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Abstract: In this work, we employ Caputo’s concept of the fractional derivative to investigate a valid fractional mathematical model to

study temporal variations in hearing loss associated with the mumps virus. We present a comprehensive investigation into the existence

and uniqueness of solutions using fixed-point theory. The Laplace residual power series approach is proposed to produce numerical

solutions, which are compared with existing results to validate efficiency. The study provides insights into the complex relationship

between hearing loss and fractional calculus, contributing to epidemiological modeling.
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1 Introduction

One of the generality common tangible impairments
affecting millions of people around the world is hearing
loss. Many things can contribute to the development of
this disease, including genetics, infections, aging, and
exposure to loud noise. Mumps virus, a diffuse viral
infection that generally affects the salivary glands, is one
such disease that raises hearing loss [1]. The parotid
glands, lying near the ears, can turn inflamed when the
mumps virus comes into the body. The auditory nerves
and inner ear are two neighboring constructions that can
turn inflamed due to this infection [2]. Consequently,
based on the status of infection and injury to the auditory
system, those who evolve mumps may endure temporary
or permanent hearing loss [3]. The operations that are the
reason for mumps-induced hearing loss are complex and
distinct. Critical hair cells in the cochlea, which reveal
sound vibrations and transmit auditory signals to the
brain, can be directly harmed by the virus [4]. The
hearing task is further compromised by likely
involvement in the transit of signals from the cochlea to

the brain due to edema and soreness of the auditory
pathways [5]. Hearing loss that is caused by the mumps
can have an extensive field of effects, from tenuous
hardness hearing high-frequency sounds to whole
deafness. Occasionally, hearing loss is tentative and goes
away when the infection dissipates and the inflammatory
reaction in the body reduces. To upgrade the quality of
life and communication, hearing aids or other assistive
tools may be required in appointed cases, such as those
with persistent hearing loss. A multidisciplinary plan
including rehabilitation treatments, ongoing support, and
medical intervention is wanted to spin mumps-induced
hearing loss [6]. For mumps patients to have superior
likely results and decrease their opportunities of
extending hearing problems, early exploration and
treatment of the virus is major. Moreover, immunization
operations and other public health leads are primary to
stem the propagation of mumps and lessen the duplication
of hearing loss related to the disease [7].

Realization and handling of hearing loss demand a
strong mathematical basis, particularly when it relates to
modeling and analysis [8]. By supplying quantitative
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settings to demonstrate the basic mechanisms of hearing
loss, mathematical models assist researchers in simulating
and predicting the effects of a vast field of variables on
auditory tasks, including environmental exposures, virus
infection, and genetic predisposition [9]. Researchers are
able to illustrate the complex relevancies between
biological operations and environmental motives that give
rise to hearing loss using mathematical tools including
differential equations, statistical analysis, and
computational simulations [10]. Moreover, producing
customized rehabilitation schedules, therapeutic
approaches, and diagnostic devices to meet the certain
needs of each patient with hearing loss is made simple
meanwhile mathematical modeling. Through the employ
of mathematics, researchers and clinicians can gain a
deeper understanding of hearing loss, upgrade patient
results, improve the quality of life for those affected by
hearing loss, and move the field of audiology to more
successful interventions [11]. The authors of [12]
presented a novel mathematical model that considers a
few potential causes of hearing loss and is formulated
using the following ordinary differential equations
(ODEs):

dψS

dt
= µ −α1ψS(t)ψL(t)−α2ψS(t)+α3ψR(t), (1)

dψL

dt
= α1ψS(t)ψL(t)−α2ψL(t)−α4ψL(t), (2)

dψR

dt
= α4ψL(t)−α3ψR(t)−α2ψR(t), (3)

subject to the initial conditions:

ψS(0)=ψS0≥ 0, ψL(0)=ψL0≥ 0, ψR(0)=ψR0≥ 0.
(4)

The proposed model splits the population into three
epidemiological classes: ψS(t) symbolizes the population
class involves the number of susceptible individuals who
have exposure to hearing loss due to mumps or any other
viral infection, genetic disorders, or due to noise (may be
due to social, neural, or environmental causes); ψL(t)
symbolizes the population class involves the number of
infected individuals (infected to hearing loss due to
mumps, noise exposure, or due to genetic disorders); and
ψR(t) symbolizes the population class involves the
number of infected individuals who have recovered from
hearing loss (which may have happened due to mumps,
noise exposure, or due to genetic disorders). The
parameters in the model (1)-(3) are defined in Table 1.

The authors in [12] talked about the two causes of
hearing loss: social exposure to loudness and infectious
Mumps disease. Furthermore, they have demonstrated the
problem’s existence, positivity, and boundedness. In [13],
the authors presented a model of mumps-induced hearing
loss in children using the Caputo–Fabrizio

Table 1 Description of the parameters in the model (1)-(3).

Parameter Description Value

µ Population recruitment rate 0.8

α1 Rate of mumps virus transmission 0.0532

α2 Population death rate due to natural causes 0.3

α3 Rate of immunity loss 0.02

α4 Population recovery rate 0.241

fractional-order derivative. They studied the equilibrium
points and the reproductions number for the model and
proved the existence of a unique solution for the model.
Moreover, the authors constructed an approximate
solution for the fractional-order model using fractional
Euler method. A mathematical model on hearing loss
owing to mumps virus infection has been investigated in
[14]. The reproduction number of the model was
calculated. Furthermore, they studied the effect of noise
on the proposed system by using Fourier transform
technique. In [15], a fractional model for hearing loss
with three fractional operators called
Atangana–Baleanu–Caputo, Caputo, and
Caputo–Fabrizio derivatives has been presented. They
established numerical solutions for the proposed model.
In our work, we introduce the following fractional model
of mumps-induced hearing loss:

1

δ (1−β )
D

β
t ψS = µ −α1ψS(t)ψL(t)−α2ψS(t)+α3ψR(t),

(5)

1

δ (1−β )
D

β
t ψL = α1ψS(t)ψL(t)−α2ψL(t)−α4ψL(t), (6)

1

δ (1−β )
D

β
t ψR = α4ψL(t)−α3ψR(t)−α2ψR(t), (7)

subject to the initial conditions:

ψS(0)=ψS0≥ 0, ψL(0)=ψL0≥ 0, ψR(0)=ψR0≥ 0.
(8)

The parameter δ is an auxiliary parameter utilized to
make the sides of the equations in the model (5)-(7) have
the same dimension [16]. In our model (5)-(7), the

symbol D
β
t denotes the Caputo fractional derivative with

respect to time t of order 0 < β < 1. Our work
investigates a novel use of Caputo fractional modeling to
comprehend the spatial-temporal variability in hearing
loss induced by the mumps virus. Our goal is to depict the
complex dynamics of auditory impairment by using
fractional calculus, considering the long-range
interactions and memory that are intrinsic to viral
infections. By focusing on the spatial and temporal
features of the development of hearing loss, our work
goes beyond traditional epidemiological models and
provides insight into the complex evolution of hearing
loss over time and geography. One of the main goals of
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our work is to improve the theoretical foundations of
epidemiological modeling and fractal calculus by
comprehensively investigating the existence and
uniqueness of solutions within Caputo’s fractal model.
Furthermore, we use the Laplace residual power series
(LRPS) method to derive numerical solutions, providing a
computationally efficient way to investigate the dynamics
of mumps-associated hearing loss. Our study advances
both fields by combining mathematical models with
epidemiological observations. It provides important
insights into the mechanisms underlying mumps-induced
hearing loss, and directs future approaches to diagnosis,
treatment, and prevention.

The paper organizes as introduction in the first
section. Section 2 devoted to presenting the definition of
Caputo fractional derivative and their essential properties.
Moreover, we present the basic idea of the LRPS method
in the same section. The existence and uniqueness of the
proposed fractional model of mumps-induced hearing
loss investigated in Section 3. The proposed methodology,
LRPS method, utilizing to construct numerical solutions
for the governing model in Section 4. Section 5 presents a
discussion about the obtained results. Finally, some
conclusions and future recommendations are provided in
Section 6.

2 Preliminaries

2.1 Fractional Calculus

Integer-order differential equations are frequently used in
conventional ecological models to characterize the
dynamics of species populations. These models, however,
have the potential to oversimplify the dynamics,
particularly when addressing systems that display
memory, genetic effects, or distant interactions. By
introducing fractional-order derivatives and integrals,
fractional calculus offers a more sophisticated framework
that makes it possible to reflect ecological processes in
the actual world more accurately. Fractional derivatives
have various definitions, each with advantages and uses of
their own. In our work, we consider the Caputo fractional
derivative.

Definition 1. [16] For an integrable function ψ , the
Caputo derivative of fractional order β ∈ (0,1) is given
by:

D
β
t ψ(t) =

1

Γ (m−β )

∫ t

0

∂ mψ(t)

∂ tm

1

(t − τ)β−m+1
dτ, (9)

where t ≥ 0, m = ⌊β⌋+ 1. The Riemann-Liouville
fractional integral of order β , Re(β )> 0, is given by:

I
β
t ψ(t) =

1

Γ (β )

∫ t

0
(t − τ)β−1ψ(τ)dτ. (10)

Lemma 1. [16] For 0 < β < 1 and t ≥ 0, we get the
following property for the Caputo derivative:

I
β
t D

β
t ψ(t) = ψ(t)−

m−1

∑
i=0

diψ(0)

dt i

t i

i!
. (11)

Definition 2. [16] Let ψ(t) be a piecewise continuous
function on [0,∞) and of exponential order η . The Laplace
transformation (LT) of ψ(t) is defined as:

Ψ(s) = L{ψ(t)}=

∫ ∞

0
e−stψ(t)dt, s > η , (12)

while the inverse Laplace transformation of Ψ(s,x) is
given by:

ψ(t) = L−1{Ψ(s)}=
∫ v+i∞

v−i∞
estΨ(s)ds, v = Re(s)> v0,

(13)
where v0 lies in the right half-plane of the absolute
convergence of the Laplace integral.

Lemma 2. [17] Let ψ(t) be a piecewise continuous
function on [0,∞) and of exponential order η , and Ψ(s) =
L{ψ(t)}. Then:

1.lims→∞ sΨ(s) = ψ(0).

2.L{I
β
t ψ(t)}= Ψ (s)

sβ , β > 0.

3.L{D
β
t ψ(t)}= sβΨ(s)−∑m−1

i=0 sβ−i−1 diψ(0)
dti .

2.2 Laplace Residual Power Series Method

Fractional differential equations require special methods
so that we can derive and extract exact or numerical
solutions due to the complexities we face when
considering fractional derivatives in the systems being
studied. This urgent need prompted scientists and
researchers to provide and develop effective and
appropriate methods to reach the desired solutions. For
instance, the finite difference approaches [18], multistep
approach [19], iterative reproducing kernel method [20],
the generalized Taylor’s formula [21], multistep
generalized differential transform method [?], Fractional
residual series method [23], homotopy analysis method
[24], Jacobi Polynomials approach [25], and Legendre
polynomials approach [26]. The LRPS technique is a
mathematical strategy for solving fractional differential
equations [27]. It offers a disciplined approach to solving
equations with fractional derivatives analytically. The
method involves solving the original equation in the time
domain by applying inverse Laplace transforms after
translating it into the Laplace domain, expressing it as a
power series, and analyzing the residual series. It is a
crucial tool in fields such as applied mathematics,
engineering, and physics because it is particularly useful
when traditional analytical methods fail to solve difficult
fractional calculus problems [28]-[31].
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Theorem 1. [32] Let ψ(t) be a piecewise continuous
function on [0,∞) and of exponential order η , and
Ψ(s) = L{ψ(t)}. Then the transformed function Ψ(s) can
be represented in the following expansion:

Ψ(s) =
∞

∑
j=0

b j

s1+ jβ
, 0 < β ≤ 1, s > η , (14)

where the coefficients b j = D
jβ
t ψ(0), j = 0,1,2, . . ..

Moreover, the inverse Laplace transformation of the
expansion (14) can be given as:

ψ(t) =
∞

∑
j=0

D
jβ
t ψ(0)

Γ ( jβ + 1)
t iα

. (15)

Furthermore, if |sL{D
( j+1)β
t ψ(t)}| < M on 0 < s ≤ d,

where 0 < β ≤ 1, then the remainder R j(s) of the
expression (15) satisfies the following:

|R j(s)| ≤
M

s( j+1)β+1
, 0 < s ≤ d. (16)

Now, we present the algorithm for the LRPS method
of nonlinear fractional differential equations (NFDEs).

Algorithm. LRPS Method for the NFDEs

1.Consider the following NFDEs:

D
β
t ψi(t)−Ni(ψ1,ψ2, . . . ,ψK)− fi(t) = 0, i = 1,2, . . . ,K,

(17)

subject to the initial conditions:

ψi(0) = gi0, i = 1,2, . . . ,K, (18)

where D
β
t is the Caputo derivative of order β (0 < β <

1) with respect to t, and Ni, i = 1,2, . . . ,K, are well-
known nonlinear analytical functions.

2.Applying LT to both sides of (17) with the aid of
Lemma 2 to get:

Ψi(s)−
1

s
gi0 −

1

sβ
NLi(s)−

1

sβ
Fi(s) = 0, i = 1,2, . . . ,K,

(19)

where Ψi(s) = L{ψi(t)},
NLi(s) = L{Ni(ψ1,ψ2, . . . ,ψK)}, and Fi(s) = L{ fi(t)},
i = 1,2, . . . ,K.

3.The solutions of system (19) are assumed to be in the
form:

Ψi(s) =
∞

∑
j=0

bi j

s jβ+1
, s > 0, i = 1,2, . . . ,K, (20)

where bi j are coefficients to be determined. Using part
(1) of Lemma 2 to obtain the initial coefficient in the
series (20) as bi0 = gi0, we can write the solutions of
system (19) as:

Ψi(s) =
gi0

s
+

∞

∑
j=1

bi j

s jβ+1
, s > 0, i = 1,2, . . . ,K.

(21)

4.Define the N-th truncated series of Ψi(s) as:

ΨN
i (s) =

gi0

s
+

N−1

∑
j=1

bi j

s jβ+1
, s > 0, i = 1,2, . . . ,K.

(22)
5.Define the Laplace residual functions:

LResi(s) =Ψi(s)−
1

s
gi0 −

1

sβ
NLi(s)−

1

sβ
Fi(s), (23)

for i = 1,2, . . . ,K, where Ψi(s) as in (21). Additionally,
define the N-th Laplace residual functions as:

LResN
i (s) =Ψ N

i (s)−
1

s
gi0 −

1

sβ
NLi(s)−

1

sβ
Fi(s),

(24)
for i = 1,2, . . . ,K, where ΨN

i (s) as in (22).

6.Multiply (24) by s jβ+1, j = 1,2, . . ., and solve the
obtained algebraic system:

lim
s→∞

s jβ+1LRes
j
i (s)= 0, j = 1,2, . . . , i= 1,2, . . . ,K.

(25)
to determine the coefficients bi1,bi2, . . . ,bi(N−1),
i = 1,2, . . . ,K.

7.Substitute the inferred coefficients
bi j, j = 1,2, . . . ,N, i = 1,2, . . . ,K in (22) to obtain the
N-th solutions for Ψi(s), i = 1,2, . . . ,K.

8.Apply the inverse LT to the obtained Ψi(s),
i = 1,2, . . . ,K, in Step 7, using Theorem 1 to obtain
the N-th LRPS solutions ψi(t) for the NFDEs (17) in
the form:

ψi(t) = gi0 +
N−1

∑
j=1

bi j

Γ ( jβ + 1)
t iα

. (26)

3 Existence and uniqueness of solution

The fixed-point theorem is one of the basic ideas in
mathematics, which states that there is a point that does
not change when it undergoes a certain transformation
[33]. The presence of derivatives with non-integer order
in fractional differential equations is a real challenge in
proving the existence of solutions to this type of equation
[34]. The fixed-point theorem can be used to help us
reach this goal by reformulating the fractional differential
equation as a fixed-point problem [35]. Therefore, the
fixed-point theory is considered an essential tool to make
our knowledge more extensive in the field of fractional
calculus and its many applications in many scientific and
engineering fields [36,37]. In this section, we use
fixed-point theory to investigate the existence of solutions
to the fractional model of mumps-induced hearing loss
(5)-(8). Define the following kernels:

KS(t,ψS) = µ −α1ψS(t)ψL(t)−α2ψS(t)+α3ψR(t),
(27)
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KL(t,ψL) = α1ψS(t)ψL(t)−α2ψL(t)−α4ψL(t), (28)

KR(t,ψR) = α4ψL(t)−α3ψR(t)−α2ψR(t). (29)

Consequently, the fractional model of mumps-induced
hearing loss (5)-(7) can be written as:

1

δ 1−β
D

β
t ψS = KS(t,ψS), (30)

1

δ 1−β
D

β
t ψL = KL(t,ψL), (31)

1

δ 1−β
D

β
t ψR = KR(t,ψR). (32)

With the help of Lemma 1 and the initial conditions
(8), we can apply the Riemann-Liouville fractional
integral to both sides of (30)-(32) and obtain:

ψS(t)−ψS0 =
δ 1−β

Γ (β )

∫ t

0
KS(t,ψS)(t − τ)β−1dτ, (33)

ψL(t)−ψL0 =
δ 1−β

Γ (β )

∫ t

0
KL(t,ψL)(t − τ)β−1dτ, (34)

ψR(t)−ψR0 =
δ 1−β

Γ (β )

∫ t

0
KR(t,ψR)(t − τ)β−1dτ. (35)

We look forward to proving that the kernels KS(t,ψS),
KL(t,ψL), and KR(t,ψR) in (27)-(29) satisfy the Lipschitz
condition. For this purpose, we consider the following
assumption:

Assumption A: For the continuous functions ψS(t),
ψL(t), and ψR(t) belonging to L[0,1], there exist constants
γi ∈ N, i = 1,2,3, such that the following hold true:

‖ψS(t)‖< γ1, ‖ψL(t)‖< γ2, ‖ψR(t)‖< γ3. (36)

Now we are ready to present the following result.
Theorem 2: The kernels KS(t,ψS), KL(t,ψL), and

KR(t,ψR) in (27)-(29) satisfy the Lipschitz condition and
contraction, provided that assumption A and the
following inequalities are satisfied:

∆1 = α1γ2 +α2 < 1, (37)

∆2 = α1γ1 +α2 +α4 < 1, (38)

∆3 = α2 +α3 < 1. (39)

Proof: For ψS(t) and ψ∗
S (t), using the definition of

KS(t,ψS) in (27) with the aid of assumption A, we get:

‖KS(t,ψS)−KS(t,ψ
∗
S )‖=

‖µ −α1ψS(t)ψL(t)−α2ψS(t)+α3ψR(t)−

(µ −α1ψ∗
S (t)ψL(t)−α2ψ∗

S (t)+α3ψR(t))‖=

‖−α1ψL(t)(ψS(t)−ψ∗
S(t))−α2(ψS(t)−ψ∗

S(t))‖

≤ (α1‖ψL(t)‖+α2)‖ψS(t)−ψ∗
S(t)‖<

(α1γ2 +α2)‖ψS(t)−ψ∗
S(t)‖= ∆1‖ψS(t)−ψ∗

S(t)‖. (40)

Regarding the kernel KL(t,ψL) in (28), we obtain the
following for ψL(t) and ψ∗

L(t):

‖KL(t,ψL)−KL(t,ψ
∗
L)‖=

‖α1ψS(t)ψL(t)−α2ψL(t)−α4ψL(t)−

(α1ψS(t)ψ
∗
L(t)−α2ψ∗

L(t)−α4ψ∗
L(t))‖ =

‖α1ψS(t)(ψL(t)−ψ∗
L(t))− (α2 +α4)(ψL(t)−ψ∗

L(t))‖

≤ (α1‖ψS(t)‖+α2 +α4)‖ψL(t)−ψ∗
L(t)‖<

(α1γ1 +α2 +α4)‖ψL(t)−ψ∗
L(t)‖= ∆2‖ψL(t)−ψ∗

L(t)‖
(41)

For the continuous functions ψR(t) and ψ∗
R(t), we

obtain the following result for the kernel KR(t,ψR) in
(29):

‖KR(t,ψR)−KR(t,ψ
∗
R)‖=

‖α4ψL(t)−α3ψR(t)−α2ψL(t)−

(α4ψL(t)−α3ψ∗
R(t)−α2ψ∗

R(t))‖=

‖− (α2 +α3)(ψR(t)−ψ∗
R(t))‖=

(α2 +α3)‖ψR(t)−ψ∗
R(t)‖= ∆3‖ψR(t)−ψ∗

R(t)‖ (42)

Using the obtained results in (40)-(42) and the
inequalities (37)-(39), we conclude that the kernels
KS(t,ψS), KL(t,ψL), and KR(t,ψR) satisfy the Lipschitz
condition and contraction. The proof is complete.

For ψM(t), ψL(t), ψA(t), and ψZ(t), we define the
difference between two subsequent components as
follows:

ψ̂k
S(t) = ψk

S(t)−ψk−1
S (t) =

1

Γ (β )

∫ t

0

(

KS(t,ψ
k−1
S )−KS(t,ψ

k−2
S )

)

(t − τ)β−1 dτ

(43)

ψ̂k
L(t) = ψk

L(t)−ψk−1
L (t) =

1

Γ (β )

∫ t

0

(

KL(t,ψ
k−1
L )−KL(t,ψ

k−2
L )

)

(t − τ)β−1 dτ

(44)

ψ̂k
R(t) = ψk

R(t)−ψk−1
R (t) =

1

Γ (β )

∫ t

0

(

KR(t,ψ
k−1
R )−KR(t,ψ

k−2
R )

)

(t − τ)β−1 dτ

(45)

Upon these definitions, we conclude that:

ψk
S(t) =

k

∑
j=0

ψ̂k
S(t), (46)
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ψk
L(t) =

k

∑
j=0

ψ̂k
L(t), (47)

ψk
R(t) =

k

∑
j=0

ψ̂k
R(t), (48)

Now, we can present the following theorem.
Theorem 3. The fractional model of mumps-induced
hearing loss (5)-(8) has a solution provided that the
assumption A, the inequalities in (37)-(39), and the
following inequality hold true:

∆∗ = max
i=1,2,3

∆i < 1. (49)

Proof. Since the kernel KS(t,ψS) in (27) satisfies the
Lipschitz condition, and using (43), we get:

∥

∥

∥
ψ̂k

S(t)
∥

∥

∥
=
∥

∥

∥
ψk

S(t)−ψk−1
S (t)

∥

∥

∥
=

∥

∥

∥

∥

1

Γ (β )

∫ t

0

(

KS(t,ψ
k−1
S )−KS(t,ψ

k−2
S )

)

(t − τ)β−1 dτ

∥

∥

∥

∥

≤

1

Γ (β )

∫ t

0

∥

∥

∥

(

KS(t,ψ
k−1
S )−KS(t,ψ

k−2
S )

)

(t − τ)β−1
∥

∥

∥
dτ <

1

Γ (β )
∆1

∫ t

0

∥

∥

∥
ψ̂k−1

S (τ)
∥

∥

∥
dτ (50)

Similarly, we obtain the following:

‖ψ̂k
L(t)‖<

1

Γ (β )
∆2

∫ t

0
‖ψ̂k−1

L (τ)‖dτ, (51)

‖ψ̂k
R(t)‖<

1

Γ (β )
∆3

∫ t

0
‖ψ̂k−1

R (τ)‖dτ. (52)

Define the following differences:

T k
S (t) = ψk+1

S (t)−ψS(t), (53)

T k
L (t) = ψk+1

L (t)−ψL(t), (54)

T k
R (t) = ψk+1

R (t)−ψR(t). (55)

Using (49) and (50), we obtain:

∥

∥

∥
T k

S (t)
∥

∥

∥
=
∥

∥

∥
ψk+1

S (t)−ψS(t)
∥

∥

∥
<

(

1

Γ (β )
∆1

)k
∥

∥ψ1
S (t)−ψS(t)

∥

∥<

(

1

Γ (β )
Ω ∗

)k
∥

∥ψ1
S (t)−ψS(t)

∥

∥ (56)

In a similar way, we infer the following:

‖T k
L (t)‖<

(

1

Γ (β )
Ω ∗

)k

‖ψ1
L(t)−ψL(t)‖, (57)

‖T k
R (t)‖<

(

1

Γ (β )
Ω ∗

)k

‖ψ1
R(t)−ψR(t)‖. (58)

It is obvious that when k → ∞, we get T k
S (t)→ 0, T k

L (t)→

0, and T k
R (t)→ 0. This completes the proof. �

We seek to prove the uniqueness of the solution of the
fractional model of mumps-induced hearing loss (5)-(8)
through the following theorem.
Theorem 4. The fractional model of mumps-induced
hearing loss (5)-(8) has a unique solution if the
assumption A, the inequalities in (37)-(39), and the
following conditions hold true:

1

Γ (β )
∆i ≤ 0, for i = 1,2,3. (59)

Proof. Assume that the fractional model of
mumps-induced hearing loss (5)-(8) has another pair of
solutions ψ∗

S (t),ψ
∗
L(t),ψ

∗
R(t). According to (33), ψ∗

S (t)
satisfies the following integral equation:

ψ∗
S (t) = ψS0+

1

Γ (β )

∫ t

0
KS(t,ψ

∗
M)(t − τ)β−1 dτ, (60)

Consequently, using the result in (50) to obtain:

‖ψS(t)−ψ∗
S(t)‖ ≤

1

Γ (β )

∫ t

0

∥

∥

∥
(KS(t,ψM)−KS(t,ψ

∗
M)) (t − τ)β−1

∥

∥

∥
dτ

≤
1

Γ (β )
∆1 ‖ψS(t)−ψ∗

S (t)‖ (61)

This gives:

(

1−
1

Γ (β )
∆1

)

‖ψS(t)−ψ∗
S(t)‖ ≤ 0. (62)

Using this result and the condition in (59), we obtain
ψS(t) = ψ∗

S (t). We can obtain the uniqueness of ψS(t).
Similarly, we obtain the other results.

4 LRPS scheme for the fractional model of

mumps-induced hearing loss

This section is devoted to utilizing the LRPS scheme to
establish numerical solutions for the fractional model of
mumps-induced hearing loss (5)-(8). Apply the Laplace
transformation to both sides of the model (5)-(7) to get:

1

δ 1−β
L {D

β
t ψS}=

µ

s
−α1L {ψS(t)ψL(t)}−α2L {ψS(t)}+α3L {ψR(t)}

(63)

1

δ 1−β
L {D

β
t ψL}=

α1L {ψS(t)ψL(t)}−α2L {ψL(t)}−α4L {ψL(t)} (64)
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1

δ 1−β
L {D

β
t ψR}=

α4L {ψL(t)}−α3L {ψR(t)}−α2L {ψR(t)} (65)

We assume L{ψS(t)}=ΨS(s), L{ψL(t)} =ΨL(s), and
L{ψR(t)}=ΨR(s). By using Lemma 2 with the aid of the
initial conditions in (8), we can rewrite equations (63)-(65)
as:

ΨS(s) =
ψS0

s
+

δ 1−β

sβ

µ

s

−
δ 1−β

sβ
α1L

{

L
−1{ΨS(s)}L

−1{ΨL(s)}
}

−
δ 1−β

sβ
α2ΨS(s)+

δ 1−β

sβ
α3ΨR(s) (66)

ΨL(s) =
ψL0

s
+

δ 1−β

sβ

(

α1L
{

L
−1{ΨS(s)}L

−1{ΨL(s)}
}

−(α2 +α4)ΨL(s)) (67)

ΨR(s) =
ψR0

s
+

δ 1−β

sβ
(α4ΨL(s)−α3ΨR(s)−α2ΨR(s)) (68)

Following Step 3 in the proposed algorithm, the
solutions of system (66)-(68) are assumed in the form:

ΨS(s) =
∞

∑
i=0

pS,i

siβ+1
, (69)

ΨL(s) =
∞

∑
i=0

pL,i

siβ+1
, (70)

ΨR(s) =
∞

∑
i=0

pR,i

siβ+1
. (71)

The Nth-truncated solutions are given as:

Ψ N
S (s) =

N

∑
i=0

pS,i

siβ+1
, (72)

Ψ N
L (s) =

N

∑
i=0

pL,i

siβ+1
, (73)

Ψ N
R (s) =

N

∑
i=0

pR,i

siβ+1
. (74)

Using Lemma 2 with initial conditions (8), the initial
guess is given by pS,0 = ψS0, pL,0 = ψL0, and pR,0 = ψR0.

Consequently, the kth-truncated solutions can be written
as:

ΨN
S (s) =

ψS0

s
+

N

∑
i=1

pS,i

siβ+1
, (75)

ΨN
L (s) =

ψL0

s
+

N

∑
i=1

pL,i

siβ+1
, (76)

Ψ N
R (s) =

ψR0

s
+

N

∑
i=1

pR,i

siβ+1
. (77)

The LRPS solution for the fractional model of mumps-
induced hearing loss (5)-(8) is given by:

ψS(t) = ψM0 +
p(S,1)

Γ (1+β )
tβ +

p(S,2)

Γ (1+ 2β )
t2β

+
p(S,3)

Γ (1+ 3β )
t3β + · · · (78)

ψL(t) = ψM0 +
p(L,1)

Γ (1+β )
tβ +

p(L,2)

Γ (1+ 2β )
t2β

+
p(L,3)

Γ (1+ 3β )
t3β + · · · (79)

ψR(t) = ψM0 +
p(R,1)

Γ (1+β )
tβ +

p(R,2)

Γ (1+ 2β )
t2β

+
p(R,3)

Γ (1+ 3β )
t3β + · · · (80)

5 Numerical results

Here, we validate our analytical inferences using
numerical simulations. The software package
Mathematica 13 will be employed to demonstrate our
numerical results. Figures 1-3 present the representation
of the variations in time series evaluation of population
class ψ10

S (t), ψ10
L (t), and ψ10

R (t), respectively. The

notation ψ10
S (t) represents the 10th LRPS solution for the

number of susceptible individuals who are prone to
hearing loss due to genetic disorders, mumps, or any
other viral infection, or due to noise. Similarly, ψ10

L (t)

and ψ10
R (t) represent the 10th LRPS solution for the

number of infected individuals and the number of infected
individuals who have recovered from hearing loss,
respectively.

We denote RK4 as the solutions obtained by utilizing
the 4th order Runge–Kutta method. We use the values of
the parameters listed in Table 1 and consider the initial
number of susceptible individuals who are prone to
hearing loss due to the reasons listed above ψS(0) = 12,
the initial number of infected individuals ψL(0) = 8, and
the initial number of infected individuals who have
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Fig. 1 Represent of the variations in time series evaluation of population class ψ10
S (t) where (a) LRPS solutions at: β = 0.99; black,

β = 0.98; green, β = 0.97; red, β = 0.96; blue, and (b) LRPS solution; red, RK4 solution; blue.

Fig. 2 Representation of the variations in time series evaluation of population class ψ10
L (t) where (a) LRPS solutions at: β = 0.99;

black, β = 0.98; green, β = 0.97; red, β = 0.96; blue, and (b) LRPS solution; red, RK4 solution; blue.

Fig. 3 Representation of the variations in time series evaluation of population class ψ10
R (t) where (a) LRPS solutions at: β = 0.99;

black, β = 0.98; green, β = 0.97; red, β = 0.96; blue, and (b) LRPS solution; red, RK4 solution; blue.
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Fig. 4 Represent of the variations in time series evaluation of population class ψ1
S 2(t) where (a) LRPS solutions at: β = 0.97; black,

β = 0.95; green, β = 0.93; red, β = 0.9; blue and (b) LRPS solution; red, RK4 solution; blue.

Fig. 5 Represent of the variations in time series evaluation of population class ψ1
L2(t) where (a) LRPS solutions at: β = 0.97; black,

β = 0.95; green, β = 0.93; red, β = 0.9; blue and (b) LRPS solution; red, RK4 solution; blue.

Fig. 6 Represent of the variations in time series evaluation of population class ψ1
R2(t) where (a) LRPS solutions at: β = 0.97; black,

β = 0.95; green, β = 0.93; red, β = 0.9; blue and (b) LRPS solution; red, RK4 solution; blue.
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Table 2 Numerical results for the population of susceptible individuals of hearing loss, ψS(t), at β = 1.

t LRPS RK4 Abs. error Rel. error

0.0 12.0000000000 12.0000000000 0.000000 0.000000

0.1 11.2468561437 11.2468564149 2.711533×10−7 2.410925×10−8

0.2 10.5439660011 10.5439663465 3.453887×10−7 3.275701×10−8

0.3 9.8897022565 9.8897027886 5.320992×10−7 5.380336×10−8

0.4 9.2821307678 9.2821316553 8.874997×10−7 9.561379×10−8

0.5 8.7190889917 8.7190917076 2.715920×10−6 3.114913×10−7

0.6 8.1982576638 8.1982656892 8.025411×10−6 9.789166×10−7

0.7 7.7172241052 7.7172445213 2.041612×10−5 2.645527×10−6

0.8 7.2735364095 7.2735822114 4.580184×10−5 6.297053×10−6

0.9 6.8647484393 6.8648404804 9.204115×10−5 1.340779×10−5

1.0 6.4884560454 6.4886256471 1.696017×10−4 2.613899×10−5

Table 3 Numerical results for the population of infected individuals, ψL(t), at β = 1.

t LRPS solution RK4 solution Absolute error Relative error

0.0 8.0000000000 8.0000000000 0.000000 0.000000

0.1 8.0619510293 8.0619508469 1.824238×10−7 2.262775×10−8

0.2 8.0929817110 8.0929814617 2.492485×10−7 3.079811×10−8

0.3 8.0948627960 8.0948624535 3.424605×10−7 4.230591×10−8

0.4 8.0696206885 8.0696205095 1.790050×10−7 2.218258×10−8

0.5 8.0194552196 8.0194551071 1.124384×10−7 1.402071×10−8

0.6 7.9466660119 7.9466659814 3.045808×10−8 3.832813×10−9

0.7 7.8535888647 7.8535890938 2.291076×10−7 2.917235×10−8

0.8 7.7425426887 7.7425431720 4.833607×10−7 6.242919×10−8

0.9 7.6157868267 7.6157880166 1.189896×10−6 1.562408×10−7

1.0 7.4754881071 7.4754908601 2.753045×10−6 3.682763×10−7

Table 4 Numerical results for the population of individuals recovering from hearing loss, ψR(t), at β = 1.

t LRPS solution RK4 solution Absolute error Relative error

0.0 6.0000000000 6.0000000000 0.000000 0.000000

0.1 6.0015886097 6.0015886172 7.523857×10−9 1.253644×10−9

0.2 6.0042247324 6.0042247338 1.426640×10−9 2.376060×10−10

0.3 6.0071625190 6.0071624999 1.912765×10−8 3.184141×10−9

0.4 6.0097249085 6.0097247746 1.338701×10−7 2.227558×10−8

0.5 6.0113009091 6.0113060494 5.140216×10−6 8.550921×10−7

0.6 6.0113708665 6.0113733408 2.474356×10−6 4.116126×10−7

0.7 6.0094606952 6.0094655263 4.831059×10−6 8.039089×10−7

0.8 6.0051812476 6.0051914415 1.019389×10−5 1.697516×10−6

0.9 5.9982058172 5.9982264355 2.061824×10−5 3.437402×10−6

1.0 5.9882692307 5.9883087047 3.947398×10−5 6.591886×10−6
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recovered from hearing loss ψR(0) = 6. Figures 1(a)-3(a)
show the constructed solutions at various fractional
derivative orders β = 0.99,0.98,0.97, and 0.96 to
illustrate the impact of the fractional derivative on the
behavior of the solutions. Whereas Figures 1(b)-3(b)
present a comparison between the 10th LRPS solution at
β = 1 and the RK4 solution.

It is clear from Figures 1-3 that the number of
susceptible individuals with hearing loss, ψS(t), decreases
significantly in the time t ∈ [0,6]. While the number of
infected individuals, ψL(t), increases slightly within a
short time, this behavior changes to a decrease in the
number of individuals with hearing loss due to the virus
during the remaining time. Regarding the number of
individuals recovering from hearing loss, ψR(t), it
remains stable over time t ∈ [0,1], before decreasing later.
These results are consistent with previous studies such as
[11,12,13,14].

Tables 2-4 present numerical results for the variations
in time series evaluation of population classes ψS(t),
ψL(t), and ψR(t), respectively, where the parameters are
considered as in Figures 1-3. We present the 10th LRPS
solutions and the RK4 solutions at β = 1. Moreover, we
compute the absolute and relative errors between the two
methods to validate our results.

From the results presented in these tables, we
conclude that the solutions obtained through the proposed
approach are very close to those obtained using the RK4
method, indicating the efficiency of the proposed
approach in dealing with such important biological
systems. The results in Table 2 show that the number of
individuals exposed to hearing loss decreased from 12 to
6. Table 3 indicates an increase in the number of
individuals suffering from hearing loss due to the virus
from time t = 0 to t = 0.3, followed by a decrease until
the number of individuals reached 6 at t = 1. Finally,
Table 4 shows that the number of people recovering from
hearing loss remains relatively stable.

To further investigate our results, we present Figures
4-6, considering different parameter values: µ = 0.5,
α1 = 0.1433, α2 = 0.1, α3 = 0.02, and α4 = 0.241. The
initial values for the population classes are set as
ψS(0) = 10, ψL(0) = 7, and ψR(0) = 5. We depict the
12th LRPS solutions for the population classes, ψ12

S (t),

ψ12
L (t), and ψ12

R (t), at various fractional derivative orders
β = 0.97,0.95,0.93, and 0.9 in Figures 4(a)-6(a),
respectively. A comparison between the obtained
solutions using the LRPS method and the RK4 at classical
derivative order β = 1 is presented in Figures 4(b)-6(b).
The behavior of these solutions is similar to those
presented in Figures 1-3 and aligns with results in
previous literature [13].

In conclusion, the results of this study and their
comparison with previous research demonstrate the
precision and effectiveness of the proposed approach in
handling biological models of this magnitude. This
motivates us to explore numerical solutions for a variety

of complex biological models using the suggested
approach. Furthermore, our research provides guidance
for future studies on complex models using the
Caputo-Fabrizio fractional derivative and conformable
derivative as alternative definitions of the fractional
derivative.

6 Conclusions

This paper elucidated the performance of fractional
Caputo modeling in demonstrating the temporal
variations of hearing loss related to the mumps virus. By
employing the LRPS approach, we have the potential to
construct numerical solutions that expand worthwhile
visions into the dynamics of hearing loss. Our presented
results confirm the effectiveness of employing fractional
calculus to shed light on previously unexplored aspects of
the dynamics of hearing loss associated with mumps virus
infection. Furthermore, the fact that the solutions we were
able to prove in our study are distinct and exist asserts the
advantage of fractional calculus in epidemiological
modeling. These results upgrade our consciousness of the
pathophysiology of mumps-induced hearing loss and aid
in improving epidemiological modeling techniques. This
work bridges the hole between clinical data and
mathematical models, which have significant effects on
the handling and treatment of viral infections, particularly
those that reduce auditory tasks. The information
obtained from this work will be utilized to repair
predictive models of infectious disease and promote
public health procedures in the future. In addition, our
results confirm the significance of the proposed
approaches in handling intricate health problems and
show how effective it is in integrating mathematical
structures like fractional calculus into epidemiological
studies.
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