometimes Sometimes
Bodyaches

Next, we can define an N—bipolar soft mapping that takes
these symptom values as inputs and computes a value
indicating the likelihood of the patient having
OMICRON. This mapping can be designed based on the
doctor’s expertise, statistical analysis, or machine
learning algorithms. The mapping can take into account
the symptoms and their severity levels to assign a
likelihood value.

To determine the patient’s
NBS-mappings-based algorithm.

Step 1 : Categorize the patient’s symptoms into
categories of very high significance, high significance,
middle significance, or low significance.

Step 2 : Construct a 5BS-set (£,£2,S,5) based on the
patient’s symptoms.

Step 3 : Find the 5BS-image of (£, 2,S,N) under the
5BS-mapping &yng ¢ BS°(U,S) — BS>(x,S'). This
involves applying a mapping function to the 5BS-set to
obtain a transformed set.

Step 4 : Calculate the score (£,S,5).

Step 5 : Calculate the score (22,5, 5).

Step 6 : Calculate the  bipolar  score
(,2,8,5) = (#,5,5) — (2,-5,5) which could involve
evaluating the significance levels and conditions in the
5BS-set.

Step 7 : Decide the patient’s condition by utilizing the
information obtained from steps 1,2, and 3. This may
involve making a diagnosis based on the calculated scores

status utilizing an
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and determining the severity or type of condition the
patient may have. Lo
Let U = x = {F,FABCTS,P3FH D WI},
S={VH,H M, LOW} and §' = {O} where
F = Fever, FA = Fatigue, 5 = Breath shortness,
C = Cough, TS = Taste loss or Smell,
PB3 = Pains and Body aches,FH = Throat of Sore,
D = Diarrhea, WI = Watery eyes or Itchy,
and
VH = Very high significance, H = High significance,
M = Middle significance, LOW = Low significance,
o = Disease.
Thus, we define a 5BS-mapping &,n, : BS*(U,S) —
BS(x,S’) by the mappings p: U — x,n : S — S and
q: S — =S with
pu) =1

n(VH) =2 n(H)=2
g(-VH) = =D ¢(-H) =

nM)=o  nLow) =02,
—9 g(-M)=-0 q(~LOW)=-0,
forall u € ©.

Now, depending on the patient’s symptoms, we create
5BS-sets (#,92,S,5) such that the patient has the
following symptoms:

- Symptom A: Very high significance

- Symptom B: High significance

- Symptom C: Middle significance

- Symptom D: Low significance.

According to the given grading system, we assign the
following grades:

- Symptom A: 4

- Symptom B: 3

- Symptom C: 2

- Symptom D: 1.

We then calculate the diagnostic score, which is
defined as

Score(2,8,5) = Y. Emg(())(0)(x),

aEeS,key
Score(Q,-S,5) = ZS Enq(2(—a))(©)(x),
—ae—S,Kkey
Score(2,Q,8,5) = (#,5,5) — (2,-S,5)
= SZ Epna(92())(2) (k)

aes,key

- Z Epmg(Q(—a))(9)(k)

—oeS,KeEY

Based on the given deductions, we can conclude the
following:

- If the score (#,,S,5) is less than or equal to 12, the
patient is suffering from a COLD.

- If the score (,€,5,5) is greater than 12 and less
than or equal to 16, the patient is suffering from
INFLUENZA.

- If the score (,€,5,5) is greater than 16 and less
than or equal to 22, the patient is suffering from COVID-
19.

- If the score (@, Q2,S,5) is greater than 22, the patient
is suffering from OMICRON.

Therefore, given the aforementioned analysis, we are
able to suggest an algorithm that relies on N-bipolar soft
mappings as previously explained. To exemplify how this
approach is employed, we will consider a case using the
symptoms presented in Table 3. In this case, we will
classify the patient’s symptoms in the following manner:

VH = {F,FA,B,PB,C}, H = {TH, D},
M = {TS},LOW = {WI}.
Then we find a 5BS-set (2, ,S,5) such that

(9,2,8,5) = {(< (TS, 0), (P8, 4) (q”H 0) (D
~VH,{(F,0),(FA,0),(8,0),
(TS,4),(PB,0),(FH,4), (D,4),(

H,{(F,0), (FA,0), (B
< (TS,0), (P8, 0 ), (FH,3)

—H, {(F,4),(FA,4), (B,
<(TS4 (PB,4), (FH, 1), (D,
M, {(F,0),(FA,0),(8,0),
(< (TS,2), (PB,0), (THO),(
< -M,{(F,4),( B,4),(C,
(TS.0),(PB,4), (TH )( 4), (WL4)}
(< LOW,{(F,0),(FA,0),
(TS,0), (P8,0), (FH,0),

< ~LOW,{(F,4),(FA,4),

(TS.4). (PB.4), (FH,4), (D,4

and embed the 5—Dbipolar soft image of (£, 2,S,N) under
(U,

the 5—bipolar soft mapping &, : BS*(U,S) — BS> (%, ")
is obtained as the following:

é/ﬂ]q([agvs:s) = (51171«4(!0((1)):51171«4(9( )) s, 5)
_ {<<a,{(F,4>,<FA 4),(8.4), (PB, 4_>.,<c.,4>.,>
(F1,3),(D,3),(T$,2), (W, 1)} ’
<ﬁ97{(F~,0) (FA,0),(8,0), (P8, Q)ﬁ(CﬁO)ﬁ >)}
’ (FH,1),(D,1),(T$,0),(WI,3)} ’
Thus, from the fact that the score
SCOI‘C([@,Q,S,S) = ({0,5,5) - (.Q,—‘S,S)
Y Ema(p()(©)(x)
aEeS,key
=) &me(Q(-a))(©)(x)
—oEeS,KeEY
=20-5=24,

it follows that the patient is suffering from OMICRON.

6 Conclusion

In the present study, we carried out a comprehensive
examination of NBS-mappings and explored the distinct
characteristics of NBS-continuous, NBS-closed, and
NBS-open mappings within the realm of NBSTg,. Our
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analysis resulted in new characterizations for these
mappings and allowed us to investigate their preservation
capabilities. We expect that the discoveries made in this
study will lay the groundwork for future implementations
of NBS-mappings within the field of soft sets theory.
Additionally, we introduced a novel OMICRON
diagnostic  model  within the framework of
NBS-mappings.
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