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Abstract: Mathematical models play a crucial role in understanding the dynamics of epidemics. Reaction-diffusion systems provide

a powerful framework for modeling epidemics. We study a spatio-temporal SI epidemic model that includes both self-diffusion and

cross-diffusion. The basic reproductive ratio is calculated. The asymptotic stability and Turing instability of both disease-free and

endemic equilibria are investigated. We found that the stability properties of both equilibria are preserved in the diffusive model. We

investigate the dynamics of the model numerically using a finite difference scheme. We perform numerical simulations for different

parameter settings. The simulation results are consistent with the analytical study.
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1 Introduction

Epidemics have significant negative impact on public
health, socio-economic factors and global health security.
Outbreaks of infectious diseases can lead to severe
illness, disability and death. Moreover, epidemics can put
a strain on healthcare systems. The economic impact of
epidemics can be significant, including reduced
productivity, increased healthcare expenditures and
disruption to trade and travel. The COVID-19 pandemic
is the major health threat the whole world has faced in
recent years. More than 774 million cases of COVID-19
have been reported in more than 230 countries and more
than 7 million deaths [1]. It is important to study the
dynamics of an epidemic and how to avoid reaching an
endemic situation.

Mathematical models [2–5] provide a powerful tool to
understand and predict the dynamics of epidemics.
Mathematical models can capture the complex
interactions among ineffective agents, hosts and the
environment. Mathematical models can simulate the
spread of an infection and evaluate the impact of different
control measures. Models can help decision-makers and
public health officials to make evidence-based decisions,
such as implementing vaccinations, campaigns, social
distancing measures and treatment protocols.

Compartmental models [5–8] are widely used to study the
dynamics of infectious diseases. These models classify
the population into different compartments based on their
disease status. In general, the population is divided into
susceptible (S), infective (I) and recovered (R)
individuals. These models allow researchers to quantify
the spread and control of infectious diseases.

Equilibrium points in epidemic models correspond to
steady states in which the prevalence of the disease
remains constant over time. Investigating the existence
and stability properties of equilibrium points [4, 7] is
crucial for understanding the long-term behaviour of an
epidemic. Stability analysis of equilibrium points
provides insight into important epidemiological quantities
such as the basic reproductive ratio [9–11], R0, which
measures the average number of secondary infections
generated by a single ineffective individual in a
susceptible population.

The disease-free equilibrium of an epidemic model
represents a state in which there are no infected
individuals in the population. It provides insight into the
conditions required for disease elimination. Analyzing the
stability properties of the disease-free equilibrium can
help in determining thresholds for control measures that
must be surpassed to prevent an epidemic. The endemic
equilibrium reflects a state in which the infection persists
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in the population indefinitely. Investigating the stability
properties of the endemic equilibrium provides insight
into the long-term behaviour of the epidemic.
Additionally, the endemic equilibrium can help in
evaluating the impact of control measures and
interventions on the overall burden of an infection.

Temporal models often assume a well-mixed
population and neglect spatial heterogeneity and
interactions among different compartments. However,
spatial aspects and interactions among subpopulations
play a crucial role in the spread of infectious
diseases [12, 13]. Considering both interaction and spatial
heterogeneity requires the framework of
reaction-diffusion (RD) systems.

Systems of RD equations are often employed to
model the spatio-temporal spread of infectious
diseases [13–15]. The diffusion term is a component of
spatial heterogeneity that allows for the dispersion and
transport of individuals. The RD models offer insight into
how spatial factors affect disease transmission and can
help in the development of control strategies. Although
RD models are valuable tools for studying the spatial
spread of infectious diseases, most of them only consider
self-diffusion, where individuals can diffuse individually
within each compartment. It is also important to include
cross-diffusion [16–18] which describes the influence of
one compartment on the movement of another. The
importance of including both self-diffusion and
cross-diffusion in epidemic models arises from the need
to capture complex spatial interactions among different
compartments.

Turing instability [16, 19, 20] is an important aspect of
RD systems. It describes the diffusion-driven instability.
Turing instability means the conditions under which small
perturbations can grow and form spatial patterns. The
presence of Turing instability can lead to the formulation
of complex spatial structures that are important for
various natural systems [16, 20]. In the context of
epidemic modeling, Turing instability is often used to
study the spatial spread of infectious diseases [21, 22].
Analyzing Turing instability can improve our
understanding of how spatial dynamics influence the
spread of disease and the effectiveness of epidemic
control measures. This can help policy makers to identify
the most effective strategies to contain the spread of
infectious diseases.

Elgazzar [8] investigated a temporal SIRS epidemic
model taking into account social distancing and
community awareness. The study showed that a sufficient
level of social distancing, based on R0, effectively keeps
the infection under control even without a vaccine. When
a vaccine is available, social distancing can minimize the
vaccination rate required to control the disease.
Community awareness plays a critical role in eradicating
transmission of the infection. Mistakes due to low
awareness in the community, such as non-compliance
with preventive measures, can hinder control efforts.

Wang et al. [21] investigated the complex dynamics of
an SI-RD epidemic model and analyzed its equilibria,
boundedness, dissipation and persistence. In addition,
they obtained the conditions of Turing instability. Cai and
Wang [23] studied the spatio-temporal dynamics of an
IR-RD epidemic model with a nonlinear incidence rate.
The boundedness, dissipation and stability of positive
equilibria were analyzed. Cai et al. [24] investigated the
stability of steady states in an SIS epidemic model
considering intervention strategies in a spatially
heterogeneous environment. They found that, first, R0

plays a crucial role in determining the persistence or
extinction of the disease. Second, intervention strategies
play a crucial role in implementing efficient interventions
to control disease spread. In Ref. [25], the behavior of an
SIR-RD epidemic model with a nonlinear incidence rate
was investigated. The stability analysis shows that the
disease-free equilibrium is asymptotically stable when
R0 ≤ 1, which leads to disease eradication. However,
when R0 > 1, the disease-free equilibrium becomes
unstable and the endemic equilibrium becomes
asymptotically stable, indicating the persistence of the
disease. Deng and Wu [26] studied an SIS-RD epidemic
model. The disease-free equilibrium is found to be
globally attractive when R0 ≤ 1. Under certain conditions,
the endemic equilibrium is globally attractive when
R0 > 1.

Li et al. [27] investigated a diffusive SIS epidemic
model with cross-diffusion. The study found that the
model exhibits threshold-like dynamics based on R0 even
in the presence of cross-diffusion. When R0 < 1, the
disease-free equilibrium is stable. However, when R0 > 1,
the disease persists and an endemic equilibrium exists,
which can be stable under certain conditions. Hu and
Wang [28] investigated the dynamics of an SIRS-RD
epidemic model with cross-diffusion. They only
considered the diffusion of S-individuals away from a
higher concentration of I-individuals. They found that a
disease cannot be contained if only the diffusion of
S-individuals is controlled. Triska et al. [22] studied the
effect of cross-diffusion on the Turing instability.

Our aim is to analytically and numerically investigate
the stability properties of both disease-free and endemic
equilibria of a diffusive SI epidemic model. Our model
include both self-diffusion and cross-diffusion. We
consider cross-diffusion of both S and I individuals. We
study the spatio-temporal dynamics of the model in both
cases of absence and presence of diffusion. The structure
of the study is as follows. Section 2 gives an overview of
the model formulation and the calculation of the basic
reproductive ratio. In section 3, we analytically
investigate the local asymptotic stability of the equilibria
of the model in the absence / presence of diffusion. The
Turing instability is analyzed in Section 4. Section 5 is
devoted to numerical simulations, where the
spatio-temporal dynamics of the model are studied under
different settings of the model parameters. Some
conclusions are summarized in Section 6.
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2 The model

Consider a sufficiently large population located in a
bounded domain Ω , with smooth boundary ∂Ω . Let Λ be
the number of births and µ be the natural mortality rate.
When an infection occurs, the population is categorized
into two compartments: susceptible and infective. Let
S(x, t) and I(x, t) be the fraction of susceptible individuals
and infective individuals, respectively at position x ∈ Ω
and time t. Let β be the rate of infection due to direct
contact between infective and susceptible individuals and
γ be the rate at which infective individuals are removed.
We assume that no infection can transmitted across the
boundary ∂Ω . Hence homogeneous Neumann boundary
conditions are applied. We consider two types of
diffusion. The first is self-diffusion with coefficients d1

and d2 for susceptible and infective individuals,
respectively. The second is cross-diffusion of susceptible
individuals due to the presence of infective individuals
with coefficient d12 and infective individuals due to the
presence of susceptible individuals with coefficient d21.
Susceptible individuals tend to diffuse in the direction of
lower density of infective individuals (positive
cross-diffusion). While infection diffuses in the direction
of high density of susceptibles (negative cross diffusion).
Therefore, the model is described by the following
dynamical system

∂S(x, t)

∂ t
− d1∆S(x, t)− d12∆ I(x, t) = Λ −β S(x, t)I(x, t)

−µS(x, t) = f1(S, I),

∂ I(x, t)

∂ t
− d2∆ I(x, t)+ d21∆S(x, t) = β S(x, t)I(x, t)

−γI(x, t) = f2(S, I),

∂S(x, t)

∂n
=

∂ I(x, t)

∂n
= 0,

(1)
where n is the outwards unit vector normal to ∂Ω . The
initial conditions are assumed to be

S(x,0) = S0(x)> 0, I(x,0) = I0(x)≥ 0.

It is clear that

f1(0, I) = Λ > 0, f2(S,0) = 0,∀S, I ≥ 0.

This ensures the positivity of the solutions of system (1).
Without spatial effects, system (1) has a disease-free

equilibrium, E0 = (
Λ

µ
,0). The basic reproductive

ratio [9, 10], R0 is a fundamental concept in epidemic
models. It determines the expected number of secondary
infections produced by an infective individual. Here, we
use the next generation matrix method [9] to determine
R0 of system (1). In the diffusionless case, system (1) is
written as follows

dU

dt
= F(U)−V(U),U =

[

S

I

]

, (2)

where Fi is the appearance rate of new infective individuals
in compartment i, and

V (U) =V−(U)−V+(U), (3)

where V− is the transfer rate of individuals out of
compartment i, and V+ is the transfer rate of individuals
into compartment i. By applying to system (1), then

dU

dt
=

[

0
β SI

]

−

[

β SI+ µS−Λ
γI

]

. (4)

The Jacobian matrices of F and V are calculated at E0,
then

J(F) =

[

0 0
0 βΛ/µ

]

,J(V ) =

[

µ βΛ/µ
0 γ

]

. (5)

The next generation matrix is

J(F)(J(V ))−1 =

[

0 0
0 βΛ/µγ

]

. (6)

Then, the basic reproductive ratio is

R0 = ρ [J(F)(J(V ))−1] =
βΛ

µγ
, (7)

where ρ(A) is the spectral radius of the square matrix A.
Since there is only one infective compartment in system
(1), then system (1) has the same R0 of the spatially
homogeneous mode [11]. In the next sections, we
investigate the stability properties of both disease-free
and endemic equilibria.

3 Local asymptotic stability

In the absence of diffusion, system (1) has two equilibria.
The first is the disease-free equilibrium, E0 = (Λ/µ ,0).
The second is the endemic equilibrium,
E∗ = (γ/β ,(Λβ − µγ)/γβ ), provided that R0 > 1. The
following theorem determines the local asymptotic
stability of these equilibria.

Theorem 1.In the absence of diffusion, the following

statements hold for system (1):
(i) The disease-free equilibrium, E0 is locally

asymptotically stable if R0 < 1, and unstable if R0 > 1.

(ii) The endemic equilibrium, E∗ is locally asymptotically

stable when reached.

Proof. In the diffusionless case, the Jacobin matrix of
system (1) is given as follows

J(S, I) =

[

−β I− µ −β S

β I β S− γ

]

. (8)
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(i) For the disease-free equilibrium,

J(E0) =

[

−µ −Λβ/µ
0 (Λβ/µ)− γ

]

. (9)

It is clear that if R0 < 1, det(J(E0))> 0 and tr(J(E0))< 0,
leading to local asymptotic stability. Oppositely, if R0 > 1,
det(J(E0))< 0, leading to instability.
(ii) For the endemic equilibrium,

J(E∗) =

[

(−1/γ)(Λβ − µγ)− µ −γ
(1/γ)(Λβ − µγ) 0

]

. (10)

Since E∗ is reached only when R0 > 1, then det(J(E∗))>
0, and tr(J(E∗)) < 0. Therefore the endemic equilibrium
is locally asymptotically stable when reached.

�

The following theorem determines the effect of both
self-diffusion and cross-diffusion on the local asymptotic
stability of equilibria of system (1).

Theorem 2.In the presence of both self-diffusion and

cross-diffusion, system (1) satisfies the following

statements

(i) If R0 < 1, the disease-free equilibrium, E0 is locally

asymptotically stable.

(ii) If R0 > 1, the endemic equilibrium, E∗ is locally

asymptotically stable.

Proof. In the presence of both self-diffusion and
cross-diffusion, an equillibrium satisfies the following
equations

d1 △S+ d12△ I+Λ −β SI− µS = 0,

d2 △ I− d21 △S+β SI− γI = 0. (11)

Let the infinite sequence of eigenvalues of the operator
−△ be 0 = λ0 < λ1 ≤ λ1 ≤ λ2 ≤ ... → ∞, where λi has
algebraic multiplicity mi ≥ 1. Let (Φi j) j=1,...,mi

be the
corresponding sequence of normalized eigenfunctions.
The set (Φi j) j=1,...,mi

forms a complete orthonormal basis
in the space of square integrable functions on Ω with
Neumann boundary conditions. By linearizing system
(11) around an equilibrium point, E∼ = (S∼, I∼), then the
linearizing operator is given by

L(E∼) =

[

d1 △−β I∼− µ d12 △−β S∼

−d21 △+β I∼ d2 △+β S∼− γ

]

. (12)

Let ζ be an eigenvalue of L(E∼), and the corresponding
eigenfunction be (φ(x),ψ(x)), then

(L− ζ I)

[

φ(x)
ψ(x)

]

=

[

0
0

]

. (13)

For simplicity, let

φ = ∑
i>0,16 j6mi

ai jΦi j,ψ = ∑
i>0,16 j6mi

bi jΦi j. (14)

then Eq. (13) can be written in the following form

∑
i>0,i6 j6mi

(Ji(E
∼)− ζ I)

[

ai j

bi j

]

Φi j =

[

0
0

]

, (15)

where

Ji(E
∼) =

[

−d1λi −β I∼− µ −d12λi −β S∼

d21λi +β I∼ −d2λi +β S∼− γ

]

, i ≥ 0.

(16)
(i) For the disease-free equilibrium with R0 < 1,

Ji(E
0) =

[

−d1λi − µ −d12λi − (Λβ )/µ)
d21λi −d2λi +(Λβ )/µ)− γ

]

, i ≥ 0.

(17)
Then

det(Ji(E
0)) = (−d1λi − µ)(−d2λi +((Λβ )/µ)− γ)+
d21λi(d12λi +((Λβ )/µ)> 0,∀i ≥ 0,

and

tr(Ji(E
0)) = (−d1λi − µ − d2λi)+ ((1/µ)Λβ )− γ)<

0,∀i ≥ 0.

Therefore, the disease-free equillibrium, E0 remains
locally asymptotically stable in the presence of both
self-diffusion and cross-diffusion when R0 < 1.
(ii) For the endemic equilibrium with R0 > 1,

Ji(E
∗) =

[

−d1λi − (1/γ)(Λβ −µγ)−µ −d12λi − γ
d21λi +(1/γ)(Λβ −µγ) −d2λi.

]

, i ≥ 0.

(18)

Then

det(Ji(E
∗)) = (d1λi +(1/γ)(Λβ − µγ)+ µ)(d2λi)+

(d12λi + γ)(d21λi +(1/γ)(Λβ − µγ))> 0,∀i ≥ 0,

and

tr(Ji(E
∗)) =−d1λi − (1/γ)(Λβ − µγ)− µ − d2λi <

0,∀i ≥ 0.

Therefore, the endemic equilibrium, E∗ is locally
asymptotically stable in the presence of both
self-diffusion and cross-diffusion with R0 > 1.

�

Therefore, the local asymptotic stability of equilibria
of system (1) is preserved even in the presence of both
self-diffusion and cross-diffusion. In order to gain a
deeper understanding of how spatial heterogeneity affects
the stability of equilibria, a Turing instability analysis is
performed in the next section.
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4 Turing instability

Turing instability [16, 20] is a powerful tool for analyzing
the stability of spatially homogeneous equilibria in RD
systems. The following theorem determines the necessary
and sufficient conditions for Turing (diffusion-driven)
instability of a stable spatially uniform equilibrium of
system (1).

Theorem 3. A stable spatially uniform equilibrium
(S∼, I∼) of system (1) is Turing instable if

d1a22 +d2a11 −d12a21 +d21a12 > 2
√

(a11a22 −a12a21)(d1d2 +d12d21)> 0,
(19)

where

ai j =
∂ fi(S, I)

∂u j

|(S∼,I∼),u1 = S,u2 = I. (20)

Proof. We examine the linear stability of (S∼, I∼) in the
presence of diffusion. Let

ω =

[

ω1

ω2

]

=

[

S− S∼

I − I∼

]

(21)

be a small perturbation, and we linearize system (1) around
(S∼, I∼). Then

∂ω

∂ t
= Jω +D△W, (22)

where

J =







∂ f1

∂S

∂ f1

∂ I
∂ f2

∂S

∂ f2

∂ I






,D =

[

d1 d12

−d21 d2

]

. (23)

Let ω j = ε jexp(ikx+λ t), j = 1,2, where ε j , j = 1,2 are
constants, k is the wave number and λ is the eigenvalue.
The eigenvalues are the roots of the characteristic
polynomial

∣

∣

∣

∣

λ − a11 + d1k2 −a12 + d12k2

−a21 − d21k2 λ − a22+ d2k2

∣

∣

∣

∣

= 0. (24)

Then
λ 2 − g(k2)λ + h(k2) = 0, (25)

where
g(k2) =−(d1 + d2)k

2 + a11+ a22, (26)

h(k2) =| D | k4 −Bk2+ | J |, (27)

B = d1a22 + d2a11 − d12a21 + d21a12. (28)

If Reλ (k) < 0, then the perturbation ω −→ 0 as t −→ ∞,
and (S∼, I∼) is stable to spatial disturbances. Oppositely,
if Reλ (k)> 0 for some k 6= 0, then (S∼, I∼) is unstable to
diffusion. This happens if

g(k2)> 0, (29)

or

h(k2)< 0, for some k 6= 0. (30)

Since (S∼, I∼) is stable spatially uniform equilibrium, then
a11 + a22 < 0. Hence Eq. (29) cannot be satisfied. On the
other hand, h(k2) can be negative only if

B > 0. (31)

Condition (31) is necessary but not sufficient for h(k2)< 0
for some k 6= 0. The minimum value of h(k2) should be
negative too. By minimizing h(k2) with respect to k2, we
get

k2
min =

B

2 | D |
, (32)

and

hmin =| J | −
B2

4 | D |
. (33)

Then hmin is negative if

B2

4 | D |
>| J |, (34)

and

| D |> 0. (35)

By combining conditions (31), (34) and (35), then the
condition (19) is obtained.

�

Now we apply Theorem 3 to both the disease-free and
the endemic equilibria.

Proposition 1 For system (1), both the disease-free

equilibrium, E0 when R0 < 1 and the endemic

equilibrium, E∗ when R0 > 1 are Turing stable.

Proof. In system (1),

f1(S, I) = Λ −β SI− µS, f2(S, I) = β SI− γI. (36)

(i) For E0,

a11 =−µ , a12 =
−βΛ

µ , a12 = 0 and a22 = (βΛ
µ )− γ .

Since R0 < 1, then condition (19) is not satisfied, and E∗

is Turing stable.
(ii) For E∗,

a11 = (−1
γ )(Λβ − µγ)− µ , a12 =−γ ,

a21 = ( 1
γ )(Λβ − µγ) and a22 = 0.

Since R0 > 1, then condition (19) is not satisfied, and E∗

is Turing stable.

�
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Therefore, both disease-free and endemic equilibria of
system (1) are Turing Stable. This means that
perturbations around an equilibrium of system (1) do not
lead to the development of permanent spatial structures,
i.e. the system is resistant to the formation of stable
spatial patterns. This result suggests that spatial patterns
are suppressed, indicating a homogeneous spread of the
disease. In this context, the implementation of social
distancing measures to reduce contact rates and limit
disease transmission can be effective in preventing the
formation of spatial patterns and controlling
outbreaks [8].

5 Numerical simulations
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Fig. 1: (Color online) Spatio-temporal dynamics of the

diffusionless case for set 1 of the model parameters: (a) for the

susceptible population and (b) for the infective papulation. It is

clear that the dynamics of the model converge to the disease-free

equilibrium.

In this section, we present numerical simulations of
the model (1) to illustrate the analytical results obtained
in the previous sections. A finite difference scheme is
used. The Laplacian of S(x, t) and I(x, t) are approximated
using central differencing formulas. The initial conditions

for S(x, t) and I(x, t) are set to S(x,0) = 4 +
cosx

10
and

I(x,0) = 5 +
sinx

10
, respectively, and Ω = [0,50].

Zero-flux boundary conditions are assumed. The model
parameters are set to five different sets as shown in Table
1. We investigate the spatio-temporal dynamics of both
S(x, t) and I(x, t) for each set of the parameters.
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Fig. 2: (Color online) Spatio-temporal dynamics of the

diffusionless case for set 2 of the model parameters: (a) for the

susceptible population and (b) for the infective papulation. It is

clear that the dynamics of the model converge to the endemic

equilibrium.

Table 1: Sets of the model parameters.

set Λ β γ µ R0 d1 d2 d12 d21

1 5 0.01 0.3 0.2 5/6 0 0 0 0

2 5 0.1 0.5 0.3 10/3 0 0 0 0

3 5 0.01 0.3 0.2 5/6 2.5 1.0 0 0

4 5 0.1 0.5 0.3 10/3 2.5 1.0 0 0

5 5 0.01 0.3 0.2 5/6 2.5 1.0 2.0 1.5

6 5 0.1 0.5 0.3 10/3 2.5 1.0 2.0 1.5

The dynamics of the diffusionless case is illustrated in
Fig. 1 for set 1 and Fig. 2 for set 2. As shown in Figs. 1(a)
and 1(b), both S(x, t) and I(x, t) go to the stable
disease-free equilibrium, E0, since R0 < 1. In Figs. 2(a)
and 2(b) both S(x, t) and I(x, t) go to the stable endemic
equilibrium, E∗, since R0 > 1. The same dynamics are
observed for the RD system with self-diffusion only, see
Fig. 3 for set 3 (the disease-free equilibrium) and Fig. 4
for set 4 (the endemic equilibrium). The stability
properties of both E0 and E∗ are preserved in the full
diffusive case including both self-diffusion and
cross-diffusion. This is clearly observed from Fig. 5 for
set 5 and Fig. 6 for set 6. These results are consistent with
Theorem 2 and Proposition 1.
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Fig. 3: (Color online) Spatio-temporal dynamics of the model

with self-diffusion only for set 3 of the model parameters: (a) for

the susceptible population and (b) for the infective papulation. It

is clear that the dynamics of the model converge to the disease-

free equilibrium.
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Fig. 4: (Color online) Spatio-temporal dynamics of the model

with self-diffusion only for set 4 of the model parameters: (a) for

the susceptible population and (b) for the infective papulation. It

is clear that the dynamics of the model converge to the endemic

equilibrium.
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Fig. 5: (Color online) Spatio-temporal dynamics of the model

including both self-diffusion and cross-diffusion for set 5 of

the model parameters: (a) for the susceptible population and

(b) for the infective papulation. The dynamics of the model are

preserved and converge to the disease-free equilibrium.
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Fig. 6: (Color online) Spatio-temporal dynamics of the model

including both self-diffusion and cross-diffusion for set 6 of the

model parameters: (a) for the susceptible population and (b) for

the infective papulation. The dynamics of the model are also

preserved and converge to the endemic equilibrium.

6 Conclusion

The negative impact of infectious diseases underlines the
importance of understanding the dynamics of epidemics
and the potential control strategies. Mathematical models
play an important role in providing insight into the
disease transmission and intervention strategies.
Reaction-diffusion equations are a powerful framework
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for modeling the spatial spread of infectious diseases.
Incorporating both self-diffusion and cross-diffusion in
epidemic models provides more realistic representation of
epidemic dynamics.

We have studied an SI epidemic model that
incorporates both self-diffusion and cross-diffusion. The
investigated SI-RD epidemic model shows threshold-like
dynamics based on R0 even in the presence of
cross-diffusion. When R0 < 1, the disease-free
equilibrium is asymptotically stable and leads to disease
eradication. However, when R0 > 1, the endemic
equilibrium becomes asymptotically stable, indicating the
persistence of the disease. This result is consistent with
the results of most temporal [8] and
spatio-temporal [24–27] models. Therefore, diffusion
does not affect the stability properties of both disease-free
and endemic equilibria. A Turing instability analysis is
performed and shows that the model is stable against
spatial perturbations. Therefore, cross-diffusion acts as a
stabilizer, in agreement with Triska et al. [22].

We have applied a finite difference scheme to solve
the model equations and investigate the dynamics of both
susceptible and infective populations. Simulations have
been performed for various parameter settings. The
results agree with the analytical calculations and confirm
the stability of the model against spatial perturbations.
This indicates a homogeneous spread of the disease in the
population. Therefore, measures to reduce disease
transmission such as social distancing measures can
effectively control the spread of the disease and prevent
outbreaks. This confirms the important role of social
distancing in the control of infectious diseases.
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