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Abstract: Spatio-Temporal (ST) model is developed with the combination of ARCH to overcome non-constant error variance through

data analytics life cycle method. The subsequent model developed is Generalized Space-Time Autoregressive (GSTAR), which

simultaneously considers spatial and temporal dependence in rainfall data. Following this process, GSTAR is combined with ARCH to

overcome the assumption of heteroscedasticity in rainfall. Therefore, this research aimed to develop a combined GSTARIMA-ARCH

to forecast rainfall on Java Island, which is characterized by high rainfall intensity. The methodology used in this research was analysis

and modeling of GSTARIMA-ARCH in line with data analytics life cycle, particularly designed for handling Big Data in rainfall

analysis. Consequently, the results showed that forecast produced by GSTARIMA-ARCH was more accurate than other conventional

models. Moreover, this model could be used as a tool for decision-making by relevant agencies, as well as in the field of meteorology

for exploring weather and rainfall. Finally, the model is also applicable in water resources management and natural disaster mitigation

in Java Island.
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1 Introduction

Time series data from different locations are often
considered independent of each other [1,2], allowing for
separate analysis and forecasting of each data as
univariate time series. Typically, a widely used model for
analyzing univariate time series data is Autoregressive
(AR). In the context of multiple locations that share the
same time sequence, AR can be combined and analyzed
simultaneously as a multivariate time series. For example,
a first-order AR model for rainfall forecasting in Cities A,
B, and C can be analyzed collectively using Vector
Autoregressive (VAR). However, both univariate and
multivariate time series have significant limitations, as
they do not account for spatial relationship or influences
between observation location. The model generally
assumes that the current observation at a location is
mainly a function of the previous, disregarding potential
spatial dependencies.

Spatio-Temporal (ST) model is an extension of time
series that includes data sorted by location and time [3].
This model considers both the influence of location and
time of observation during analysis and forecasting. It is
crucial to be aware that the method for analyzing ST was
in line with the framework developed by George E. P.
Box and Gwilym M. Jenkins, commonly known as
Box-Jenkins method [4]. This method consists of three
iterative stages, namely identification, parameter
estimation, and diagnostic testing. The stages provide a
structural guide for explorers and practitioners to conduct
forecasting using ST model.

Space-Time Autoregressive (STAR) is an extension of
Box-Jenkins method that includes both spatial and
temporal relationship in data analysis. This model
assumes homogeneous characteristics across locations
and is applied to stationary data. Furthermore, model uses
location weights to differentiate spatial influences and
also adapts the same AR and ST parameters for each
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location [5,6].However, STAR model’s assumptions of
homogeneity often show limitations, particularly when
applied to real-world data. Research has found that the
characteristics between locations are heterogeneous, with
variations in factors such as distance, relief, population,
and economic condition. Relating to this research,
Ruchjana (2002) improved the assumptions of model by
developing Generalized Space-Time Autoregressive
(GSTAR) which assumes heterogeneous characteristics
between locations and stationary data [7]. As opposed to
STAR, GSTAR allows AR and ST parameters to vary by
location, thereby making the model more flexible and
potentially more accurate for diverse spatial data. For
example, GSTAR has been used to forecast production in
three petroleum wells of Jatibarang Field volcanic layer.

GSTAR is rapidly gaining popularity among
practitioners and explorers in the fields of stochastic
modeling, mathematics, and statistics. Since its initial
development by Ruchjana (2002), the model has been
modified and improved based on findings from real data
analysis, leading to improved performance and wider
applicability. For instance, GSTAR has been successfully
used for short-time forecasting of PM2.5 in
Beijing-Tianjin-Hebei [8]. Yundari et al. further improved
the model by incorporating kernel function method,
which has proven effective in forecasting COVID-19
cases [9,10,11,12]. In the context of non-stationary data,
Generalized Space-Time Autoregressive Integrated
(GSTARI) was developed. The model is further enhanced
by including MA component, resulting in GSTARMA. It
is crucial to be informed that Diagicinto first introduced
GSTARMA in 2006 for crime rate forecasting, which was
later refined by Min et al. in 2010 [13,14].Subsequently,
Akbar et al. applied this model to forecast air pollution
[15], while Andayani et al. developed GSTARIMA and
GSTARIMA-X models with exogenous elements through
transfer functions [16,17]. Most recently, GSTARIMA
has been extended to higher orders, specifically
developing third-order model for rainfall forecast [18].

The application of GSTAR and GSTARIMA in real
data analysis raises the assumption of heteroscedasticity
in model errors, signifying that errors have a non-constant
variance [19]. To address this issue, research has
developed various extensions of GSTAR model. A
significant approach was the combination of GSTAR with
ARCH model, which is designed to handle non-constant
variance in time series data [20,21]. Relating to this
discussion, Nainggolan et al. developed GSTAR-ARCH,
and Bonar et al. proposed GSTARI-ARCH [19,22].
Additionally, GSTARI-X-ARCH was introduced as an
extension that includes exogenous variables useful for
rainfall forecasting [23]. These models aim to improve
the accuracy of ST forecasting by accounting for
heteroscedasticity. In a related research, Monika et al.
conducted literature review on the development of
GSTARIMA that specifically addresses heteroscedasticity
assumptions [24].

Based on previous research, explorers have identified
an opportunity to develop new, more comprehensive
models, and procedures. Specifically, the discovery has
led to the development of a high-order GSTARIMA,
called GSTARIMA (3,1,1), and it is combined with
ARCH to overcome the non-constant error variance. This
new model is called GSTARIMA (3,1,1)-ARCH and
represents a significant advancement in the field. In the
context of this research, the application of this model
focuses on forecasting rainfall in Java Island, Indonesia.
This process is achieved by using data obtained from
NASA POWER big data website [25,26]. To conduct the
analysis and modeling, data analytics life cycle
methodology is used [27]. Furthermore, this methodology
includes discovery, data preparation, model planning,
model building, communicating results, and
operationalization. The exploration provides benefits to
science through model development and application to
real data, especially in mathematical statistics, including
stochastic modeling. Moreover, rainfall forecasting
results can be used as valuable recommendations for
various agencies in Indonesia. For example, the results
can be applied when making policies such as disaster
mitigation, weather forecasts by meteorological,
climatological, and geophysical agencies (BMKG), as
well as planning for planting season.

2 Materials and Methods

2.1 Space-Time Model with Box-Jenkins

Procedure

A stochastic process was a series of random variables
Z(ω , t), with ω representing the sample space and t was
the time index. A set of random variables
{Zt1 ,Zt2 ,Zt3 , . . . ,Ztn} of a stochastic process
{Zt(ω , t) : t = 0,±1,±2, . . .} were given [1]. Moreover,
in this context, time series were considered as a stochastic
process, {Zt(ω , t) : t = 0,±1,±2, . . .}, where the random
variables Z were indexed by time t in the sample space ω
[1].

The main purpose of analyzing time series data was to
produce predictions or forecasts of phenomena that
occurred in the future by using the Box-Jenkins method.
Furthermore, time series method with the Box-Jenkins
consisted of three stages of procedures, namely model
identification, parameter estimation, and diagnostic
checking. In this research, model identification was
conducted by checking data stationarity and plotting the
Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) [1,2]. Additionally,
parameter estimation was performed by determining the
correct value of the parameter coefficients to verify the
estimation to be included in the model. Diagnostic
checking included a white noise and normality
examination to ensure that the selected model was
suitable enough to be used in forecasting [4].
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Research experts have developed ST model based on
the principles and procedures of Box-Jenkins method
[23]. Specifically, ST is a mathematical model for
analyzing relationship between space and time in various
phenomena and systems. In ST modeling, weight matrix,
which is a square matrix with elements consisting of
corresponding location weights was calculated.
Additionally, weight matrix could be calculated based on
the actual distance between locations. It is crucial to be
aware that weight matrix is also known as inverse
distance weight and can be calculated using the following
formula.

wi j =
1

di j

, (1)

where wi j represented the inverse distance weight matrix
elements at location i and j while di j was the distance
between locations i and j and as the two locations were
closer, the weight given became greater. Furthermore,
standardization was performed on the above matrix in the

form of wi j to obtain ∑i6= j w
(l)
i j = 1 that the inverse

distance weight was,

W =









0
w12

w12+w13+w14

w13
w12+w13+w14

w14
w12+w13+w14

w21
w21+w23+w24

0
w23

w21+w23+w24

w24
w21+w23+w24

w31
w31+w32+w34

w32
w31+w32+w34

0
w34

w31+w32+w34
w41

w41+w42+w43

w42
w41+w42+w43

w43
w41+w42+w43

0









(2)
GSTAR introduced by Ruchjana assumed that the
characteristics of each location were heterogeneous.
Additionally, the GSTAR(p,λk) model had a time order p
and spatial order λk which was expressed in matrix form
through Equation (3) [28],

z(t) =
p

∑
k=1

λk

∑
l=0

[

ΦΦΦklW
(l)z(t − k)

]

+ e(t), (3)

where
z(t) : a vector of variables of size (N × 1) at

time t,
z(t − k) : vector of variables of size (N×1) at time

(t − k),
λk : spatial order in the k-th autoregressive,
vk : spatial order of the k-th moving average,
ΦΦΦkl : autoregressive and space time

parameters at time order k and
spatial order l of size (N × N)
in the form of diagonal matrix
(

Φ
(1)
kl ,Φ

(2)
kl ,Φ

(3)
kl , . . . ,Φ

(N)
kl

)

,

W(l) : weight matrix of size (N ×N) at spatial
order l, l = 0,1,2, . . . ,λk containing
wii = 0 and ∑i6= j wi j = 1,

e(t) : error vector of size (N × 1) at time t,

assuming e(t)iid
N
(

0,σ2I
)

.

GSTAR that passed through the differencing process
was transformed into GSTARI model. In addition, the

general form of GSTARI (p,d,λk) with differencing
order d in Equation (4) [23],

y(t) =
p

∑
k=1

λk

∑
l=0

[

ΦΦΦklW
(l)y(t − k)

]

+ e(t), (4)

where

y(t) = z(t)− z(t − 1) ,y(t − 1)

= z(t − 1)− z(t − 2) , . . . ,y(t − k)

= z(t − k)− z(t − k− 1),

(5)

Digiacinto first introduced GSTARMA in discussing
a new method to model regional unemployment in Italy.
GSTARMA (p,d,λk) was an extension of GSTAR model
with the addition of MA error elements. Moreover, model
was applied to stationary data and expressed in Equation
(6) [14].

z(t) =
p

∑
k=1

λk

∑
l=0

[

ΦΦΦklW
(l)z(t − k)

]

−
q

∑
k=1

vk

∑
l=0

[

ΘΘΘ klW
(l)e(t − k)

]

+ e(t),

(6)

ΘΘΘ kl : MA parameters at time order k and
spatial order l of size (N × N)
in the form of diagonal matrix
(

Θ
(1)
kl ,Θ

(2)
kl ,Θ

(3)
kl , . . . ,Θ

(N)
kl

)

,

e(t) : error vector of size (N × 1) at time t,

assuming e(t)iid
N
(

0,σ2I
)

.
GSTARMA model developed on non-stationary data

was called GSTARIMA, which was first introduced by
Min. The developed model was used in urban traffic
networks to forecast short-term traffic flow. GSTARIMA
(pλk

,d,qvk
), d was the differencing order expressed in

Equation (7) [13].

y(t) =
p

∑
k=1

λk

∑
l=0

[

ΦΦΦklW
(l)y(t −k)

]

−
q

∑
k=1

vk

∑
l=0

[

ΘΘΘ klW
(l)e(t −k)

]

+e(t),
(7)

where

y(t) = z(t)− z(t − 1) ,y(t − 1)

= z(t − 1)− z(t − 2) , . . . ,y(t − k)

= z(t − k)− z(t − k− 1),

(8)

2.1.1 Space-Time Model Identification

Pfeifer and Deutsch used Space-Time Autocorrelation
Function (STACF) and Space-Time Partial
Autocorrelation Function (STPACF) to identify
STARMA [2,6]. In the calculation of STACF and
STPACF, a spatial weight matrix was used to calculate the
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autocovariance between two vectors of observations that
had passed through a differencing process with a time lag
m. Furthermore, the row of observation vectors z(1), z(2),
z(3), ..., z(t) included observations at all locations
i = 1,2,3, ...,N and time t = 1,2,3, ...,T .

Γ (m) = E[z(t)(z(t +m))′], (9)

STACF function was obtained by standardizing the
autocovariance function of the time lag m for observations
with spatial lags k and l, namely γlk(m). Generally, the
variance of STACF had a fixed value for each spatial lag,
which was explained using Equation (10).

ρlk(m) =
γlk(m)

√

γll(0)γkk(0)
(10)

The order of GSTARIMA model was identified by
observing the lags cut on the STPACF plot. In addition,
the lags were defined as the last coefficient of
φlk = (l = 0,1,2, ...,λ and k = 1,2,3, ...) in the
Yule-Walker Equation on the STPACF for spatial order λ .

2.1.2 Parameter Estimation of Space-Time Model

Parameter Estimation of GSTARIMA (p,d,λk) was
conducted by estimating GSTARI and GSTIMA with
Ordinary Least Square (OLS) and Maximum Likelihood
Estimation (MLE) methods, respectively [29].
Additionally, parameter estimation of GSTARI (3,1,1)
using OLS was obtained as follows.

y(i) (t) = ΦΦΦ
(i)
10y(i) (t − 1)+ΦΦΦ

(i)
11W(l)y(i) (t − 1)

+ΦΦΦ
(i)
21W(l)y(i) (t − 2)

+ΦΦΦ
(i)
31W(l)y(i) (t − 3)+ e(i) (t)

(11)

GSTAR (3,1,1) for 4 locations monitored linear model
equation as follows.

Y =









y(1)(t)

y(2)(t)

y(3)(t)

y(4)(t)









; βββ =













Φ
(1)
10

Φ
(2)
10
...

Φ
(4)
31













;e =









e(1)(t)

e(2)(t)

e(3)(t)

e(4)(t)









;

X =









y(1)(t −1) 0 · · · 0 0

0 y(2)(t −1) · · · 0 0

0 0 · · · v(3)(t −3) 0

0 0 · · · 0 v(4)(t −3)









(12)

Estimated parameter values β̂ββ for GSTARI (1,1,1) and
GSTARI (3,1,1) was calculated using OLS method in
Equation (13).

β̂ββ = (X′X)−1X′Y. (13)

Estimated parameter values β̂ββ in GSTARI were used
to calculate data forecasting. In addition, the errors from
model were re-modeled with GSTIMA following
Equation (14).

y(t) = e(t)−
q

∑
k=1

vk

∑
l=0

θθθ klW
(l)e(t − k) (14)

In this research, the parameters of GSTIMA (1,1,1) were
estimated. Assuming the error was white noise, the
distribution of the error became,

e =









e(1)(t)

e(2)(t)

e(3)(t)

e(4)(t)









, (15)

Multivariate normal with zero mean and constant variance
σ2IN×T . Relating to this discussion, the probability
function was obtained as follows.

f (e|ΦΦΦ ,ΘΘΘ ,σ2) = (2π)
TN
2 |σ2IN×T |

− 1
2 exp

(

−
1

2σ2
e′e

)

(16)
with, S(ΦΦΦ,ΘΘΘ) = e′e. Conditional Likelihood Function of
ΦΦΦ , ΘΘΘ and σ2 was,

L(e|ΦΦΦ ,ΘΘΘ ,σ2) = (2π)−
TN
2 (σ2)−

T N
2 exp

(

−
S(ΦΦΦ,ΘΘΘ)

2σ2

)

(17)
with S(ΦΦΦ,ΘΘΘ) as the conditional sum of squares function.

S(ΦΦΦ,ΘΘΘ) = ê′ê (18)

where, the vector ê represented the error vector of
GSTARI model. Conditional Maximum Likelihood
Estimation of σ2, ΦΦΦ , ΘΘΘ was,

σ̂2 =
S(Φ̂ΦΦ,Θ̂ΘΘ)

T N
(19)

with Φ̂ΦΦ and Θ̂ΘΘ which minimizes S(ΦΦΦ,ΘΘΘ).
The parameters of GSTARIMA were non-linear, in

which case the parameters were obtained using an
iteration producer through the Marquardt algorithm
minimizing the sum of squares error.

e(t) = y(t)−ΦΦΦklW
(l)y(t − 1)+ΘΘΘ klW

(l)e(t − 1) (20)

e(t − 1) = y(t − 1)−ΦΦΦklW
(l)y(t − 2)+ΘΘΘ klW

(l)e(t − 2)
(21)

e(t − 2) = y(t − 2)−ΦΦΦklW
(l)y(t − 3)+ΘΘΘ klW

(l)e(t − 3)
(22)

...

e(t −n+1) = y(t −n+1)−ΦΦΦklW
(l)y(t −n)+ΘΘΘ klW

(l)e(t −n)
(23)

c© 2025 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 3, 577-593 (2025) / www.naturalspublishing.com/Journals.asp 581

Equation (21) was substituted into Equation (20) to obtain
the parameters Θ l

kl , Equations (21) and Equation (22)
were substituted into Equation (20) to obtain the
parameter Θ l

kl , when Equations (20) through Equation
(23) were substituted into Equation (20), the parameters

obtained θ̂
(t−n)
kl . Moreover, the iteration procedure in

estimating model parameters was necessary to overcome
the non-linearity. The non-linear nature of GSTARIMA
constrained the determination of parameter confidence
intervals. In addition, the sum of square was optimized by
estimating the least square estimate as follows.

S(ΦΦΦ,ΘΘΘ) = S(δδδ)≈ S(δ̂δδ)+ (δδδ − δ̂δδ )′Q(δδδ − δ̂δδ ) (24)

with, δδδ ′ = (ΦΦΦ ′
,ΘΘΘ ′) and Q = 1

2

[

∂S(δδδ )
∂δδδ i∂δδδ j

]

for

i = 1,2,3, . . . ,K and j = 1,2,3, . . . ,K.

S(δδδ ) =
T

∑
t=1

e(t)′e(t) (25)

∂S(δδδ )

∂δδδ i

=
T

∑
t=1

2e(t)′
∂e(t)

∂δδδ i

∣

∣

∣

∣

δ̂δδ

= 0 (26)

1

2

∂ 2S(δδδ )

∂δδδ i∂δδδ j

∣

∣

∣

∣

δ̂δδ

=
T

∑
t=1

∂ 2S(δδδ )

∂δδδ i∂δδδ j

∣

∣

∣

∣

δ̂δδ

+
T

∑
t=1

∂e(t)′

∂δδδ i

∂e(t)

∂δδδ j

∣

∣

∣

∣

δ̂δδ

∂ 2e(t)

∂δδδ i∂δδδ j

∣

∣

∣

∣

δ̂δδ
(27)

∂ 2e(t)
∂δδδ i∂δδδ j

∣

∣

∣

δδδ=δ̂δδ
being a function of e(t) that occurred before

time t, and under the condition that the model was fit,
E [e(t)′e(t − k)] = 0 for k ≥ 1 was ignored. The matrix
Q = X′X with,

X =

















∂e(1)
∂δδδ 1

∣

∣

∣

δ̂δδ

∂e(1)
∂δδδ 2

∣

∣

∣

δ̂δδ
. . .

∂e(1)
∂δδδ k

∣

∣

∣

δ̂δδ
∂e(2)
∂δδδ 1

∣

∣

∣

δ̂δδ

∂e(2)
∂δδδ 2

∣

∣

∣

δ̂δδ
. . .

∂e(2)
∂δδδ k

∣

∣

∣

δ̂δδ
...

...
. . .

...
∂e(T )
∂δδδ 1

∣

∣

∣

δ̂δδ

∂e(T )
∂δδδ 2

∣

∣

∣

δ̂δδ
. . .

∂e(T )
∂δδδ k

∣

∣

∣

δ̂δδ

















(28)

In this research, the sum of squares function was
approximated by Equation (29):

S(δδδ ) = S(δ̂δδ )+ (δδδ − δ̂δδ )′Q(δδδ − δ̂δδ ) (29)

The confidence interval estimate for [ΦΦΦ,ΘΘΘ ]′ = δδδ was

obtained from S(δδδ ) = S(δ̂δδ) + K
T N−K

S(δ̂δδ) ∼ FK,T N−K,α

with the quadratic equation representing S(δδδ) in Equation
(29). The matrix Q was the numerical estimate used to
prepare the confidence interval construction. Moreover,
the exact sum of squares function S(δδδ ) was replaced with
the conditional sum of squares S∗(δδδ ) when using
conditional maximum likelihood. The matrix Q was used
to calculate the moment matrix in the linearized
estimation method, where the confidence interval on σ2

was calculated in the case of a linear model with
(σ2|Z(1),Z(2), . . . ,Z(T ))∼ S∗(δ̂δδ )χ

2
T N−K .

2.1.3 Diagnostic Checking Model ST

1.Chi-Squared QQ plots
Chi-squared QQ plots were used to check the
normality assumption of the model [30]. When the
sample came from a normal distribution, the QQ plot
showed a straight-line pattern. In addition to testing
whether the errors of the model were multivariate
normal, the Chi-squared QQ plot test was used, which
included the values of d2

j .

d2
j = (x j − x̄)′ΣΣΣ−1(x j − x̄), j = 1,2, . . . ,n (30)

Here, d2
j represents the test statistic, x j is the jth

observation, x̄ represents the mean of the

observations, and ΣΣΣ−1 is the inverse of the covariance
matrix. Moreover, when d2

j ≤ χ2
p(α) or p-value > α ,

it means that the model errors were multivariate
normally distributed.

2.Lagrange Multiplier Test
The ARCH-Lagrange Multiplier (ARCH-LM) test
examines the assumption of heteroscedasticity in
model errors. To conduct the ARCH-LM test, a
regression was performed on the square of the model
errors using the following equation [31,32]:

e2
t = α0 +α1e2

(t−1)+ · · ·+αqe2
(t−m) (31)

where n is the number of observations, R2 represents
the coefficient of determination of the regression
model on e2

t , and m is the number of time lags.
Additionally, the Lagrange Multiplier (LM) statistic is
given by:

LM = n×R2 (32)

When the value of LM is greater than the value of χ2
m,

this indicates an ARCH effect on the error or
heteroscedasticity in the model.

2.2 Data Analytics Life Cycle

Data analytics life cycle was a methodology used to
analyze big data allowing useful information to be
obtained [33,34]. In addition, the data analytics life cycle
consisted of six stages, including [27],

•Discovery → problems were identified by the
research, understood data sources, and formulated
initial hypotheses.
•Data Preparation → data were collected for
exploration from predetermined sources, cleaning it
of missing values and noise. The results of data
cleaning were transformed from daily data to monthly
or according to the criteria and requirements of
explorers.
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•Model Planning → model used was planned by the
research to identify data, determine models, methods,
workflows, and evaluate criteria to test the accuracy of
model.
•Model Building → the exploration divided the data
into training and examining data. At this stage, the
data was modeled with ST following the Box-Jenkins
procedure.
•Communicate Results → the results obtained from
modeling and data processing were interpreted by the
research. Furthermore, the explorations then
conducted trials and verifications to determine
whether the research was successful.
•Operationalize → the research provided a final report
and recommendations for relevant agencies and
applied the model to appropriate environments.

3 Results and Discussions

3.1 Development of GSTARIMA-ARCH Model

GSTARIMA errors that did not meet the assumption of
homoskedasticity or had non-constant variance were
estimated through the ARCH method. Additionally,
parameter estimation of GSTARIMA-ARCH was divided
into estimation by Maximum Likelihood Estimation
(MLE) and Generalized Least Squares (GLS) methods.

The model equations are:

y(t) =
p

∑
k=1

λk

∑
l=0

[

ΦΦΦklW
(l)y(t − k)

]

−
q

∑
k=1

vk

∑
l=0

[

ΘΘΘ klW
(l)e(t − k)

]

+ e(t)

(33)

e(t) = Dtηηη t (34)

et | Ft−1 ∼ N(0,ΣΣΣ t) (35)

where y(t) = z(t) − z(t − 1),
y(t − 1) = z(t − 1) − z(t − 2), . . . ,
y−k(t) = z(t − k)− z(t − k− 1).

A vector of observation data z(0),z(1),z(2), . . . ,z(T ),
which consists of T observations at N locations, was
used. The ARCH-Regression model for parameter
estimation at location k with data t = 1,2,3, . . . ,T is
expressed as follows:

yk (t) = X′
k (t)βββ k + ek (t) (36)

ek (t) =
√

hk(t)ηk(t) (37)

hk(t) = α0k +α1ke2
k(t − 1) (38)

In simple terms, the ARCH-Regression model at
location k = 1 is expressed as:

yt =ΦΦΦ0zt−1+ΦΦΦ1Vt−1−ΘΘΘ0et−1−ΘΘΘ1Ut−1+et =X′
tβββ +et

(39)

where the conditional variance of the error et is given
by:

ht = α0 +α1e2
t−1 (40)

For all unknown parameters, θθθ = (βββ ,ααα)′ with:

βββ =







Φ0

Φ1

Θ0

Θ1






(41)

ααα =

[

α0

α1

]

(42)

Additionally, the procedure for estimating the variance
parameters θ = (β ,α)′ is described as follows.

1.The procedure for estimating the variance parameter

ααα =

(

α0

α1

)

was as follows.

•Regressed Y against X with the OLS method, the
estimated regression coefficients were obtained as

b =

(

b1

b2

)

.

•Calculated the error et = yt − X′
tb with

t = 1,2,3, . . . ,T . Initial estimated values for the
parameters α were obtained from the
autoregression coefficients e2

t and e2
t−1, i.e., for

example, ααα =

(

α0

α1

)

.

•Calculated the variance for each t with values a:

ht = α0 +α1e2
t−1. Then regress

e2
t

ht
− 1 against 1

ht

and
e2

t−1

ht
, thereby obtaining the regression

coefficient da =

(

ã0

ã1

)

.

•The estimated parameters from steps 2 and 3 were
obtained as follows:

α̂αα =

(

â0

â1

)′

=ααα+dα =

(

α0

α1

)′

+

(

α̃0

α̃1

)′

=

(

α0 + α̃0

α1 + α̃1

)′

(43)

Then dα for t = 1,2,3, . . . ,T was calculated by:

Suppose Z̃t =
(

1
ht
,

e2
t

ht

)

, Z̃t = (Z̃1, Z̃2, Z̃3, . . . , Z̃T ),

later ft = e2
t

ht
− 1, and f ′ = ( f1, f2, f3, . . . , fT ).

Then dα = (Z̃′Z̃)−1Z̃′ f . Where Z̃ was the

regressor matrix in the regression ft against 1
ht

and

e2
t−1

ht
. The covariance matrix for α̂αα was

cov(α̂αα) = (Z̃′Z̃)−1.
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2.The procedure for estimating the regression

parameters βββ =







Φ0

Φ1

Θ0

Θ1






was as follows.

•Calculated the variance parameter of location i

with the steps in the procedure above, obtaining

α̂αα i =

(

α̂
(i)
0

α̂
(i)
1

)′

, for i = 1,2,3, . . . ,N.

•For t = 1,2,3, . . . ,T , calculated the variance of
each location i with,

ĥi(t) = α̂
(i)
0 + α̂

(i)
1 e2

i (t). (44)

•Calculated the standardized error with:

ηi(t) =
e2

i (t)

hi(t)
, (45)

for i= 1,2,3, . . . ,N and t = 1,2,3, . . . ,T . Later, the
correlation was calculated with,

ρ̂i j = Cor(ηi,η j). (46)

•Calculated the covariance matrix ΣΣΣ using steps 2
and 3, and following the steps, the mean regression
parameters were estimated using the GLS method.

Linear model equation with error assumption (e|X)∼

N(0,σ2U), where U =







u1 · · · · · ·
...

. . .
...

· · · · · · uT






, and the conditional

variance of the error is expressed by

E(e′e | X) = σ2U = σ2







u1 · · · · · ·
...

. . .
...

· · · · · · uT






=







σ2
1 · · · · · ·
...

. . .
...

· · · · · · σ2
T






.

(47)
The linear model is heteroskedastic when ui 6= u j for

i 6= j, while the linear model is homoskedastic when u1 =
u2 = · · ·= uT . The GLS method was performed by a linear
transformation of the model to obtain new data that met the
assumptions of OLS method (homoskedastic). Moreover,
suppose σ2

t = ht−1 = α0 +α1e2
t−1, the diagonal matrix U

is symmetric and positive definite, showing that matrix L
satisfies U−1 = L′L. Following this calculation, transform
the error using the matrix L, so that ẽ = Le. The mean of ẽ
is E(ẽ)=E(Le) =LE(e) = 0, and the conditional variance
on X is

E(ẽ′ẽ | X) = Lσ2UL′
. (48)

From Equation (48), U = (L′L)−1 is obtained.
Therefore, the covariance matrix ẽ conditional on X is
written as

E(ẽ′ẽ | X) = Lσ2UL′ = Lσ2(L′L)−1L′ = σ2IT . (49)

The regression model obtained by matrix
transformation L is described as follows:

Ly = LXβββ +Le. (50)

For example, let ỹ = Ly and X̃ = LX, then we obtain:

ỹ = X̃βββ + ẽ. (51)

The transformed model Equation (50) has mean
E(ẽ) = 0 and conditional variance E(ẽẽ′ | X) = σ2IT .
Therefore, the transformed results fulfill the assumption

of error (e|X) ∼ N(0,σ2IT ). The estimator β̂ββ gls is
calculated using the formula:

β̂ββ gls =
(

X′Σ−1X
)−1

X′Σ−1Y. (52)

3.2 Modeling Procedure

This research uses data analytics life cycle model
(DALCM) for modeling and analysis, a method
developed for big data analysis and development of
Knowledge Discovery in Databases (KDD) Data Mining
stage. Even though KDD data mining consisted of three
stages, namely pre-processing, data mining, and
post-processing, DALCM provided a more detailed
approach with six distinct stages. These stages included
discovery, data preparation, model planning, model
building, communicating results, and operationalization.
The primary difference between DALCM and KDD was
in the analysis and modeling phase.

Figure 1 showed the stages of modeling
GSTARIMA-ARCH analysis on rainfall data using
DALCM. At the discovery stage, the research problem
was identified, relevant literature was reviewed to serve as
reference material, data sources for modeling were
determined, and initial hypotheses were verified.

At the data preparation stage, data from sources that
were determined at the previous stage was retrieved. The
data for this research originated from NASA POWER
website, which was an open source. In addition to the data
preparation stage, the location was selected by inputting
latitude and longitude coordinates, observation time, and
data interval. The data collected was used as input for
data cleaning from missing values and noisy data.
Furthermore, daily data was transformed into monthly
data based on the amount of rainfall each month and then
filtered based on the season in Indonesia. In this research,
data used in December, January, and February (DJF) was
called the wet season which showed high intensity of
rainfall.

GSTARIMA-ARCH modeling stage was conducted at
planning and building stages while forecasting results
were interpreted at result communication stage. Finally,
operationalize stage contained output in the form of
recommendations for related environments, scientific
articles, and code programming that was used and
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Fig. 1: Data Analytics Life Cycle Diagram for GSTARIMA-ARCH Modeling

developed in the future by explorers and practitioners in
the fields of meteorology, stochastic, and spatiotemporal
modeling mathematics.

The stages of GSTARIMA-ARCH modeling were
described in detail as shown in Figure 2.

1.Data preparation results were used as output in
GSTARIMA-ARCH modeling and were divided into
training data and examining data.

2.Training data was used to train model and the first
step performed based on Box-Jenkins method is
model identification. Additionally, descriptive
statistics and data correlation were calculated, while
time series was plotted.

3.Data was checked for stationarity using ADF test for
the mean and BoxCox Lambda for the variance.
Non-stationary data was subjected to differencing
and/or data transformation until the data became
stationary.

4.Stationary data was used to determine the univariate
model order with ARIMA.

5.The inverse distance weight matrix was calculated
based on the actual distance of each location.

6.ST order identification with STACF and STPACF.
7.Estimation of GSTARI parameters with OLS and

calculating model errors.
8.GSTARI errors were used to estimate GSTIMA

parameters with MLE.

9.GSTARI and GSTIMA were combined into
GSTARIMA.

10.Checking the homoscedasticity assumption of
GSTARIMA error with ARCH-LM examination.

11.GSTARIMA errors that did not meet the assumption
of homoskedasticity (heteroskedasticity) were
re-modeled with ARCH. Parameter estimation of
GSTARIMA-ARCH model using MLE and GLS.

12.GSTARIMA-ARCH errors were diagnosed to assess
its suitability for modeling.

The GSTARIMA-ARCH was used for forecasting
training as well as testing data, and the output was
obtained as future rainfall forecasting results.

3.3 Research Area

Rainfall data was used as response variable, which was
influenced by exogenous variables such as humidity and
temperature. Moreover, the climate data was obtained
from NASA POWER website and could be accessed at
https://power.larc.nasa.gov/data-access-viewer/. The
observation locations on Java Island consisted of 119
districts and cities, as shown in Figure 3. Different colors
distinguished administrative boundaries between city
districts. In addition, climate data was collected from
December 1, 1982, to June 30, 2023, at daily intervals
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Fig. 2: Research Flow Chart for GSTARIMA-ARCH Model

which were stored in comma-separated values (.csv)
format. The process of retrieving climate data on NASA
POWER website required latitude and longitude
coordinates.

3.4 GSTARIMA-ARCH model for Rainfall

GSTARIMA-ARCH modeling for rainfall data followed
DALCM, and the first stage was a discovery, where
explorations determined data sources and literature
review. Data sources from NASA POWER that met big
data criteria, were 3V (velocity, variety, volume).
Furthermore, the data preparation stage was conducted by
retrieving data on NASA POWER website. The selection
process was performed on the selection of
agroclimatology classes for rainfall variables with daily
intervals from January 1, 1982, to June 30, 2023.
Moreover, the results of rainfall data retrieval on NASA

POWER website were stored in csv format. Daily rainfall
data had a dimension of 15,159 series and 119 locations.
Consequently, rainfall data passed through a
pre-processing stage with the flow described in Figure 4.

Rainfall data was cleaned to check missing values and
duplicate data, showing instances of missing values and
several duplicate locations. Around 77 locations had the
same observation data, therefore, the results of data
cleaning were 42 locations. Rainfall data in 42 locations
was aggregated into monthly data based on the amount of
rain each month. Moreover, daily data totaling 15,159
series after being aggregated to monthly data became 502
series. In this research, monthly rainfall data was studied
in months that had high rainfall intensity, including
December, January, and February (DJF). Following this
exploration, the results of DJF month selection obtained
up to 123 series for 42 locations in Java Island.

Rainfall data in Java Island was modeled with
univariate AutoRegressive Integrated Moving Average
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Fig. 3: Observation Location Map

Fig. 4: Flow Chart for Pre-Processing Data

(ARIMA) time series. The best order obtained was
ARIMA (3,1,1) model at 4 locations that showed the
minimum Akaike Information Criterion (AIC) value. In
addition, the 4 locations of rainfall data included Central
Jakarta, Purwakarta, Serang City, and Lebak.
GSTARIMA (3,1,1) was used to forecast rainfall at four
locations on Java Island, with the correlation value of the
observed data shown in Figure 5. Typically, rainfall data
in the four observation locations had a very strong
relationship, showing a tendency to follow the same
up-and-down trend pattern.

Rainfall data at 4 locations were tested for stationarity
and the results of the stationarity examination were
presented in Table 1 and Table 2. The data at 4
observation locations were stationary on average with the
acquisition of a value that was smaller than the
significance level α , and ρ-value was smaller than the
significance level α = 0.05. Moreover, rainfall data still
required to be stationary in variance with lambda values
not close to one. Differencing and transformation
processes were conducted on the data at 4 locations.
However, rainfall data that was differentiated and
transformed had a value smaller than the significance
level. The ρ-value was lesser than α and lambda values

Fig. 5: Correlation Values at 4 Locations in Java Island

were already close to one. Relating to this discussion,
rainfall data was stationary in mean and variance.
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Table 1: Stationarity Test Results Before Differencing

Location Variables Before Differencing Con.

p-value Lambda

Serang City Z1(t) 0.01 1.055366 TS

Lebak Z2(t) 0.01 0.323666 TS

Central Jakarta Z3(t) 0.01 -0.197534 TS

Purwakarta Z4(t) 0.01 -0.135984 TS

Table 2: Stationarity Test Results After Diferencing

Location Variables After Differencing Con.

p-value Lambda

Serang City Z1(t) 0.01 1.125785 S

Lebak Z2(t) 0.01 1.063062 S

Central Jakarta Z3(t) 0.01 1.056984 S

Purwakarta Z4(t) 0.01 0.970487 S

Fig. 6: Plot of Differencing and Transformation of Rainfall Data

at 4 Locations

Figure 6 showed that time series plot for rainfall data
after the differencing and transformation process was
around the mean value represented by the red line.
Moreover, the series plot of differencing data showed the
rainfall data had the same up-and-down trend pattern. The
inverse weight matrix of the distance between the 4
observation locations was calculated by converting the
latitude and longitude coordinates. The calculation of
weight matrix was calculated using Equation (1) and
standardized with Equation (2). In addition, the results of
the inverse weight matrix were shown in Equation (53).

W =







0 0.4632 0.3593 0.1775
0.4769 0 0.3207 0.2023
0.3596 0.3117 0 0.3287
0.2527 0.2798 0.4676 0






(53)

The order of GSTARIMA (3,1,1) was identified using
STACF as well as STPACF calculations, and plots were
shown in Figure 7 and Figure 8. STACF plot in spatial lag
0 was truncated at time lags 1,2,3,5,6 and 9, and at spatial
lag 1, the plot was shortened at 1, 2,3,5,6, and 9.
Furthermore, STPACF plot in spatial lag 0 was truncated
at time lags 1,2,3,5,6 and 8, and at spatial lag 1, it was

shortened at time lags 2,5 and 8. When viewed from
STACF and STPACF plots, models formed were
GSTARIMA (1,1,1), (2,1,1), and (3,1,1). However,
referring to the determination of the order using ARIMA,
this observation location had ARIMA order (3,1,1). The
specific model selected for this process modeling was
GSTARIMA (3,1,1).

Fig. 7: STACF Plots for 4 Locations in Java Island

Fig. 8: STPACF Plots for 4 Locations in Java Island

GSTARIMA (3,1,1) was the same as GSTARI (3,1,1)
and GSTIMA (1,1). Moreover, the parameter estimation
procedure of GSTARI (3,1,1) was conducted by OLS
method referring to Equation ( 9 ) up to ( 11 ). The results
of the parameter estimation of GSTARI (3,1,1) model
were shown in Table 3 and Table 4.

Table 3 and 4 showed the value of p-value of each
parameter was still dominant, greater than the significant
level, α = 0.05. The p-value greater than α marked with
(*) showed that the parameters were not partially
significant. Moreover, parameters that had p-value lesser
than α were partially significant. The estimated parameter
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Table 3: Parameters Estimation of GSTARI (3,1,1) at spatial lag 0

φ Estimated Value Standard Error t-Count p-value

φ̂
(1)
10 -0.6056 0.2840 -2.1324 0.0336

φ̂
(2)
10 -1.7533 0.3885 -4.5136 0.0000

φ̂
(3)
10 -0.1960 0.3401 -0.5762 0.5648*

φ̂
(4)
10 -0.7493 0.2956 -2.5350 0.0116

φ̂
(1)
20 -0.0671 0.3211 -0.2088 0.8347*

φ̂
(2)
20 -1.6688 0.4547 -3.6704 0.0003

φ̂
(3)
20 -0.1261 0.3813 -0.3308 0.7410*

φ̂
(4)
20 -0.7050 0.3369 -2.0925 0.0370

φ̂
(1)
30 -0.0059 0.2825 -0.0210 0.9833*

φ̂
(2)
30 -0.7059 0.3926 -1.7979 0.0729*

φ̂
(3)
30 0.1369 0.3384 0.4045 0.6860*

φ̂
(4)
30 -0.3586 0.2914 -1.2306 0.2192*

Table 4: Parameters Estimation of GSTARI (3,1,1) at spatial lag 1

φ Estimated Value Standard Error t-Count p-value

φ̂
(1)
11 -0.2123 0.2771 -0.7660 0.4441*

φ̂
(2)
11 0.8841 0.3834 2.3057 0.0216

φ̂
(3)
11 -0.5899 0.3038 -1.9417 0.0528*

φ̂
(4)
11 -0.1638 0.4060 -0.4035 0.6868*

φ̂
(1)
21 -0.6076 0.3142 -1.9336 0.0538*

φ̂
(2)
21 0.9885 0.4410 2.2414 0.0255

φ̂
(3)
21 -0.4965 0.3451 -1.4388 0.1509*

φ̂
(4)
21 -0.0149 0.4634 -0.0321 0.9744*

φ̂
(1)
31 -0.1835 0.2769 -0.6628 0.5078*

φ̂
(2)
31 0.5807 0.3810 1.5239 0.1283*

φ̂
(3)
31 -0.2225 0.3064 -0.7261 0.4682*

φ̂
(4)
31 0.2648 0.4029 0.6574 0.5113*

results of the GSTARI (3,1,1) were formed into a matrix
equation referred to Equation (4) as follows.









Ŷ (1)(t)
Ŷ (2)(t)
Ŷ (3)(t)
Ŷ (4)(t)









=







−0.7745 0.4632 0.3593 0.1775

0.4769 −1.0808 0.3207 0.2023

0.3596 0.3117 −0.4860 0.3287

0.2527 0.2798 0.4676 −0.7094















y(1)(t −1)
y(2)(t −1)
y(3)(t −1)
y(4)(t −1)









+







−0.4109 −0.1620 −0.1257 −0.0621

0.0630 −0.8712 0.0424 0.0267

−0.0995 −0.0862 −0.4446 −0.0909

−0.0545 −0.0630 −0.1008 −0.5949















y(1)(t−2)
y(2)(t−2)
y(3)(t−2)
y(4)(t−2)









+







−0.0825 −0.0425 −0.0329 −0.0162

−0.0083 −0.1283 −0.0056 −0.0035

0.0073 0.0063 −0.1500 0.0067

0.0205 0.0227 0.0380 −0.2419















y(1)(t−3)
y(2)(t−3)
y(3)(t−3)
y(4)(t−3)









(54)

Equation (54) was written into GSTARI (3,1,1)
equation for the location of Serang City as follows.

Ŷ (1)(t) =− 0.7745y(1)(t − 1)+ 0.4632y(2)(t − 1)

+ 0.3593y(3)(t − 1)+ 0.1775y(4)(t − 1)

− 0.4109y(1)(t − 2)− 0.1620y(2)(t − 2)

− 0.1257y(3)(t − 2)− 0.0621y(4)(t − 2)

− 0.0825y(1)(t − 3)− 0.0425y(2)(t − 3)

− 0.0329y(3)(t − 3)− 0.0162y(4)(t − 3)

(55)

GSTARIMA (3,1,1) for the other locations was
constructed similarly to Equation (42). The model was

used to perform forecasting on in-sample and out-sample.
Additionally, forecasting results produced errors that
were then used for input to GSTIMA (1,1,1) and were
estimated using the MLE method. The estimated
parameter results of the model were shown in Table 5.

Table 5: Parameters Estimation of GSTIMA(1,1,1)

Θ Estimated Value Standard Error t-Count p-value

Θ̂
(1)
10 -0.0029 0.0004 -7.5753 0

Θ̂
(2)
10 -0.0025 0.0004 -6.2398 0

Θ̂
(3)
10 -0.0028 0.0003 -8.4214 0

Θ̂
(4)
10 -0.0041 0.0004 -10.8018 0

Θ̂
(1)
11 -0.0006 0.0003 -1.6361 0.1032*

Θ̂
(2)
11 -0.0011 0.0004 -3.0603 0.0025

Θ̂
(3)
11 -0.0003 0.0003 -1.0024 0.3172*

Θ̂
(4)
11 0.0009 0.0005 1.8630 0.0638*

The results of the calculation of the estimated value of
GSTIMA (1,1,1) parameters showed that the p-value of
model parameters was dominantly and partially
significant. Moreover, the parameters that had a p-value
less than α = 0.05. The estimated value of GSTIMA
(1,1,1) parameters was presented in the form of a matrix
in Equation (56):









Ŷ (1)(t)

Ŷ (2)(t)
Ŷ (3)(t)
Ŷ (4)(t)









=







−0.0029 −0.0002 −0.0002 −0.0001

−0.0005 −0.0025 −0.0003 −0.0002

−0.0001 −0.0001 −0.0028 −0.0001

0.0002 0.0002 0.0004 −0.0041















e(1)(t−1)

e(2)(t−1)
e(3)(t−1)
e(4)(t−1)









(56)

GSTIMA (1,1,1) for the location of Serang City
referred to the calculation of Equation (56) which was
written into Equation (57):

Ŷ (1)(t) =− 0.00295e(1)(t − 1)− 0.0002e(2)(t − 1)

− 0.0002e(3)(t − 1)− 0.0001e(4)(t − 1)
(57)

GSTIMA (1,1,1) model equation for other locations
was the same as Equation (57). GSTARI (3,1,1) and
GSTIMA (1,1,1) were combined into GSTARIMA
(3,1,1). Relating to this, the GSTARIMA (3,1,1) equation
was shown in Equation (58).









Ŷ (1)(t)

Ŷ (2)(t)
Ŷ (3)(t)
Ŷ (4)(t)









=







−0.7745 0.4632 0.3593 0.1775

0.4769 −1.0808 0.3207 0.2023

0.3596 0.3117 −0.4860 0.3287

0.2527 0.2798 0.4676 −0.7094















y(1)(t−1)

y(2)(t−1)
y(3)(t−1)
y(4)(t−1)









+







−0.4109 −0.1620 −0.1257 −0.0621

0.0630 −0.8712 0.0424 0.0267

−0.0995 −0.0862 −0.4446 −0.0909

−0.0545 −0.0603 −0.1008 −0.5949















y(1)(t −2)
y(2)(t −2)

y(3)(t −2)
y(4)(t −2)









+







−0.0825 −0.0425 −0.0329 −0.0162

−0.0083 −0.1283 −0.0056 −0.0035

0.0073 0.0063 −0.1500 0.0067

0.0205 0.0227 0.0380 −0.2419















y(1)(t −3)
y(2)(t −3)
y(3)(t −3)
y(4)(t −3)









+







−0.0029 −0.0002 −0.0002 −0.0001

−0.0005 −0.0025 −0.0003 −0.0002

−0.0001 −0.0001 −0.0028 −0.0001

0.0002 0.0002 0.0004 −0.0041















e(1)(t −1)
e(2)(t −1)
e(3)(t −1)
e(4)(t −1)









(58)
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GSTARIMA (3,1,1) model for the location of Serang
City was shown in Equation (59),

Ŷ (1)(t) =− 0.7745y(1)(t − 1)+ 0.4632y(2)(t − 1)

+ 0.3593y(3)(t − 1)+ 0.1775y(4)(t − 1)

− 0.4109y(1)(t − 2)− 0.1620y(2)(t − 2)

− 0.1257y(3)(t − 2)− 0.0621y(4)(t − 2)

− 0.0825y(1)(t − 3)− 0.0425y(2)(t − 3)

− 0.0329y(3)(t − 3)− 0.0162y(4)(t − 3)

− 0.00295e(1)(t − 1)− 0.0002e(2)(t − 1)

− 0.0002e(3)(t − 1)− 0.0001e(4)(t − 1)

(59)

The examination results of ARCH error effect showed
the value of p-value = 0.0003137, which was smaller than
the value of α = 0.05. Rejecting H0 showed that
GSTARIMA (3,1,1) contained ARCH effects on model
errors. Therefore, to overcome the non-constant variance
of the errors, the parameters were drawn by the ARCH
method.

According to error testers in GSTARIMA (3,1,1)
containing ARCH effect, GSTARIMA (3,1,1)-ARCH(1)
was used to forecast rainfall on Java Island. In the context
of this research, the estimation of the model was
conducted using MLE and GLS methods. The first
estimation was performed at each location as follows:

σ̂2
1 (t) = 19460+ 0.0894ê2

1(t − 1) (60)

σ̂2
2 (t) = 17750+ 0.02732ê2

2(t − 1) (61)

σ̂2
3 (t) = 24490+ 0.00000001ê2

3(t − 1) (62)

σ̂2
4 (t) = 17750+ 0.09026ê2

4(t − 1) (63)

Once the conditional variance estimation equation for
each location was obtained, the conditional variance for
each time was calculated, with t = 2,3,4, . . . ,114.
Moreover, the conditional variance was calculated using
the following equation.

σ̂2
i (t) =

α0i

1−α1i

, i = 1,2,3,4 (64)

The results of the conditional variance calculation
were inputted in a diagonal matrix for each location as
follows:

H1 = diag(σ̂2
1 (2), σ̂

2
1 (3), . . . , σ̂

2
1 (114)) (65)

H2 = diag(σ̂2
2 (2), σ̂

2
2 (3), . . . , σ̂

2
2 (114)) (66)

H3 = diag(σ̂2
3 (2), σ̂

2
3 (3), . . . , σ̂

2
3 (114)) (67)

H4 = diag(σ̂2
4 (2), σ̂

2
4 (3), . . . , σ̂

2
4 (114)) (68)

Parameter estimation of GSTARIMA
(3,1,1)-ARCH(1) with the GLS method was performed
using the diagonal matrix of conditional variance for each
location. Subsequently, the estimation of the model was
calculated using Equations (33) to (38) and the results
were shown in Table 6 and Table 7.

Table 6: Parameters Estimation of GSTARIMA (3,1,1) - ARCH (1) at spatial lag 0

Param Estimated Value Standard Error t-Count p-value

φ̂
(1)
10 -0.7108 0.2715 -2.8532 0.0045

φ̂
(2)
10 -1.0850 0.4362 -2.4779 0.0136

φ̂
(3)
10 -0.4860 0.3358 -1.4475 0.1485*

φ̂
(4)
10 -0.7599 0.3034 -2.3381 0.0198

φ̂
(1)
20 -0.3612 0.3003 -1.3683 0.1720*

φ̂
(2)
20 -0.8639 0.4958 -1.7574 0.0796*

φ̂
(3)
20 -0.4446 0.3779 -1.1766 0.2400*

φ̂
(4)
20 -0.6295 0.3485 -1.7074 0.0885*

φ̂
(1)
30 -0.0986 0.2720 -0.3036 0.7616*

φ̂
(2)
30 -0.1296 0.4346 -0.2954 0.7679*

φ̂
(3)
30 -0.1501 0.3357 -0.4471 0.6550*

φ̂
(4)
30 -0.1895 0.3046 -0.7944 0.4274*

Θ̂
(1)
10 -0.0032 0.0004 -8.6250 0.0000

Θ̂
(2)
10 -0.0025 0.0004 -6.3893 0.0000

Θ̂
(3)
10 -0.0032 0.0003 -9.5471 0.0000

Θ̂
(4)
10 -0.0033 0.0004 -8.6409 0.0000

Table 7: Parameters Estimation of GSTARIMA (3,1,1) - ARCH (1) at spatial lag 1

Param Estimated Value Standard Error t-Count p-value

φ̂
(1)
11 -0.1600 0.2533 -0.4135 0.6795*

φ̂
(2)
11 0.1958 0.3924 0.4878 0.6259*

φ̂
(3)
11 -0.3841 0.3450 -1.1132 0.2662*

φ̂
(4)
11 -0.1838 0.4147 -0.5621 0.5744*

φ̂
(1)
21 -0.3916 0.2828 -1.2372 0.2167*

φ̂
(2)
21 0.1276 0.4391 0.3012 0.7634*

φ̂
(3)
21 -0.2768 0.3883 -0.7130 0.4762*

φ̂
(4)
21 -0.1780 0.4762 -0.4531 0.6507*

φ̂
(1)
31 -0.0803 0.2580 -0.3559 0.7221*

φ̂
(2)
31 -0.0151 0.3829 -0.0458 0.9635*

φ̂
(3)
31 0.0204 0.3463 0.0588 0.9531*

φ̂
(4)
31 0.0276 0.4145 0.1962 0.8446*

Θ̂
(1)
11 -0.0002 0.0003 -0.6797 0.4974*

Θ̂
(2)
11 -0.0010 0.0004 -2.9527 0.0035

Θ̂
(3)
11 0.0001 0.0003 0.2230 0.8237*

Θ̂
(4)
11 -0.0001 0.0005 -0.2892 0.7727*
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The estimated parameters of GSTARIMA
(3,1,1)-ARCH (1) were presented in matrix form in
Equation (69),









Ŷ (1)(t)
Ŷ (2)(t)
Ŷ (3)(t)
Ŷ (4)(t)









=







−0.7108 −0.0741 −0.0575 −0.0284

0.0934 −1.0850 0.0628 0.0396

−0.1381 −0.1197 −0.4860 −0.1263

−0.0465 −0.0514 −0.0860 −0.7599















y(1)(t −1)
y(2)(t −1)
y(3)(t −1)
y(4)(t −1)









+







−0.3612 −0.1814 −0.1407 −0.0695

0.0609 −0.8639 0.0409 0.0258

−0.0996 −0.0863 −0.4446 −0.0910

−0.0450 −0.0498 −0.0832 −0.6295















y(1)(t−2)
y(2)(t−2)
y(3)(t−2)
y(4)(t−2)









+







−0.0986 −0.0372 −0.0289 −0.0143

−0.0072 −0.1296 −0.0048 −0.0030

0.0073 0.0064 −0.1501 0.0067

0.0070 0.0077 0.0129 −0.1895















y(1)(t−3)

y(2)(t−3)
y(3)(t−3)
y(4)(t−3)









−







−0.0033 −0.0001 −0.0001 0.0000

−0.0005 −0.0026 −0.0003 −0.0002

0.0000 0.0000 −0.0032 0.0000

−0.0000 −0.0000 −0.0001 −0.0033















e(1)(t−1)
e(2)(t−1)

e(3)(t−1)
e(4)(t−1)









(69)

GSTARIMA (3,1,1) - ARCH (1) for the location of
Serang City was presented in Equation (70),

Ŷ (1)(t) =−0.71082y(1)(t−1)−0.07409y(2)(t −1)

−0.05747y(3)(t−1)−0.02839y(4)(t −1)

−0.36116y(1)(t−2)−0.18139y(2)(t −2)

−0.14070y(3)(t−2)−0.06951y(4)(t −2)

−0.09862y(1)(t−3)−0.03720y(2)(t −3)

−0.02890y(3)(t−3)−0.01430y(4)(t −3)

+0.00325e(1)(t−1)+0.00011e(2)(t −1)

+0.00008e(3)(t−1)−0.00004e(4)(t −1)

(70)

GSTARIMA (3,1,1) - ARCH (1) for other locations
was the same as Equation (70). In addition, model was
used to forecast rainfall on in-sample and out-sample
data.

4 Conclusions

In conclusion, GSTARIMA (3,1,1)-ARCH (1) in this
research was developed referring to the stages of
Box-Jenkins procedure. During the identification stage,
the data stationarity check was conducted, which was a
requirement for GSTARIMA modeling, determining the
order of time series and ST. Furthermore, GSTARIMA
(3,1,1)-ARCH passed through several stages of parameter
estimation procedures. First, OLS method estimated
GSTARI (3,1,1), followed by model errors which were
re-modeled using MA elements through GSTIMA (1,1,1),
which was estimated using MLE. Furthermore, GSTARI
(3,1,1) and GSTIMA (1,1,1) were combined into
GSTARIMA (3,1,1), which passed through a diagnosed
stage to show the assumptions of errors. Consequently,
errors with no constant variance were modeled through
ARCH procedure, while GSTARIMA (3,1,1)-ARCH (1)
was estimated using MLE and GLS methods. This
modeling procedure was more comprehensive and
structured to produce a good model.

GSTARIMA (3,1,1)-ARCH (1) was used to model
rainfall in Java Island following the stages of DALCM.
Data analytics life cycle performed an important role in
analyzing this research’s large amount of rainfall data.
The stage commenced with discovery which included,
identification of the research problem, determination of
the data source used, and selection of the observation
location. Furthermore, data was collected from NASA
POWER website at the data preparation stage. NASA
POWER website contained climate data around the
world, including a large number of variables and a long
period. Moreover, location selection was conducted by
inputting the desired location’s latitude as well as
longitude coordinate values, and the selection of the
period from 1982 to 2023 with daily intervals. The
collected rainfall data passed through data cleaning to
remove noise and fill in missing values. Additionally, the
data was aggregated into monthly data and filtered for wet
months or DJF. Data preparation results were inputted
into model planning, including model identification
according to Box-Jenkins procedure. Given this scenario,
building was performed by modeling GSTARIMA (3,1,1)
- ARCH (1) by dividing the data into training and testing
data. Rainfall forecasting results were interpreted at the
communication results stage, and recommendations from
research were used at the operationalized stage.

The research contributed to the development of
GSTARIMA (3,1,1) - ARCH (1), which was used for
rainfall forecasting and also used in general on ST data.
Suggestions for further exploration included examining
exogenous variables that affected rainfall modeling.
Furthermore, the research could combine GSTARIMA
(3,1,1) - ARCH (1) with exogenous variables that
influenced the variables. This research hopes to be an
inspiration for other explorations in the field of statistics
and mathematics to develop ST model.

Acknowledgment

The authors are grateful to the Rector, Directorate of
Research and Community Service (DRPM), Center for
Modeling and Computation Studies, Faculty of
Mathematics and Natural Sciences, Universitas
Padjadjaran. This research was funded by the Padjadjaran
Excellence Fast Track Scholarship (BUPP) grant number
1425/UN6.3.1/PT.00/2024 and The Academic Leadership
Grant (ALG) grant number 1817/UN6.3.1/PT.00/2024.
Additionally, the authors are also grateful to Prof. Dr.
Eddy Hermawan, M.Sc., Prof. Dr. Sukono, M.M., M.Si.,
and Prof. Dr. Diah Chaerani, M.Si. for valuable
discussions. This research also supported by RISE SMA
Project funded by European Union year 2019-2024.

c© 2025 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 19, No. 3, 577-593 (2025) / www.naturalspublishing.com/Journals.asp 591

Fig. 9: Plot of Actual and Forecast of GSTARIMA (3,1,1) for 4 Locations on In-Sample Data

Fig. 10: Plot of Actual and Forecast of GSTARIMA (3,1,1) for 4 Locations on Out-Sample Data
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