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Abstract: Coffee Berry Diseases (CBD) pose significant threats to coffee production worldwide, affecting the livelihoods of millions

of farmers and the global coffee market. Fractional calculus provides a powerful framework for describing non-local and memory-

dependent phenomena, making it suitable for modeling the long-range interactions inherent in CBD spread. This study aims to formulate

and analyze fractional order model for CBD transmission dynamics in the sense of Atangana Baleanu Caputo (ABC). Fixed point

theorems were utilized to test the existence and uniqueness of the model’s solutions using the Caputo operator. The basic reproduction

number was calculated utilizing the next-generation matrix. The model has locally asymptotically stable equilibrium positions (disease-

free and endemic). Furthermore, the Lyapunov function was used to conduct a global stability analysis of the equilibrium locations. A

numerical simulation of the CBD model was created using the fractional Adam-Bashforth-Moulton approach to validate the analytical

findings. Our findings contribute to the development of more accurate predictive models and inform the design of targeted interventions

to mitigate the impact of CBD on coffee production systems.
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1 Introduction

Coffee is a cultivar that grows well in the varied eco-physiological conditions of tropical and subtropical highlands and can
be grown on agricultural land. After crude oil, it is the most consumed beverage and the second most traded commodity
worldwide [1]. Although it is the main source of income for tropical countries, which are often less developed, wealthy
countries are the ones that consume it the most [2]. The growth of weeds, pests, and diseases have all hampered coffee
output. For example, the coffee berry disease caused by Colletotrichum kahawae substantially hinders the production of
Arabica coffee in African countries (CBD) [3]. It is a pathogenic fungus that affects plants [4, 5]. Black depressed wounds
on coffee berries are one of the signs of CBD [6]. All phases of fruit and flower development are affected by the disease,
but immature berries are especially vulnerable during the 4–16 week expanding phase following flowering [7].
In regions with high levels of precipitation, humidity, and altitude, losses could reach 100% [2, 8]. Biological control,
pharmacological treatments, cultural customs, the adoption of resistant cultivars, and other approaches are some of the
various ways that CBD can be managed [9]. By way of the wind and rain, CBD is dispersed locally between branches
and coffee trees [10]. But insects, birds, and coffee harvesters are frequently used vectors for long- and medium-distance
CBD dispersal [11]. with healthy coffee berries after coming into touch with a fungal disease from the environment or
coffee berries that have already been infected with CBD were responsible for the spread of the drug [12].
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The dynamics of plant disease have been modeled mathematically and examined by different authors ([13, 14, 15, 16,
17, 18, 19]). For instance, [20] introduction of mathematical modeling and best management of the anthracnose disease
is a good example. Plant pathogen epidemiological models were examined by [21, 22, 23]. Foltso et al.[24] presented and
analyzed a mathematical model of the coffee berry borer with optimal control strategies. The results were demonstrated
using a class of models that had been subjected to plant disease experimentation. Following that, an impulse control
approach that corresponds to cultivation methods was included to this study, making it more broadly applicable [25]. An
important factor in the control of pests is farmer awareness, as demonstrated by [24, 26].

Coffee wilt disease, coffee leaf rust, and CBD are the three most dangerous coffee diseases that Ethiopia faces as a
threat to its coffee production. The development and analysis of a nonlinear deterministic mathematical model for CBD
transmission dynamics in a coffee farm was done by [27]. It was looked into how fungus pathogens interacted with disease
vectors and coffee plants. Additionally, authors [28] developed a mathematical model of CBD dynamics. They determined
the fundamental reproduction number (R0), computed the equilibrium points of the system model, and showed that the
CBD ends when R0 < 1. Moreover, they have shown that if R0 > 1, CBD remains in the population of coffee plants. The
numerical simulation’s results agree with stability analysis’s theoretical conclusions.

For investigating the impact of the memory effect on epidemiological models [29] and generating more accurate
results, fractional calculus is essential. Because fractional calculus was used so frequently, it was impossible to accurately
depict a variety of inherited materials and memory processes in the framework of mathematical modeling [30]. Due to
their special characteristics, fractional differential equations (FDE) provide a number of advantages over integer-order
differential equations (IDEs) when it comes to simulating difficult real-world problems. Unlike (IDEs), which are based
locally, FDEs are composed of memory effects, which contribute to their increased efficiency. In sense, it is more flexible
than classical calculus because of its hereditary characteristics and the way memory is described [31, 32]. The Caputo
fractional derivative (CFD), Caputo-Fabrizio derivative, Atangana-Baleanu fractional derivative, and many others are
introduced in this tool for use in modeling. The various kernels available for fractional derivatives, which can be selected
to meet the needs of various applications, are the fundamental differences between them. The key distinction between
the Caputo fractional derivative [33], Caputo-Fabrizio derivative [34], and Atangana-Baleanu fractional derivative [35] is
that the Caputo derivative is defined by a power law, the Caputo-Fabrizio derivative by an exponential decay law, and the
Atangana-Baleanu derivative by a Mittag-Leffler law.

Fractional calculus has been investigated by numerous authors as having the potential to take the memory effect into
account [36, 37, 38, 39, 40]. Based on data from the past and the present, this memory makes predictions. Compared
to integer derivatives, this sets it apart. In order to handle issues in fractional calculus, which has numerous real-world
applications[41], significant analytical and numerical approaches have been developed [42, 43, 44] and [45]. In fractional
derivatives, several studies have recently been developed. One of the best operators is the Atangana Baleanu-Caputo
(ABC) operator [46]. An expanded Mittag-Leffler function with a nonsingular and nonlocal kernel serves as the foundation
for this operator.

Nevertheless, no previous research has used a fractional order to predict the kinetics of CBD transmission. In this
work, we solve the CBD transmission dynamics’ ABC fractional order model repeatedly. Furthermore, equilibria based
on the value of the fundamental reproduction number (R0) are studied with respect to their local and global asymptotic
stability. The remaining sections of the paper are organized as follows: Some initial ideas and the model’s formulation
are covered in parts two and three, respectively. In parts four and five, respectively, the equilibrium points and stability
analysis of CBD are established. Additionally, in parts six and seven, respectively, the numerical solution and numerical
simulation of the model are examined. Part eight concludes with some final thoughts.

2 Preliminaries

Now let’s begin by reviewing the fundamental definitions of Atangana-Baleanu fractional operators.
Definition 1: Let f ∈C1(α,β ),α < β , be a function, and let σ ∈ [0,1]. The Atangana Baleanu (AB) fractional derivative
in Caputo type of order σ is given by [47, 48]

ABC
α Dσ

t f (t) =
G(σ)

1−σ

∫ t

α

d f

dn
Eσ

[

−
σ

1−σ
(t − n)σ

]

dn, (1)

where G(σ) is the normalization function given by G(σ) = 1−σ + σ
Γ (σ) , characterized by G(0) = G(1) = 1, and the

Mittag-Leffler function Eσ (z) with C the set of the complex number is given by

Eσ (z) =
∞

∑
b=0

zb

Γ (1+σb)
,σ ,b ∈ C,R(σ)> 0. (2)
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Definition 2: The AB fractional integral of the function f ∈C1(α,β ) is given by [47, 48]

AB
α Iσ

t f (t) =
1−σ

G(σ)
f (t)+

σ

G(σ)Γ (σ)

∫ t

α
f (n)(t − n)σ−1dn. (3)

Lemma 1 [49]: The AB fractional derivative and AB fractional integral of the function f ∈C1(α,β ) satisfies the Newton-
Leibniz equality

AB
α Iσ

t

(

ABC
α Dσ

t f (t)
)

= f (t)− f (α)

Lemma 2 [50]: For two functions f ,g ∈K1(α,β ),α < β , the AB fractional derivative satisfies the following inequality:

‖ABC
α Dσ

t f (t)−ABC
α Dσ

t g(t)‖ ≤K‖ f (t)− g(t)‖.

3 Materials and Methods

3.1 Formulation of the Model

In this work, we partitioned the CBD model into coffee berry and vector populations. There are susceptible and infected
coffee berry subcategories in the total coffee berry population (Nc(t)). Susceptible coffee berry is denoted by Sc, and
infected coffee berry is denoted by Ic. This is defined as Nc(t) = Sc + Ic. There are susceptible and infected subclasses
in the total vector population (Nv(t)). The susceptible vector is represented by Sv, and the infected vector is represented
by Iv. This is defined as Nv(t) = Sv + Iv. The model took into account the recruitment rate of susceptible vectors r2 and
the shift to infected vectors (Iv) with β2 rate after eating ill plants or coffee berry. The susceptible coffee berry (Sc) also
replanted at rate r1 and the diseases spread to coffee berry, when infected vectors (Yv) eat susceptible coffee berry (Sc), the
diseases propagate to coffee berry at a rate of β1. coffee berry, once infected, never recovers and produces no or extremely
low yields. To regulate the illness, the parameter γ is the induced death rate and is the elimination rate of infected coffee
berry from uninfected coffee berry. Further more, d and µ are natural death rate of coffee berry and vector population
respectively.
The following governing equations are given based on the model’s assumptions:

dSc

dt
= r1 −β1ScIv − dSc,

dIc

dt
= β1ScIv − (d+ γ)Ic,

dSv

dt
= r2 −β2IcSv − µSv, (4)

dIv

dt
= β2IcSv − µIv.

Now, replacing the d
dt

in the system (4) with ABC
0 Dσ

t , we obtain the AB derivative which is described by the system of
differential equations given in equation (5).

ABC
0 Dσ

t Sc(t) = F1(t,Sc),
ABC
0 Dσ

t Ic(t) = F2(t, Ic),
ABC
0 Dσ

t Sv(t) = F3(t,Sv), (5)

ABC
0 Dσ

t Iv(t) = F4(t, Iv),

where the kernels are given by

F1(t,Sc) = r1 −β1ScIv − dSc,

F2(t, Ic) = β1ScIv − (d+ γ)Ic,

F3(t,Sv) = r2 −β2IcSv − µSv,

F4(t, Iv) = β2IcSv − µIv,

with initial conditions
Sc(0)> 0, Ic(0)≥ 0,Sv(0)≥ 0, Iv(0)≥ 0. (6)
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3.2 Existence and Uniqueness of Solutions

The existence and uniqueness, nonnegativity, and boundedness of the solutions of the fractional-order model (5) are
discussed in this section. To demonstrate the existence of the solution to model (5), we employ the well-known Banach
fixed point theorem. We refer the reader to [51] and the references within it for a thorough examination of fixed points and
contractions. To demonstrate the solution’s existence and uniqueness, we proceed as follows. When we apply the ABC
fractional integral to model (5), we get

Sc(t)− Sc(0) =
1−σ

Γ (σ)
F1(t,Sc)+

σ

G(σ)Γ (σ)

∫ t

0
F1(ρ ,Sc)(t −ρ)σ−1dρ ,

Ic(t)− Ic(0) =
1−σ

Γ (σ)
F2(t, Ic)+

σ

G(σ)Γ (σ)

∫ t

0
F2(ρ , Ic)(t −ρ)σ−1dρ ,

Sv(t)− Sv(0) =
1−σ

Γ (σ)
F3(t,Sv)+

σ

G(σ)Γ (σ)

∫ t

0
F3(ρ ,Sv)(t −ρ)σ−1dρ , (7)

Iv(t)− Iv(0) =
1−σ

Γ (σ)
F4(t, Iv)+

σ

G(σ)Γ (σ)

∫ t

0
F4(ρ , Iv)(t −ρ)σ−1dρ .

Consider the set S = B(I)× B(I)× B(I)× B(I) where B(I) = C[0,T ] is the Banach space of real-valued continuous
functions defined on an interval I = [0,T ] with the corresponding norm defined by ‖Sc, Ic,Sv, Iv‖ = ‖Sc‖+ ‖Ic‖+ ‖Sv‖+
‖Iv‖, where

‖Sc‖= sup
t∈I

|Sc(t)|,‖Ic‖= sup
t∈I

|Ic(t)|,‖Sv‖= sup
t∈I

|Sv(t)|,‖Iv‖= sup
t∈I

|Iv(t)|.

Theorem 1 (Lipschitz condition and contraction): For each of the kernels F1,F2,F3,F4 in (5), there exists Vi > 0, i =
1,2,3,4, such that

‖F1(t,Sc)−F1(t,Sc 1)‖ ≤V1‖Sc − Sc 1(t)‖,

‖F2(t, Ic)−F2(t, Ic 1)‖ ≤V2‖Ic − Ic 1(t)‖,

‖F3(t,Sv)−F3(t,Sv 1)‖ ≤V3‖Sv − Sv 1(t)‖,

‖F4(t, Iv)−F4(t, Iv 1)‖ ≤V4‖Iv − Iv 1(t)‖,

and are contractions for 0 ≤Vi < 1, i = 1,2,3,4.
Proof:

‖F1(t,Sc)−F1(t,Sc 1)‖ = ‖r1 −β1ScIv − dSc− (r1 −β1Sc 1Iv − dSc 1)‖

= ‖−α1ScIv − dSc +β1Sc 1Iv + dSc 1‖

= ‖β1Iv(Sc 1 − Sc)+ d(Sc 1 − Sc)‖

≤ (β1n1 + d)‖(Sc 1 − Sc)‖

≤V1‖(Sc 1 − Sc)‖,

where V1 = α1n1 + d.

‖Sc‖= sup
τ∈I

|Sc(t)|= n4,‖Ic‖= sup
τ∈I

|Ic(t)|= n3,‖Sv‖= sup
τ∈I

|Sv(t)|= n2,‖Iv‖= sup
τ∈I

|Iv(t)|= n1.

It then follows that F1(t,Sc) satisfies the Lipschitz condition with Lipschitz constant V1 = α1n1 + d. Moreover, if 0 ≤
V1 < 1, then F1(t,Sc) is a contraction. In the same manner, we can show the existence of Vi, i = 2,3,4, and a contraction
principle for F2(t, Ic),F3(t,Sv),F4(t, Iv),0 ≤Vi < 1. Now for t = tn,n = 1,2, ..., define the following recursive form of (7):

Sc(t) =
1−σ

G(σ)
F1(t,Sc n−1)+

σ

G(σ)Γ (σ)

∫ t

0
F1(t,Sc n−1)(t −ρ)σ−1dρ ,

Ic(t) =
1−σ

G(σ)
F2(t,Sc n−1)+

σ

G(σ)Γ (σ)

∫ t

0
F2(t, Ic n−1)(t −ρ)σ−1dρ ,

Sv(t) =
1−σ

G(σ)
F3(t,Sv n−1)+

σ

G(σ)Γ (σ)

∫ t

0
F3(t,Sv n−1)(t −ρ)σ−1dρ , (8)

Iv(t) =
1−σ

G(σ)
F4(t, Iv n−1)+

σ

G(σ)Γ (σ)

∫ t

0
F4(t, Iv n−1)(t −ρ)σ−1dρ ,
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with initial conditions (6). In (8), the differences between successive terms are represented as follows:

H1n(t) =Sc n(t)− Sc n−1(t),

=
1−σ

G(σ)
(F1(t,Sc n−1)−F1(t,Sc n−2))+

σ

G(σ)Γ (σ)

∫ t

0
(F1(t,Sc n−1)−F1(t,Sc n−2)) (t −ρ)σ−1dρ ,

H2n(t) =Ic n(t)− Ic n−1(t),

=
1−σ

G(σ)
(F2(t, Ic n−1)−F2(t, Ic n−2))+

σ

G(σ)Γ (σ)

∫ t

0
(F2(t, Ic n−1)−F2(t, Ic n−2)) (t −ρ)σ−1dρ ,

H3n(t) =Sc n(t)− Sv n−1(t), (9)

=
1−σ

G(σ)
(F3(t,Sv n−1)−F3(t,Sv n−2))+

σ

G(σ)Γ (σ)

∫ t

0
(F3(t,Sv n−1)−F3(t,Sv n−2)) (t −ρ)σ−1dρ ,

H4n(t) =Iv n(t)− Iv n−1(t),

=
1−σ

G(σ)
(F4(t, Iv n−1)−F4(t, Iv n−2))+

σ

G(σ)Γ (σ)

∫ t

0
(F4(t, Iv n−1)−F4(t, Iv n−2)) (t −ρ)σ−1dρ .

Taking the norm on both sides of each equation in (9), we have

‖H1n(t)‖=‖Sc n(t)− Sc n−1(t)‖,

=
1−σ

G(σ)
‖F1(t,Sc n−1)−F1(t,Sc n−2)‖+

σ

G(σ)Γ (σ)

∫ t

0
‖F1(t,Sc n−1)−F1(t,Sc n−2)‖(t −ρ)σ−1dρ ,

‖H2n(t)‖=‖Ic n(t)− Ic n−1(t)‖,

=
1−σ

G(σ)
‖F2(t, Ic n−1)−F2(t, Ic n−2)‖+

σ

G(σ)Γ (σ)

∫ t

0
‖F2(t, Ic n−1)−F2(t, Ic n−2)‖(t −ρ)σ−1dρ ,

‖H3n(t)‖=‖Sc n(t)− Sv n−1(t)‖=
1−σ

G(σ)
‖F3(t,Sv n−1)−F3(t,Sv n−2)‖

+
σ

G(σ)Γ (σ)

∫ t

0
‖F3(t,Sv n−1)−F3(t,Sv n−2)‖(t −ρ)σ−1dρ , (10)

‖H4n(t)‖=‖Iv n(t)− Iv n−1(t)‖,

=
1−σ

G(σ)
‖F4(t, Iv n−1)−F4(t, Iv n−2)‖+

σ

G(σ)Γ (σ)

∫ t

0
‖F4(t, Iv n−1)−F4(t, Iv n−2)‖(t −ρ)σ−1dρ .

Furthermore, the first equality in (10) can be reduced to the following expressions:

‖H1n(t)‖=‖Sc n(t)− Sc n−1(t)‖,

≤
1−σ

G(σ)
‖F1(t,Sc n−1)−F1(t,Sc n−2)‖+

σ

G(σ)Γ (σ)

∫ τ

0
‖F1(t,Sc n−1)−F1(t,Sc n−2)‖(t −ρ)σ−1dρ ,

≤
1−σ

G(σ)
V1‖Sc n−1)− Sc n−2)‖+

σ

G(σ)Γ (σ)

∫ τ

0
‖Sc n−1)− Sc n−2)‖(t −ρ)σ−1dρ ,

≤V1‖H1(n−1)(t)‖

∣

∣

∣

∣

1−σ

G(σ)
+

tσ

G(σ)Γ (σ)

∣

∣

∣

∣

. (11)

As a result, we have

‖H1n(t)‖ ≤V1

∣

∣

∣

∣

1−σ

G(σ)
+

tσ

G(σ)Γ (σ)

∣

∣

∣

∣

‖H1(n−1)(t)‖. (12)

Similarly, the leftover expressions of (10) can be simplified to the following:

‖H2n(t)‖ ≤V2

∣

∣

∣

∣

1−σ

G(σ)
+

tσ

G(σ)Γ (σ)

∣

∣

∣

∣

‖H2(n−1)(t)‖,

‖H3n(t)‖ ≤V3

∣

∣

∣

∣

1−σ

G(σ)
+

tσ

G(σ)Γ (σ)

∣

∣

∣

∣

‖H3(n−1)(t)‖, (13)

‖H4n(t)‖ ≤V4

∣

∣

∣

∣

1−σ

G(σ)
+

tσ

G(σ)Γ (σ)

∣

∣

∣

∣

‖H4(n−1)(t)‖.

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


234 A. K. Fantaye : Transmission Dynamics of CBD

Theorem 2: If we can find Π σ
0 that satisfies the inequality, the ABC fractional model given in (5) has a solution.

(

1−σ

G(σ)
+

Π σ
0

G(σ)Γ (σ)

)

Vi < 1, i = 1,2,3,4. (14)

Proof: From (12) and (13) we have

‖H1n(t)‖ ≤ ‖Sc(0)‖

[(

1−σ

G(σ)
+

Π σ
0

G(σ)Γ (σ)

)

V1

]n

,

‖H2n(t)‖ ≤ ‖Ic(0)‖

[(

1−σ

G(σ)
+

Π σ
0

G(σ)Γ (σ)

)

V2

]n

, (15)

‖H3n(t)‖ ≤ ‖Sv(0)‖

[(

1−σ

G(σ)
+

Π σ
0

G(σ)Γ (σ)

)

V3

]n

,

‖H4n(t)‖ ≤ ‖Iv(0)‖

[(

1−σ

G(σ)
+

Π σ
0

G(σ)Γ (σ)

)

V4

]n

.

Theorem 1 confirms the existence of the solution (the existence of a fixed point), and we have to show that the functions
Sc(t), Ic(t),Sv(t), Iv(t) are solutions of model (5). Assume the following conditions are met:

Sc(t)− Sc(0) = Sc n(t)− h1n(t),

Ic(t)− Ic(0) = Ic n(t)− h2n(t),

Sv(t)− Sv(0) = Sv n(t)− h3n(t), (16)

Iv(t)− Iv(0) = Iv n(t)− h4n(t).

From (16) we obtain

‖h1n(t)‖ ≤
1−σ

G(σ)
‖(F1(τ,Sc n)−F1(τ,Sc n−1))‖(τ −ρ)σ−1dρ ,

≤
1−σ

G(σ)
V1‖Sc n − Sc n−1‖+

σn

G(σ)Γ (σ)
V1‖Sc n − Sc n−1‖. (17)

Recursion of the process results in

‖h1n(t)‖ ≤

[

1−σ

G(σ)
+

tσ

G(σ)Γ (σ)

]n+1

V n
1 ‖Sc n − Sc n−1‖

n

which at t = Π σ
0 yields

‖h1n(t)‖ ≤

[

1−σ

G(σ)
+

Π σ
0

G(σ)Γ (σ)

]n+1

V n
1 ‖Sc n − Sc n−1‖

n
,

‖h1n(t)‖→ 0. (18)

Applying the limit to both sides of (18) as n → ∞, we see that ‖h1n(t)‖→ 0 for

[

1−σ

G(σ)
+

tσ

G(σ)Γ (σ)

]

V1 < 1.

Similarly, we can show that ‖h2n(t)‖→ 0,‖h3n(t)‖→ 0,‖h4n(t)‖→ 0,

[

1−σ

G(σ)
+

tσ

G(σ)Γ (σ)

]

Vi,1i = 2,3,4.

The Banach fixed point theorem guarantees the existence of the solution of model (5). The solution’s uniqueness is
demonstrated in Theorem 3.
Theorem 3 (Uniqueness of solution): The AB fractional model (5) has a unique solution if

[

1−σ

G(σ)
+

tσ

G(σ)Γ (σ)

]

Vi, i = 1,2,3,4. (19)
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Proof: Let us assume that Sc 1(t), Ic 1(t)Sv 1(t), Iv 1(t) are also solutions to (5). Then

Sc(t)− Sc 1(t) =
1−σ

G(σ)
(F1(t,Sc)−F1(t,Sc 1))+

σ

G(σ)Γ (σ)

∫ t

0
(F1(t,Sc)−F1(t,Sc 1))(t −ρ)σ−1dρ .

Taking the norm of both sides, we obtain

‖Sc(t)− Sc 1(t)‖=
1−σ

G(σ)
V1‖Sc − Sc 1‖+

tσ

G(σ)Γ (σ)
V1‖Sc − Sc 1‖.

Since
(

1−V1

(

1−σ
G(σ) +

tσ

G(σ)Γ (σ)

))

> 0, we obtain ‖Sc(t)− Sc 1(t)‖ = 0. Thus we have Sc(t) = Sc 1(t). Similarly, we can

show that Ic(t) = Ic 1(t),Sv(t) = Sv 1(t), Iv = Iv 1(t), which completes the proof of Theorem 3.
Lemma 3 (Generalized mean value theorem, [52]): Let f (x) ∈ C[α,β ], and let ABC

0 Dσ
t f (x) ∈ C[α,β ] when 0 < σ ≤ 1.

Then we have f (x) = f (α)+ 1
Γ (σ)

ABC
0 Dσ

t f (φ)(x− φ)n , when 0 ≤ φ ≤ x,∀x ∈ (α,β ]. Note that by Lemma 3, if f (x) ∈

[0,β ], ABC
0 Dσ

t f (x) ∈ C[0,β ] and ABC
0 Dσ

t f (x) ≥ 0,∀x ∈ (0,β ] when 0 ≤ σ ≤ 1, then the function f (x) is nondecreasing,

and if ABC
0 Dσ

t f (x) ≤ 0,∀x ∈ (0,β ] then the function g(x) is nonincreasing ∀x ∈ (0,β ].
Theorem 4: The epidemiologically feasible region of AB model (5) is given by:

Ω = Ωc ×Ωv =

{

(Sc, Ic,Sv, Iv) ∈ R
4
+ : Nc ≤

r1

d
,Nv ≤

r1

µ

}

. (20)

Proof: Using Lemma 3, we have

ABC
0 Dσ

t Sc|Sc=0 = r1 ≥ 0,

ABC
0 Dσ

t Ic|Ic=0 = β1ScIv ≥ 0,

ABC
0 Dσ

t Sv|Sv=0 = r2 ≥ 0, (21)

ABC
0 Dσ

t Sv|Iv=0 = β2IcSv ≥ 0.

It follows from (21) that each of the solutions of (5) is nonnegative and remains in R4
+, and hence the set Ω defined in

(20) is positively invariant for model (5). Eventually, to demonstrate the boundedness of the fractional model’s solutions
(5), given that all of the parameters are positive, we continue by adding up all of the model’s equations for both cotton
and vector population, which yields:

ABC
0 Dσ

t Nc = r1 − dNc − γIc ≤ r1 − dNc, (22)

ABC
0 Dσ

t Nv = r2 − µNv. (23)

Now, using the Laplace transform and simplifying equations (22) and (23), we get

Nc(t)≤

(

G(σ)

G(σ)+ (1−σ)d
Nc(0)+

(1−σ)r1

G(σ)+ (1−σ)d

)

Eσ ,1 (−c1tσ )

+
σr1

G(σ)+ (1−σ)d
Eσ ,σ+1 (−c2tσ ) , (24)

Nv(t)≤

(

G(σ)

G(σ)+ (1−σ)µ
Nv(0)+

(1−σ)r2

G(σ)+ (1−σ)µ

)

Eσ ,1 (−c2tσ )

+
σr2

G(σ)+ (1−σ)ψ
Eσ ,σ+1 (−c2tσ ) , (25)

where c1 =
σd

G(σ)+(1−σ)d and c2 =
σ µ

G(σ)+(1−σ)µ with Eσ ,c1
and Eσ ,c2

constitute the two parameter Mittag-Leffler function

and due to its asymptotic nature which leads to the conclusion that Nc(t)≤
r1
d

and Nv(t) ≤
r2
µ ast → ∞. Hence (20) is the

biologically feasible region of model (5).
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3.3 Equilibrium Points of the Model

3.3.1 The Coffee Berry Disease-Free Equilibrium Points of the Model (E0)

The coffee berry disease-free equilibrium points (E0) of the model are stationary solutions with no diseases. It is obtained
by equating equation (5) to zero and using Ic = 0 and Yv = 0. Then, E0 of our model equation (5) is given by:

E0 = (S0
c , I

0
c ,S

0
v , I

0
v ) =

(

r1

d
,0,

r2

µ
,0

)

. (26)

3.3.2 The Basic Reproduction Number (R0)

The basic reproduction number (R0) counts the estimated number of secondary infections that result from one newly
infected coffee berry delivered directly into a susceptible population. Then, by the principle of next generation matrix,
basic reproduction number (R0) is the dominant eigen value of the FV−1 or spectral radius of FV−1 where

F=

(

0
β1r1

d
β2r2

µ 0

)

,V=

(

1
d+γ 0

0 1
µ

)

. (27)

After simplification, we obtain

R0 =

√

r1r2β1β2

(d + γ)dµ2
. (28)

3.3.3 Coffee Berry Disease Endemic Equilibrium Point of the Model (E1)

The coffee berry endemic equilibrium point, E1 = (S∗c , I
∗
c ,S

∗
v , I

∗
v ) of the model is the steady state solution where coffee

berry persist in the population of coffee plants. We can obtain by equating each system of the equation (5) equal to zero
and it is given by:

S∗c =
r1(r1β2 + µ(d+ γ))

dµ(d+ γ)(R2
0 − 1)+ d(r1β2 + µ(d+ γ))

, (29)

I∗c =
r1µ(R2

0 − 1)

µ((d + γ))(R2
0 − 1)+ (r1β2 + µ(d+ γ))

, (30)

S∗v =
r2((d + γ)µ(R2

0 − 1)+ r1β2 + dµ)

µ((r1β2 + dµ)(R2
0 − 1)+ r1β2 + µ(d+ γ))

, (31)

I∗v =
dµ(d+ γ)(R2

0 − 1)

β1(r1β2 + µ)(d+ γ)
. (32)

3.4 Stability Analysis of the Model

3.4.1 Local Stability of the Coffee Berry Disease Free Equilibrium Point

The linearization system of equation (5) at E0 can be used to find the local stability of the model at E0.
Theorem 5: Disease free equilibrium point (E0) of system of equation (5) is locally asymptotically stable, if R0 < 1.

Proof. Evaluating the Jacobian matrix of system of equation (5) at E0 =
(

r1
d
,0,

r2
µ ,0
)

is

J(E0) =











−d 0 0 − β1r1
d

0 −(d+ γ) 0
β1r1

d

0 − β2r2

µ −µ 0

0
β2r2

µ 0 −µ











. (33)
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The corresponding characteristic equation of Jacobian matrix of equation (33) at E0 is given by |J(E0)−λ I4|= 0. That is

(−d−λ )(−µ −λ )(λ 2 + d1λ + d2) = 0. (34)

where

d1 = d + γ + µ ,

d2 = (d + γ)µ −
r1r2β1β2

dµ
= (d + γ)µ

[

1−
r1r2β1β2

(d+ γ)dµ2

]

= (d + γ)µ(1−R2
0). (35)

Clearly, from equation (34), we observe that

λ1 =−d < 0,λ2 =−µ < 0, (36)

and from the last expression of equation (34) , that is

λ 2 + d1λ + d2 = 0, (37)

by using the Routh-Hurwitz criteria, equation (37) has strictly negative real root if d1 > 0 and d2 > 0. Clearly, we observe
that d1 = d+ γ + µ > 0 and

d2 = (d + γ)µ(1−R2
0)> 0, (38)

if (1−R2
0)> 0. That is R2

0 < 1 implies that R0 < 1. As a result, our model equation (5) at E0 offers all eigenvalues with a
negative real part, and so it is locally asymptotically stable if R0 < 1 .

3.4.2 Global Stability of the Coffee Berry Disease Free Equilibrium Point

To establish the global stability of disease free equilibrium point (E0), we need to rewrite the system of equation (5) in
the following form:

Ṁ = J(M,L),

L̇ = P(M,L), (39)

P(M,0) = 0,

where M = (Sc,Sv) ∈ R2 represent the number of uninfected classes, while, L = (Ic, Iv) ∈ R2 represent the number of
infected classes and E0 = (M0

,0) represents the coffee berry disease-free equilibrium of this system. The disease-free
equilibrium E0 is globally asymptotically stable equilibrium for the model if the following conditions are fulfilled:

1. dM
dt

= J(M,0),M∗ is globally asymptotically stable.

2. dL
dt

= DLP(M∗,0)L−P1(M,L),P1(M,L) ≥ 0, ∀(M,L) ∈ Ω .

where DLP(M0
,0) is an M-matrix and P(M,L) taken in (Ic,Yv) and evaluated at (M0

,0) =
(

r1
d
,

r2
µ ,0,0

)

. If system of

equation (39) satisfies the above conditions, then the following theorem holds.
Theorem 6: The coffee berry disease free equilibrium point, E0 = (M0,0) of system of equation (5) is globally
asymptotically stable if R0 ≤ 1 and conditions (1) and (2) are holds.
Proof: From our model of equation (5), we can obtain J(M,L) and P(M,L):

J(M,L) =

(

r1 −β1ScIv − dSc

r2 −β2IcSv − µSv

)

,

P(M,L) =

(

β1ScIv − (d+ γ)Ic

β2IcSv − µIv

)

.

Now, we consider the reduced system and from condition (1)

ABC
0 Dσ

t Sc = r1 − dSc, (40)

ABC
0 Dσ

t Sv = r2 − µSv, (41)
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M0 =
(

r1
d
,

r2
µ

)

is a globally asymptotically stable equilibrium point for the reduced system dM
dt

= J(M,0). This can be

verified from the solution of the equation (40); we get Sc(t) =
r1
d
+
(

Sc(0)−
r1
d

)

e−dt which approaches
r1
d

as t → ∞ and

from equation (41), we obtain Sv(t) =
r2
ψ +(Sv(0)−

r2
µ )e

−µt which approaches
r2
µ as t → ∞. Note that this asymptomatic

dynamics is independent of the initial conditions in Ω ; therefore the convergence of the solutions of the reduced system
(40) and (41) is global in Ω . Now, we compute

DLP(M0
,0) =

(

−(d+ γ) r1β1
d

r2β2

µ −µ

)

. (42)

Then, P(M,L) can be written as
P(M,L) = DLP(M∗

,0)L−P1(M,L), (43)

and we want to show P1(M,L), which is obtained as

P1(M,L) =

(

β1Iv

(

r1
d
− Sc

)

β2Ic

(

r2
µ − Sv

)

)

. (44)

Here r1
d
≥ Sc and r2

µ ≥ Sv . Hence it is clear that P1(M,L) ≥ 0, ∀(M,L) ∈ Ω . Thus, this proves that E0 is globally

asymptotically stable when R0 ≤ 1.

3.4.3 Local Stability of the Coffee Berry Endemic Equilibrium Point

We used the Jacobian stability approach to prove the local stability of the disease endemic equilibrium state in this section.
Theorem 7: When R0 > 1, the model’s endemic equilibrium point, E1, is locally asymptotically stable.
Proof: The local stability of the coffee berry endemic equilibrium (E1), is determined based on the signs of the eigenvalues
of the Jacobian matrix which is computed at E1. Now, the Jacobian matrix of the our model at E1 is given by:

J =







−(β1I∗v + d) 0 0 −β1S∗c
β1I∗v −(d+ γ) 0 β1S∗c

0 −β2S∗v −(β2I∗c + µ) 0
0 β2S∗v β2I∗c −µ






. (45)

The corresponding characteristic equation of Jacobian matrix of equation (45) at E1 is |J(E1)−λ I4|= 0. That is

P(λ ) = f4λ 4 + f3λ 3 + f2λ 2 + f1λ + f0, (46)

where

f4 =1, f3 = 2d+ 2µ +β1I∗v +β2I∗c ,

f2 =dµ +(d+ µ)(d+ γ + µ)(d+ γ)µ +(2µ + d)β1I∗v +(2d+ µ)β2I∗c +β1β2(I
∗
c − S∗cI∗v ),

f1 =µd(d+ γ + µ)+ (d+ µ)(d+ γ)µ +(dµ +(d+ µ)(d+ γ))β2I∗c +(d+ γ + µ)µβ1I∗v

+(d+ µ)β1β2I∗c I∗v −β1β2(d+ µ)S∗cS∗v , (47)

f0 =µβ1β2(d+ γ)I∗c S∗v +β1µ2(d+ γ)I∗v + µβ1β2(d+ γ)I∗c + dµ2(d + γ)− dµβ1β2S∗cS∗v .

Using the Routh-Hurwitz criterion, all roots of characteristic polynomial have negative real parts if and only if f4 >

0, f3 > 0, f2 > 0, f1 > 0, f0 >, f3 f2 > f1 and f1 f2 f3 > f0 f 2
3 + f 2

1 for R0 > 1. Therefore, E1 is locally asymptotically stable
if R0 > 1.

4 Numerical Results and Discussions

This section examines the effects of various fractional order values on the system of equations (5). The following initial
conditions and parameters values are used in the simulations and analysis which are taken from literatures and
assumptions: Sc(0) = 700, Ic(0) = 150,Sv(0) = 100, Iv(0) = 180,r1 = 9,r2 = 5,β1 = 0.0004,β2 = 0.0005,d = 0.04 and
µ = 0.009. Figure 1 depicts how populations of susceptible coffee berries rise asymptotically to the disease-free
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Fig. 1: Time series plot of state variables for R0 < 1
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Fig. 2: Time series plot of state variables for R0 > 1
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Fig. 3: Total number of susceptible and infected coffee berry with different values of σ .
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Fig. 4: Total number of susceptible and infected vector with different values of σ .
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equilibrium point while those of infected coffee berries fall asymptotically to that point. The susceptible vector
population increases asymptotically to the disease-free equilibrium point, whereas the infected vector population
decreases asymptotically to the same equilibrium point. In this case, the disease might ultimately go away in the long
run. The fact that R0 = 0.0442, which is less than one, accounts for the existence of such a condition. This indicates the
theorem that the stability of the disease-free equilibrium point occurs when R0 < 1, i.e., if R0 < 1, then on average, one
infected coffee berry produces less than one newly infectious coffee berry over the course of its disease period. Figure 2
demonstrates how the number of susceptible coffee berry and vector decreases as a result of the influence of infected
coffee berry and vector people, after which they join the infected class, leading to an increase in infected coffee berry and
vector. As a result, the number of infected coffee berries and vectors is rising, and the disease’s endemic equilibrium
point is both present and stable. The fact that R0 = 5.3244, which is greater than one, proves that this condition exists.
This demonstrates the theorem that disease endemic equilibrium points are stable when R0 > 1, i.e., if each infected
coffee berry and its vectors produce, on average, more than one new infected coffee berry and vector, then disease can
spread in the specified area. Figure 3a demonstrates how decreasing the number of coffee berries (Sc) that are susceptible
results from increasing the fractional order (σ) from 0.04 to 1.00. Figure 3b demonstrates how increasing the fractional
order (σ) from 0.04 to 1.00 results in an increase in the number of infected coffee berries (Ic). According to Figure 4a,
the number of susceptible vector populations (Sv) decreases as fractional order (σ), increases from 0.04 to 1.00. The
fractional order (σ) is shown in Figure 4b to increase from 0.04 to 1.00, which results in an increase in the population of
infected vectors (Iv). To put it another way, we can infer from figures 3 - 4 that a reduction in σ results in a marked
decrease in the number of Ic and Iv cases. The curves for each compartment, Ic and Iv, also compress as the value
decreases from 1.00 to 0.04, as shown in the figures. Therefore, we can say that diseases in Ic and Iv decrease as one
approaches zero from the right.

5 Conclusion

In this study, we looked into an Atangana Baleanu fractional derivative-based mathematical model for eco-epidemiology.
We established the existence and uniqueness of the solution, asymptotic stability of the equilibria, and the fundamental
reproduction number (R0). The findings of the study, the coffee berry disease-free equilibrium is locally and globally
asymptotically stable if the basic reproduction number is less than one; however, if the basic reproduction number is
greater than one, the coffee berry endemic equilibrium is locally asymptotically stable. According to the simulation results,
the graphs flattened as the fractional derivative order was decreased from 1.00, and the disease progresses slowly for the
susceptible class (Sc). The graphs for compartments (Ic) and (Iv) demonstrate that the disease spread gradually as the
fractional order deviates from 1.00, and the number of cases at maximum declines relatively. This noteworthy results is due
to the fractional operator Atangana Baleanu with the inherited assets. We claim that fractional models using the Atangana
Baleanu operator can shed more light on the hidden or actual characteristics of phenomena encountered in everyday life.
As the order is decreased, we see a decrease in the number of cases as we display graphic results with various fractional
orders. The impact of other fractional operators like Caputo-Fabrizio fractional derivatives, and comparisons with the
Atangana-Baleanu fractional operator lead on the same model or other relevant models. In the future, we can update our
model by taking optimal control into account, and we can investigate the resulting new model using various kinds of
fractional order operators.
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