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Abstract: The COVID-19 epidemic was a significant occurrence that had a significant influence on the global economic and health

care systems. Machine learning techniques and mathematical models are being used to study the behaviour of the virus and make long

and short term forecasts about the daily new cases. In this work, we construct a SEWIR epidemic model in this paper using the Mittag

Lefler Kernel in terms of fractal fractional operator. The control rate and infectious force in this model are at their peak during the latent

phase. We demonstrate the presence and originality of solutions and determine the model’s fundamental reproductive number R0. For

the first and second derivative tests, a global stability investigation is started using the Lyapunov function. Quantitative analysis of the

collapse of second derivative equilibrium points to demonstrate the impact of another wave of dynamical transmission. The model’s

parameters are subjected to sensitivity analysis in order to the specific factors with the greatest effects on the propagation rate. Infections

point analysis was thoroughly explained, and a Mittag Lefler Kernel-based mathematical framework was used to develop the model’s

numerical solution.
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1 Introduction

COVID-19, also known as the novel coronavirus, has had far-reaching impacts globally, affecting various aspects of
society, such as health, the economy, education, and more. In terms of health impacts, COVID-19 has been associated
with significant morbidity and mortality, with millions of confirmed cases and hundreds of thousands of deaths reported
worldwide. A systematic review of 30 studies conducted [1] found that COVID-19 is associated with an increased risk
of hospitalization and death, particularly in older adults and those with underlying medical conditions. The COVID-
19 pandemic has also had significant economic impacts, with widespread job losses, declining business activity, and
decreased consumer spending. According to [2], the pandemic has led to the worst economic downturn since the Great
Depression. A study by [3] found that the COVID-19 pandemic has led to a significant decline in global trade and that
the largest impact has been on the service sector. Moreover, the pandemic has disrupted education, with schools and
universities closing globally, leading to widespread shifts to remote learning. A study by [4] found that the shift to remote
learning has had negative impacts on student learning and has widened existing disparities in education. It is clear that
COVID-19 has had widespread impacts on various aspects of society, and it will continue to shape our world in the coming
years. In epidemiology, the SEIR model is frequently employed. The entire group is divided into four sections: vulnerable,
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exposed, infected and recovered. Early on in their studies, many researchers took into account fewer variables, and the
majority of them employed the SEIR model directly to investigate and evaluate epidemic illnesses [5]. An SEIR epidemic
model like the one mentioned in [5] was examined by Carcione et al. in [6]. By replacing the control values for the four
populations, the pace at which exposure leads to disease, and the infected population’s recapture rate, they were able to
duplicate the infection and mortality curves. It was confirmed how crucial and successful isolation and medical level were
in halting the virus’s transmission [5,6].

Fractal fractional calculus (FFC) is an area of mathematics that studies the fractional derivatives of fractal functions. It
combines the ideas of fractional calculus and fractal geometry to provide a more complete understanding of the behavior
of fractal functions. The power law, the exponential day law, and the generalized Mittag-Leffler law are the three most
significant ones that have been proposed for this subject [7]. Research papers on Fractal fractional calculus have explored
its applications in various fields such as finance, physics, and biology. A notable example is the paper ”Fractal Fractional
Calculus and Financial Markets” by [8]. In this paper, the authors demonstrate how FFC can be used to model the long-
term memory behavior of financial time series. Another paper, ”Fractal Fractional Calculus and Anomalous Diffusion in
Complex Systems” by [9], shows how FFC can be used to describe anomalous diffusion processes in physical systems. In
general, FFC provides a new way of looking at the derivatives of fractal functions and allows for the characterization of
the complex behavior of these functions. Its applications in various fields demonstrate its potential for further exploration
and use [10]. Since it has been shown that the power-law and exponential decay functions are more general than the
kernel Mittag-Leffler function, the Riemann-Liouville and Caputo-Fabrizio fractional operators are particular instances
of the Atangana-Baleanu fractional operators [11]. In Caputo-type circumstances, the existence of a local derivative of a
power law, exponential function, or Mittag-Leffler function is crucial [12].

The early results are supported by a thorough qualitative investigation of the fractional-order HIV/AIDS model.
Numerical simulations are carried out [13] to show the effects of changing the fractional order and to validate the
theoretical conclusions using the methodologies offered for different fractional orders [14]. Nonlinear analysis was used
to assess Ulam-Hyres’ dependability [15]. The system of fractional differential equations is resolved using the Caputo
and Atangana Baleanu fractional derivative operators. The fractional-order model has undergone qualitative analysis
[16]. Numerical simulation is used to build the close-loop architecture and continuous glucose and insulin monitoring of
the artificial pancreas. The created model provides the estimated values for the human glucose-insulin system’s daily
measurements [17]. Fractional derivatives exhibit large alterations and memory effects in contrast to conventional
derivatives, which enable early disease identification and lower the risk of death [18]. Mathematical models can be used
to investigate social behavior or the spread of infectious diseases. Numerous works on this topic and related topics have
been applied to and researched in the social, medical, and political sciences [19]. Only a few mathematical research and
investigations have been done on this topic, and the majority of them have concentrated on the phenomenon’s statistical
component [20]. It is possible to employ mathematical models to study social behavior or the spread of infectious
illnesses. Several drinking-related mathematical models have been developed and investigated to lower the number of
drinkers [21]. Adu [22] investigated the dynamics of the drinking pandemic using a nonlinear SHTR mathematical
model. A mathematical model was created by Manthey et al. [23] to investigate the epidemiology model of ground
drinking dynamics. Because there weren’t enough reproductive persons to forecast if drinking patterns will endure on the
campus, their data demonstrated that the strategy of enlisting new members had a significant influence on the reduction
of ground alcohol issues. Sharma et al. [24] developed a two-stage (four compartments) method for the treatment of
young individuals with serious drinking problems who have both admitted to their issue and have not. The stability of
each equilibrium was also investigated.

COVID-19 fractional order models have gained significant attention in recent times, especially in the context of
analyzing the spread of the disease. A fractional-order SIR model was proposed to study the spread of COVID-19. The
model takes into account the time-varying parameters, which makes it more realistic compared to other models. The
proposed model was used to analyze the data of some countries and the results showed that the fractional order SIR
model can provide more accurate predictions than the traditional SIR model [25]. Another fractional-order SEIR model
was proposed to study the transmission dynamics of COVID-19. The model takes into account the exposed and infected
compartments, which makes it more comprehensive than the SIR model. The proposed model was used to analyze the
data of some countries and the results showed that the fractional order SEIR model can provide more accurate
predictions than the traditional SEIR model [26]. A fractional order SIR and SEIR models with saturating incidence rates
are proposed to study the spread of COVID-19. The proposed models take into account the saturation in the transmission
rate, which makes them more realistic compared to other models. The models were used to analyze the data of some
countries and the results showed that the fractional order SIR and SEIR models with saturating incidence rates can
provide more accurate predictions than the traditional SIR and SEIR models. Furthermore, the Authors of [27-31]
research works have significantly contributed to the field of COVID-19 and pneumonia fractional order models analysis.
His proposed models take into account various realistic factors and provide more accurate predictions compared to
traditional models.
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Because of their limitations at birth, working with nonsingular kernels is a difficult undertaking, as Refai and Baleanu
discovered. In this brief study, we propose an extension of the fractional operator that permits an integrable singular kernel
at the origin by involving the Mittag-Leffler kernel. New solutions to the associated differential equations were presented
along with various modeling-related viewpoints [32]. By replacing this f’(t) with a more generic proportional derivative,
Baleanu et al. [33] develop a new fractional operator. This novel operator can also be expressed as a linear combination of
a Riemann Liouville integral and a Caputo derivative in some significant particular instances, or as a RiemanN Liouville
integral of a proportionate derivative. For neural networks with ring or hub architectures, the stability area of a steady state
has been extensively characterised, and the critical fractional order values for which Hopf bifurcations may occur have
been discovered [34]. An example of fractional-order neural networks with mixed delays that exhibit periodic oscillation
caused by delays in [35]. The dynamics of the model have changed, according to simulations. With the aid of fractional
values and discoveries from multiple dimensions, the findings of the nonlinear system memory were also identified.
Without imposing any more requirements, it provides a better technique for how you want to manage the sickness. The
numerical results show how the dynamics in the different fractional orders behave [36,37]. Some application of modified
Atangana-Baleanu [38], piecewise fractional analysis [39], intravenous drug model [40],piecewise constant for chemo-
immunotherapy [41], SEIQR model [42] and HIV/AIDS with new fractional techniques in [43].

Section 2 provides the conception of the model as well as a few key aspects. The stability of the proposed model’s
equilibria is assessed in section 3 along with their identification. Some numerical simulations and comments are included
in Section 4. The findings and discussions are covered in Section 5. Finally, we offer a summary of the paper’s main
findings.

2 Basic Definitions

This section has outlined a few preliminary steps that are essential for assessing the system.

2.1 Definition

Suppose the differential function z(t), Let α ≤ 0 and 0 < η ≤ 0, Where η is fractal dimension and α is fractal order is
given as COVID-19 model with a fractional operator that incorporates diabetes [44]

FFP
0 D

α ,η
t z(t) =

1

Γ (1−α)

d

dtη

∫ t

0
z(τ)(t − τ)−α dτ (1)

Where

dz(t)

dtη
= lim

t→t1

z(t)− z(t1)

t2−η − t12−η
(2)

Given is an exponential kernel with a generalized fractional operator.

FFE
0 D

α ,η
t z(t) =

M(α)

1−α

d

dtη

∫ t

0
z(τ)exp

[

−
α

1−α
(t − τ)

]

dτ (3)

The generalized version of a Mittag Leffler kernel with a fractional operator is given as

FFM
0 D

α ,η
t z(t) =

AB(α)

1−α

d

dtη

∫ t

0
z(τ)Eα

[

−
α

1−α
(t − τ)α

]

dτ (4)

Remark.Let f be continuous, if FFE
0 D

α ,β
t exist [45,46], then for example

FFE
0 D

α ,η
t g(t) = lim

t→t1

G(t)−G(t1)

t − t1

t − t1

t2−η − t
2−η
1 (2−η)

(5)

= G′(t)
1

t1−η

=
AB(α)

1−α

d

dt

∫ t

0
g(τ)Eα [−

α

1−α
(t − τ)α ]

dτ

t1−η

=
AB(α)

1−α

d

dt

∫ t

0
g(τ)Eα [−

α

1−α
(t − τ)α ]d(τ, t)

Here d(τ, t) = dτ
t1−η is referred to as the fractal differential of variable τ and fractal representation 1

t1−η .
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3 Fractional Order COVID-19 SEIR Model

We consider a novel model of COVID-19 with infectious force in latent period given in [47] having five compartments
such as S(t), E(t), W(t), I(t), and R(t) respectively. We have followings non linear model with fractal fractional operator

FFM
0 D

α ,η
t S(t) = −β I(t)S(t)+Λ(1−m)+ k2W (t)−mS(t)− µS(t) (6)

FFM
0 D

α ,η
t E(t) = β I(t)S(t)− k1E(t)− εE(t)− µE(t)

FFM
0 D

α ,η
t W (t) = k1E(t)−ϑW(t)− k2W (t)− µW(t)

FFM
0 D

α ,η
t I(t) = εE(t)−ϑ I(t)− γI(t)− µI(t)

FFM
0 D

α ,η
t R(t) = ϑW (t)+ϑ I(t)+m(Λ + S(t))− µR(t)

with S(0) ≥ 0 , E(0) ≥ 0 , W (0) ≥ 0 , I(0) ≥ 0 ,R(0) ≥ 0 are given initial states. The number of people that are
COVID-19 virus susceptible but have no immunity is denoted by the symbol S(t). E(t) stands for the number of exposed
people who haven’t been quarantined. The number of exposed persons under quarantine is denoted by W(t). It indicates
the number of infected people that show symptoms and are able to spread several retrieved people with positive medical
test results and COVID-19 viral immunity is represented by R(t). Here m stands for the success percentage of vaccination
in those at risk, which indicates the likelihood of developing immunity following vaccination, and β signifies the ratio of
infected persons infecting susceptible ones. the government control rate is represented by k1, ϑ represents the recovery
rate, k2 shows the autoimmune virus rate, Λ represents the rate of community growth, taking into account both foreigners
and new babies, µ denotes the natural mortality, and γ shows the disease mortality. ε stands for the conversion rates from
the exposed, non-quarantined population to the infected population.

3.1 Positiveness and Boundness of Model

Theorem 3.1

In straight-line conditions, the COVID-19 SEIR model suggested solution is distinct and constrained in R5
+

Proof

We have got

D
α ,η
t S(t) = Λ(1−m)+ k2W (t)≥ 0 (7)

D
α ,η
t E(t) = β I(t)S(t)≥ 0

D
α ,η
t W (t) = k1E(t)≥ 0

D
α ,η
t I(t) = εE(t)≥ 0

D
α ,η
t R(t) = ϑW (t)+ϑ I(t)+m(Λ + S(t))≥ 0

If (S(0),E(0),W (0), I(0),R(0))εR5
+, then the solution cannot escape from hyperplane. The domain R5

+ is a positivity
invariant set since the vector field on each hyperplane enclosing the non-negative orthant likewise points into it.

3.2 Global derivative effect on model

The Riemann-Stieltjes integral is the more widespread integral for which a specific example is the classical integral, as
has long been known in the literature. The area under the curve of function f (x) is how the geometric meaning of the
traditional Riemann integral is expressed for instance if

F(x) =

∫

f (x)dx (8)

The function g(x) with respect to the function f has the following Riemann-Stieltjes integral:

Fg(x) =

∫

f (x)dg(x) (9)
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No differential calculus is connected to the more general integral calculus created by the generalized integral operator.
Recently, it was proposed and demonstrated that the Riemann-Stieltjes integral is related to the idea of global
differentiation. Given is a function’s global derivative about another function, g(x):

Dg f (x) = lim
h→0

f (x+ h)− f (x)

g(x+ h)− g(x)
(10)

Consequently, we have if function is differentiable

Dg f (x) =
f ′(x)

g′(x)
(11)

Giving that g′(x) 6= 0, ∀x ∈ D
′
g

In this part, we’ll utilize this idea to examine its potential impact on the exogenous growth model. We will use the
global derivative in place of the conventional derivative to achieve this.

DgS(t) = −β I(t)S(t)+Λ(1−m)+ k2W (t)−mS(t)− µS(t) (12)

DgE(t) = β I(t)S(t)− k1E(t)− εE(t)− µE(t)

DgW (t) = k1E(t)−ϑW(t)− k2W (t)− µW(t)

DgI(t) = εE(t)−ϑ I(t)− γI(t)− µI(t)

DgR(t) = ϑW (t)+ϑ I(t)+m(Λ + S(t))− µR(t)

For further solution, consider g is differentiable, then

S′ = g′[−β I(t)S(t)+Λ(1−m)+ k2W (t)−mS(t)− µS(t)] = J1(t,ξ ) (13)

E ′ = g′[β I(t)S(t)− k1E(t)− εE(t)− µE(t)] = J2(t,ξ )

W ′ = g′[k1E(t)−ϑW(t)− k2W (t)− µW(t)] = J3(t,ξ )

I′ = g′[εE(t)−ϑ I(t)− γI(t)− µI(t)] = J4(t,ξ )

R′ = g′[ϑW (t)+ϑ I(t)+m(Λ + S(t))− µR(t)] = J5(t,ξ )

Where

ξ = S,E,W, I,R (14)

For g(t) = tα ,α ∈ R, we have particular form under the condition

‖ g′ ‖∞= sup
t∈D

′
g

< N (15)

For unique solution of equation (16), need to verify these two conditions

–| J(t,S,E,W, I,R)< κ(1+ |S|2) |
–∀S1,S2 we have ‖J(t,S1,E,W, I,R)− J(t,S2,E,W, I,R)‖< κ‖S1 − S2‖

2
∞

Initially,

|J1(t,S,E,W, I,R)|2 = |g′[−β I(t)S(t)+Λ(1−m)+ k2W (t)−mS(t)− µS(t)]|2 (16)

≤ 2|g′|2[|(Λ(1−m)+ k2W (t))|2 + |(−β I(t)−m− µ)S(t)|2]

≤ 2|g′|2(|Λ(1−m)+ k2W (t)|2 +(−β I(t)−m− µ)2|S(t)|2)

≤ 2|g′|2Λ(1−m)+ k2W (t)|2(1+
(−β I(t)−m− µ)2|S(t)|2

|Λ(1−m)+ k2W (t)|2
)

< κ1(1+ |S|2)

Under the condition

(−β I(t)−m− µ)2|S(t)|2

|Λ(1−m)+ k2W (t)|2
< 1 (17)
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Where

κ1 = 2|g′|2Λ(1−m)+ k2|W (t)|2 (18)

|J2(t,S,E,W, I,R)|2 = |g′[β I(t)S(t)− k1E(t)− εE(t)− µE(t)]|2 (19)

≤ |g′[β I(t)S(t)+ (−k1− ε − µ)E(t)]|2

≤ 2|g′|2[|β I(t)S(t)|2 +(−k1 − ε − µ)|E(t)|2]

≤ 2|g′|2|β I(t)S(t)|2(1+
(−k1 − ε − µ)|E(t)|2)

|β I(t)S(t)|2

< κ2(1+ |E|2)

Under the condition

(−k1 − ε − µ)|E(t)|2)

|β I(t)S(t)|2
< 1 (20)

Where

κ2 = 2|g′|2|β I(t)S(t)|2 (21)

|J3(t,S,E,W, I,R)|2 = |g′[k1E(t)−ϑW(t)− k2W (t)− µW(t)]|2 (22)

≤ 2|g′|2(|k1E(t)|2 +(−ϑ − k2 − µ)2|W (t)|2)

≤ 2|g′|2|k1E(t)|2(1+
(−ϑ − k2 − µ)2|W (t)|2)

|k1E(t)|2

< κ3(1+ |W |2)

Under the condition

(−ϑ − k2 − µ)2|W (t)|2)

|k1E(t)|2
< 1 (23)

Where

κ3 = 2|g′|2|k1E(t)|2 (24)

|J4(t,S,E,W, I,R)|2 = |g′[εE(t)−ϑ I(t)− γI(t)− µI(t)]|2 (25)

≤ 2|g′|2[|εE(t)|2 +(−ϑ − γ − µ)|I(t)|2]

≤ 2|g′|2|εE(t)|2(1+
(−ϑ − γ − µ)|I(t)|2)

|εE(t)|2

< κ4(1+ |I|2)

Under the condition

(−ϑ − γ − µ)|I(t)|2)

|εE(t)|2
< 1 (26)

Where
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κ4 = 2|g′|2|εE(t)|2 (27)

|J5(t,S,E,W, I,R)|2 = |g′[ϑW (t)+ϑ I(t)+m(Λ + S(t))− µR(t)]|2 (28)

≤ 2|g′|2[|ϑW (t)+ϑ I(t)+m(Λ + S(t))|2 −|µR(t)|2]

≤ 2|g′|2[ϑ |W (t)|2 +ϑ |I(t)|2 + |m(Λ + S(t))|2 − µ |R(t)|2]

≤ 2|g′|2ϑ |W (t)|2 +ϑ |I(t)|2 + |m(Λ + S(t))|2

(1−
µ |R(t)|2

ϑ |W (t)|2 +ϑ |I(t)|2 + |m(Λ + S(t))|2
)

< κ5(1+ |R|2)

Under the condition

µ |R(t)|2

ϑ |W (t)|2 +ϑ |I(t)|2 + |m(Λ + S(t))|2
> 1 (29)

Where

κ5 = 2|g′|2ϑ |W (t)|2 +ϑ |I(t)|2 + |m(Λ + S(t))|2 (30)

Hence it is proved that it is defined for linear growth condition Further, we validate the Lipschitz condition. If

|J1(t,S1,E,W, I,R)− J1(t,S2,E,W, I,R)|2 = |(−β I(t)−m− µ)|2|(S1 − S2)|
2

(31)

≤ 22β 2|I(t)|2 + 2(m+ µ)2|(S1 − S2)|
2

≤ 4β 2 sup
t∈DI

|I(t)|2 + 4(m+ µ)2 sup
t∈DS

|(S1 − S2)|
2

≤ 4β 2‖I(t)‖2
∞ + 4(m+ µ)2‖(S1 − S2)‖

2
∞

≤ κ̄1‖S1 − S2‖
2
∞

Where

κ̄1 = 4β 2‖I(t)‖2
∞+ 4(m+ µ)2 (32)

|J2(t,S,E1,W, I,R)− J2(t,S,E2,W, I,R)|2 = (−k1 − ε − µ)|2|(E1 −E2)|
2 (33)

≤ |(−k1 − ε − µ)|2 sup
t∈DE

|(E1 −E2)|
2

≤ |(−k1 − ε − µ)|2‖(E1 −E2)‖
2
∞

≤ κ̄2‖E1 −E2‖
2
∞

Where

κ̄2 = (−k1 − ε − µ)|2 (34)

|J3(t,S,E,W1, I,R)− J3(t,S,E,W2, I,R)|
2 = (−ϑ − k2 − µ)2|(W1 −W2)|

2
(35)

≤ (−ϑ − k2 − µ)2 sup
t∈DW

|(W1 −W2)|
2

≤ (−ϑ − k2 − µ)2‖(W1 −W2)‖
2
∞

≤ κ̄3‖W1 −W2‖
2
∞

c© 2025 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


214 M. Farman et al. : Study of COVID-19 ...

Where

κ̄3 = (−ϑ − k2 − µ)2 (36)

|J4(t,S,E,W, I1,R)− J4(t,S,E,W, I2,R)|
2 = (−ϑ − γ − µ)2|(I1 − I2)|

2 (37)

≤ (−ϑ − γ − µ)2 sup
t∈DI

|(I1 − I2)|
2

≤ (−ϑ − γ − µ)2‖(I1 − I2)‖
2
∞

≤ κ̄4‖I1 − I2‖
2
∞

Where

κ̄4 = (−ϑ − γ − µ)2 (38)

|J5(t,S,E,W, I,R1)− J5(t,S,E,W, I,R2)|
2 = µ2|(R1 −R2)|

2
(39)

≤ µ2 sup
t∈DI

|(R1 −R2)|
2

≤ µ2‖(R1 −R2)‖
2
∞

≤ κ̄5‖R1 −R2‖
2
∞

Where

κ̄5 = µ2 (40)

3.3 Reproduction Number and Sensitivity Analysis of system

Several secondary cases generated by a solitary diseased person in a susceptible group during the illness are the
fundamental reproduction number. Using the approach of the next-generation operator, we calculate the reproduction
number.

R0 =
β εS0

(µ + k1 + ε)(µ +ϑ + γ)
(41)

For sensitivity analysis by using reproductive number, we have

∂R0

∂β
=

εS0

(µ + k1 + ε)(µ +ϑ + γ)
> 0 (42)

∂R0

∂ε
= 0 (43)

∂R0

∂ µ
=−

(β εS0)(2µ + ε +ϑ + γ + k1)

(µ + k1 + ε)2(µ +ϑ + γ)2
< 0 (44)

∂R0

∂k1

=−
β εS0

(µ + k1 + ε)2(µ +ϑ + γ)
< 0 (45)

∂R0

∂ϑ
=−

(β εS0)

(µ + k1 + ε)(µ +ϑ + γ)2
< 0 (46)

∂R0

∂γ
=−

(β εS0)

(µ + k1 + ε)(µ +ϑ + γ)2
< 0 (47)

Here, we observe that, β is expanding while µ ,k1,ϑ and γ are contracting and ε = 0.
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3.4 Equilibrium Points Analysis

The two distinct kinds of equilibrium points are disease-present equilibrium points and complaint-free equilibrium points.
To discover them, the right-hand sides of the system’s equations are set to zero.

Theorem 3.2

If R0 > 1 , then the proposed model has P0(0,0,S0,0) and virus existing steady states P∗(E∗, I∗,S∗,W ∗). Otherwise, there

is only virus free steady state P0(0,0,S0,0) with S0 =
Λ(1−m)

m+µ . So,

S∗ =
ω1ω2

β ε
(48)

E∗ =
ω3ω1ω2θ (1−R0)

β ε(k1k2 −ω1ω3)

W ∗ =
k1

ω3

E∗

I∗ =
ε

ω2

E∗

Where

ω1 = µ + k1 + ε (49)

ω2 = µ +ϑ + γ

ω3 = µ +ϑ + k2

θ = m+ µ

Theorem 3.2

Let Π : [0,T ]×B →R be a continuous function. The system having at least one solution is conditioned in [48].

Proof:

First of all considering the equation (??) is completely continuous which describe with operator ℵ. Since Λ and ℵ are
continuous operators.
Suppose that H = {Π ∈ B : ‖Π‖ ≤ R,R > 0}. For some Π ∈ B, we have

|ℵ(Π)(t)|= max
t∈[0,T ]

|Π(0)+
αtα−1(1−α)

AB(α)
Λ(t,Π(t))+

αη

AB(α)Γ (α)

∫ t

0
tα−1(t − τ)α−1Λ(t,Π(t))dτ|. (50)

≤ Π(0)+
αtα−1(1−α)

AB(α)
(CΛ‖Π‖+MΛ)+ max

t∈[0,T ]

αη

AB(α)Γ (α)

∫ t

0
tα−1(t − τ)α−1Λ(t,Π(t))dτ|. (51)

≤ Π(0)+
αtα−1(1−α)

AB(α)
(CΛ‖Π‖+MΛ )+

αη

AB(α)Γ (α)
(CΛ‖Π‖+MΛ)T

α+η−1H(α,η). (52)

≤ R. (53)

Therefore, we get

|ℵ(Π)(t2)−ℵ(Π)(t1)|= max
t∈[0,T ]

|
αtα−1(1−α)

AB(α)
Λ(t2,Π(t2))+

αη

AB(α)Γ (α)

∫ t

0
tα−1(t − τ)α−1Λ(t2,Π(t2))dτ

−
αtα−1(1−α)

AB(α)
Λ(t1,Π(t1))−

αη

AB(α)Γ (α)

∫ t

0
tα−1(t − τ)α−1Λ(t1,Π(t1))dτ|.

(54)
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≤
αtα−1(1−α)

AB(α)
(CΛ‖Π‖+MΛ)+

αη

AB(α)Γ (α)
(CΛ‖Π‖+MΛ )T

α+η−1H(α,η)

−
αtα−1(1−α)

AB(α)
(CΛ‖Π‖+MΛ )−

αη

AB(α)Γ (α)
(CΛ‖Π‖+MΛ)T

α+η−1H(α,η).

(55)

When t1 → t2 then |ℵ(Π)(t2)−ℵ(Π)(t1)| → 0|. ‖ℵ(Π)(t2)−ℵ(Π)(t1)‖ → 0 as t1 → t2. Thus, ℵ is equicontinuous.
Then, by Schauders fixed point result its hold the condition.

3.5 Local stability Analysis

It is commonly known that whether a disease will disappear or remain in the population depends on the fundamental
reproductive number. Recall that the sickness will eventually disappear when R0 < 1. (no epidemic). In the meanwhile,
the sickness will spread rapidly if R0 > 1. Additionally, the value of R0 shows how infectious the illness is. The stability
of the steady states connected to the fractional model will then be examined. Two theorems are stated for this goal [49].

Theorem 3.4

If R0 < 1 then the virus-free steady state is locally stable

Proof

The linearized system according to P0(0,0,S0,0) is given by

F(P0) =







−T1 β S0 0 0
ε −T2 0 0
0 −β S0 −θ k2

k1 0 0 −T3







The characteristic equation of F(P0) is given as

f (λ ) = (λ +T1)(λ +T2)(λ +T3)(λ +θ )−β S0ε(λ +θ )(λ +T3) = 0 (56)

Which leads to

(λ +T1)(λ +T2)−β S0ε = 0 (57)

It can appear that all roots have true negative components. Therefore, P0(0,0,S0,0) of the system is locally
asymptotically stable.

Theorem 3.5

If R0 > 1 then the virus existing steady state is locally stable

Proof

The Jacobian matrix of the given model according to P∗(S∗,E∗,W ∗, I∗) is given by

F(P∗) =







−T1 β S∗ β I∗ 0
ε −T2 0 0
0 −β S∗ −β I∗−θ k2

k1 0 0 −T3







The characteristic equation of F(P∗) is given as

f (λ ) = (λ +T1)(λ +T2)(λ +T3)(λ +−β I∗+θ )−β S∗ε(λ +θ )(λ +T3)− k1k2β I∗(λ +T2) = 0 (58)

It can appear that all roots have true negative components. As a result, the model’s P ∗ (S∗,E∗,W ∗, I∗) is locally
asymptotically stable.
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3.6 Global Stablity Analysis

The Lyapunov method and LaSalle’s invariance principle are used to illustrate the global stability analysis, which identifies
the prerequisites for disease eradication.

3.6.1 Lyapunov’s First Derivative

Where V < 0, the endemic equilibrium for the endemic Lyapunov function is (S,E,W, I,R).

Theorem 3.6

When the reproductive number R0 > 1, the virus existing steady state of this model is globally asymptotically stable.

Proof

Considering Lyapunov function, we have

V = K1(S− S∗− S∗ln
S∗

S
)+K2(E −E∗−E∗ln

E∗

E
)+K3(W −W∗−W∗ln

W ∗

W
)

+ K4(I
∗− I∗− I∗ln

I∗

I∗
)+K5(R−R∗−R∗ln

R∗

R
)

Where, Ki, i = 1,2,3,4,5 are all positive constants that can be chosen later. By substituting the above equation into the
system we get

FFM
0 D

η
t V ≤ K1(1−

S∗

S
)FFM

0 D
η
t S+K2(1−

E∗

E
)FFM

0 D
η
t E +K3(1−

W ∗

W
) (59)

FFM
0 D

η
t W +K4(1−

I∗

I
)FFM

0 D
η
t I +K5(1−

R∗

R
)FFM

0 D
η
t R

FFM
0 D

η
t V ≤ K1(1−

S∗

S
)(−β I(t)S(t)+Λ(1−m)+ k2W (t)−mS(t)− µS(t))+K2(1−

E∗

E
)

(β I(t)S(t)− k1E(t)− εE(t)− µE(t))+K3(1−
W ∗

W
)(k1E(t)−ϑW(t)− k2W (t)

− µW (t))+K4(1−
I∗

I
)(εE(t)−ϑ I(t)− γI(t)− µI(t))I+K5(1−

R∗

R
)

(ϑW (t)+ϑ I(t)+m(Λ + S(t))− µR(t))

After the computations and by setting K1 = K2 = K3 = K4 = K5 = 1, we obtain

FFM
0 D

η
t V ≤ (

S−S∗

S
)(−β (I − I∗)(S−S∗)+Λ (1−m)+k2(W −W ∗)−m(S−S∗)−µ(S−S∗))

+ (
E −E∗

E
)(β (I − I∗)(S−S∗)−k1(E −E∗)− ε(E −E∗)−µ(E −E∗))+(

W −W ∗

W
)

(k1(E −E∗)−ϑ (W −W ∗)−k2(W −W ∗)−µ(W −W ∗))+(
I − I∗

I
)(ε(E −E∗)

− ϑ (I − I∗)− γ(I − I∗)−µ(I − I∗))+(
R−R∗

R
)(ϑ (W −W ∗)+ϑ (I − I∗)

+ m(Λ +(S−S∗))−µ(R−R∗))

≤ 0

where FFM
0 D

η
t V ≤ 0 for R0 > 1, and FFM

0 D
η
t V = 0 only if S = S∗,E = E∗,W =W ∗, I = I∗. Therefore, it is concluded that the given

system is globally asymptotically stable.
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3.6.2 Second derivative of Lyapunov

˙FFM
0 D

η
t V = (

FFM
0 D

η
t S

S
)2S∗+(

FFM
0 D

η
t E

E
)2E∗+(

FFM
0 D

η
t W

W
)2W ∗+(

FFM
0 D

η
t I

I
)2I∗+(

FFM
0 D

η
t R

R
)2R∗

+ (1−
S∗

S
) ˙FFM
0 D

η
t S+(1−

E∗

E
) ˙FFM
0 D

η
t E +(1−

W ∗

W
) ˙FFM
0 D

η
t W +(1−

I∗

I
) ˙FFM
0 D

η
t I +(1−

R∗

R
) ˙FFM
0 D

η
t R

Here

˙FFM
0 D

η
t S(t) = −β I(t)FFM

0 D
η
t S(t)−mFFM

0 D
η
t S(t)−µFFM

0 D
η
t S(t) (60)

˙FFM
0 D

η
t E(t) = k1

FFM
0 D

η
t E(t)− εFFM

0 D
η
t E(t)−µFFM

0 D
η
t E(t)

˙FFM
0 D

η
t W (t) = ϑ FFM

0 D
η
t W (t)−k2

FFM
0 D

η
t W (t)−µFFM

0 D
η
t W (t)

˙FFM
0 D

η
t I(t) = ϑ FFM

0 D
η
t I(T)− γFFM

0 D
η
t I(t)−µFFM

0 D
η
t I(t)

˙FFM
0 D

η
t R(t) = −µFFM

0 D
η
t R(t)

Then

˙FFM
0 D

η
t V = (

FFM
0 D

η
t S

S
)2S∗+(

FFM
0 D

η
t E

E
)2E∗+(

FFM
0 D

η
t W

W
)2W ∗+(

FFM
0 D

η
t I

I
)2I∗+(

FFM
0 D

η
t R

R
)2R∗

+ (1−
S∗

S
)(−β I(t)FFM

0 D
η
t S−mFFM

0 D
η
t S−µFFM

0 D
η
t S)+(1−

E∗

E
)(k1

FFM
0 D

η
t E)− εFFM

0 D
η
t E

− µFFM
0 D

η
t E)+(1−

W ∗

W
)(ϑ FFM

0 D
η
t W −k2

FFM
0 D

η
t W −µFFM

0 D
η
t W )+(1−

I∗

I
)(ϑ FFM

0 D
η
t I

− γFFM
0 D

η
t I −µFFM

0 D
η
t I)+(1−

R∗

R
)(−µFFM

0 D
η
t R)

Now let us consider that

Λ̇ (S,E,W, I,R) = (
FFM
0 D

η
t S

S
)2S∗+(

FFM
0 D

η
t E

E
)2E∗+(

FFM
0 D

η
t W

W
)2W ∗+(

FFM
0 D

η
t I

I
)2I∗+(

FFM
0 D

η
t R

R
)2R∗

Then

˙FFM
0 D

η
t V = Λ̇ (S,E,W, I,R)+(1−

S∗

S
)(−β I(t)FFM

0 D
η
t S−mFFM

0 D
η
t S−µFFM

0 D
η
t S)+(1−

E∗

E
)

(k1
FFM
0 D

η
t E − εFFM

0 D
η
t E −µFFM

0 D
η
t E)+(1−

W ∗

W
)(ϑ FFM

0 D
η
t W −k2

FFM
0 D

η
t W

− µFFM
0 D

η
t W )+(1−

I∗

I
)(ϑ FFM

0 D
η
t I − γFFM

0 D
η
t I −µFFM

0 D
η
t I)+(1−

R∗

R
)(−µFFM

0 D
η
t R)

After replacing the values of the first derivatives we get

Which can be written as

˙FFM
0 D

η
t V =℘1 +℘2 (61)

℘1 : Contain all positive values

℘2 : Contain all negative values

It can be seen that

–If ℘1 >℘2 then ˙FFM
0 D

η
t V > 0

–If ℘1 <℘2 then
˙FFM

0 D
η
t V < 0

–If If ℘1 =℘2 then
˙FFM

0 D
η
t V = 0
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4 Computational Analysis with Fractal Fractional Operator

In this part, the suggested mathematical COVID-19 SEIR model is applied to the new differential and integral operators. Here, the

operator with the Mittag-Leffler Kernel [50] will take the place of the conventional differential operator. The version with flexible order

will also be used.

Since (7) we get

FFM
0 D

α ,η
t S(t) = S1(t,ξ ) (62)

FFM
0 D

α ,η
t E(t) = E1(t,ξ ) (63)

FFM
0 D

α ,η
t W (t) = W1(t,ξ ) (64)

FFM
0 D

α ,η
t I(t) = I1(t,ξ ) (65)

FFM
0 D

α ,η
t R(t) = R1(t,ξ ) (66)

By using Mittag-Leffler kernel we get,

S(tδ+1) = S0 +
1−α

AB(α)
t
1−β
δ S1(tδ ,S(tδ ),E(tδ ),W (tδ ), I(tδ ),R(tδ ))

+h̄
δ

∑
µ=2

∫ tµ+1

tµ

S1(τ,ξ )τ
1−η (tδ+1 − τ)α−1dτ

E(tδ+1) = E0 +
1−α

AB(α)
t
1−β
δ

E1(tδ ,S(tδ ),E(tδ ),W (tδ ), I(tδ ),R(tδ ))

+h̄
δ

∑
µ=2

∫ tµ+1

tµ

E1(τ,ξ )τ
1−η (tδ+1 − τ)α−1dτ

W (tδ+1) =W0 +
1−α

AB(α)
t
1−β
δ W1(tδ ,S(tδ ),E(tδ ),W (tδ ), I(tδ ),R(tδ ))

+h̄
δ

∑
µ=2

∫ tµ+1

tµ

W1(τ,ξ )τ
1−η (tδ+1 − τ)α−1dτ

I(tδ+1) = I0 +
1−α

AB(α)
t
1−β
δ

I1(tδ ,S(tδ ),E(tδ ),W (tδ ), I(tδ ),R(tδ ))

+h̄
δ

∑
µ=2

∫ tµ+1

tmu

I1(τ,ξ )τ
1−η (tδ+1 − τ)α−1dτ

R(tδ+1) = R0 +
1−α

AB(α)
t
1−β
δ R1(tδ ,S(tδ ),E(tδ ),W (tδ ), I(tδ ),R(tδ ))

+h̄
δ

∑
µ=2

∫ tµ+1

tµ

R1(τ,ξ )τ
1−η (tδ+1 − τ)α−1dτ

Where ξ = S,E,W, I,R and h̄ = α
AB(α)Γ (α) , we get,

Sδ+1 =
1−α

AB(α)
t
1−η
δ

S1(tδ ,S
δ
,Eδ

,W δ
, Iδ

,Rδ )+
α(∆ t)µ

AB(α)Γ (α +1)
(67)

δ

∑
µ=2

t
1−η
µ−2 S1(Θ)×Ψ +

α(∆ t)α

AB(α)Γ (α +2)

δ

∑
µ=2

[

t
1−η
µ−1 S1(℧)− t

1−η
µ−2 S1(θ )

]

×Φ

+
α(∆ t)α

2AB(α)Γ (α +3)

δ

∑
µ=2

[t
1−η
µ S1(tµ ,S

µ
,Eµ

,W µ
, Iµ

,Rµ )−2t
1−η
µ−1 S1(℧)

− t
1−η
µ−2 S1(Θ)]×ζ
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Eδ+1 =
1−α

AB(α)
t
1−η
δ

E1(tδ ,S
δ
,Eδ

,W δ
, Iδ

,Rδ )+
α(∆ t)µ

AB(α)Γ (α +1)
(68)

δ

∑
µ=2

t
1−η
µ−2 E1(Θ)×Ψ +

α(∆ t)α

AB(α)Γ (α +2)

δ

∑
µ=2

[

t
1−η
µ−1 E1(℧)− t

1−η
µ−2 E1(θ )

]

×Φ

+
α(∆ t)α

2AB(α)Γ (α +3)

δ

∑
µ=2

[t1−η
µ E1(tµ ,S

µ
,Eµ

,W µ
, Iµ

,Rµ)−2t
1−η
µ−1 E1(℧)

− t
1−η
µ−2 E1(Θ)]×ζ

W δ+1 =
1−α

AB(α)
t
1−η
δ W1(tδ ,S

δ
,Eδ

,W δ
, Iδ

,Rδ )+
α(∆ t)µ

AB(α)Γ (α +1)
(69)

δ

∑
µ=2

t
1−η
µ−2W1(Θ)×Ψ +

α(∆ t)α

AB(α)Γ (α +2)

δ

∑
µ=2

[

t
1−η
µ−1W1(℧)− t

1−η
µ−2W1(θ )

]

×Φ

+
α(∆ t)α

2AB(α)Γ (α +3)

δ

∑
µ=2

[t
1−η
µ W1(tµ ,S

µ
,Eµ

,W µ
, Iµ

,Rµ)−2t
1−η
µ−1W1(℧)

− t
1−η
µ−2W1(Θ)]×ζ

Iδ+1 =
1−α

AB(α)
t
1−η
δ

I1(tδ ,S
δ
,Eδ

,W δ
, Iδ

,Rδ )+
α(∆ t)µ

AB(α)Γ (α +1)
(70)

δ

∑
µ=2

t
1−η
µ−2 S1(Θ)×Ψ +

α(∆ t)α

AB(α)Γ (α +2)

δ

∑
µ=2

[

t
1−η
µ−1 I1(℧)− t

1−η
µ−2 I1(θ )

]

×Φ

+
α(∆ t)α

2AB(α)Γ (α +3)

δ

∑
µ=2

[t
1−η
µ I1(tµ ,S

µ
,Eµ

,W µ
, Iµ

,Rµ)−2t
1−η
µ−1 I1(℧)

− t
1−η
µ−2 I1(Θ)]×ζ

Rδ+1 =
1−α

AB(α)
t
1−η
δ R1(tδ ,S

δ
,Eδ

,W δ
, Iδ

,Rδ )+
α(∆ t)µ

AB(α)Γ (α +1)
(71)

δ

∑
µ=2

t
1−η
µ−2 R1(Θ)×Ψ +

α(∆ t)α

AB(α)Γ (α +2)

δ

∑
µ=2

[

t
1−η
µ−1 R1(℧)− t

1−η
µ−2 R1(θ )

]

×Φ

+
α(∆ t)α

2AB(α)Γ (α +3)

δ

∑
µ=2

[t1−η
µ R1(tµ ,S

µ
,Eµ

,W µ
, Iµ

,Rµ)−2t
1−η
µ−1 R1(℧)

− t
1−η
µ−2 R1(Θ)]×ζ

where

Ψ = [(δ −µ +1)α − (δ −µ)α ] (72)
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Θ = tµ−2,S
µ−2

,Eµ−2
,W µ−2

, Iµ−2
,Rµ−2 (73)

℧= tµ−1,S
µ−1

,Eµ−1
,W µ−1

, Iµ−1
,Rµ−1 (74)

Φ =
[

(δ −µ +1)α (δ −µ +3+2α)− (δ −µ)α (δ −µ +3+3α)
]

(75)

ζ =
[

(δ −µ +1)α
(

2(δ −µ)2 +(3α +10)(δ −µ)+2α2 +9α +12
)

(76)

−(δ −µ)α
(

2(δ −µ)2 +(5α +10)(δ −µ)+6α2 +18α +12
)]

5 Results and Discussion

The simulation of the taken into-consideration version is depicted inside the figures in this phase the usage of the values of the simple

parameters from the simulations of the different classes of COVID-19 SEWIR model with FFM operator are demonstrated in the

following Figures for distinct values of fractional order alpha. We consider FFM for the COVID-19 model by using parametric values

of α and η . In this part, we talk about numerically simulating the proposed plan for the COVID-19 model using a fractal fractional

technique. An analysis of the disease transmission using simulations is given using the COVID-19 SEWIR fractional order model. For

this reason, we utilized the COVID-19 model’s fractal-fractional derivative in conjunction with the Mittag-Leffler equation with the

given beginning circumstances. A nonlinear system’s results are found using fractional values.

In figs 1-5 we compare the results of the compartments in Case 1 and Case 2. In Case 1, we take m = 0.35 and k1 = 0.3. Then, R0 =
8.1769 > 1 and P∗(E∗, I∗,S∗,W ∗) = (7.2730,6.1898,2.7730,2.4516). In a similar manner, the population size under the circumstance

R0 > 1 is also simulated. The relative outcomes are shown. In Case 2, we take m = 0.8 and k1 = 0.6. Then, R0 = 0.9802 < 1 and

P0(0,0,S0,0) = (0,0,3.4091,0). Then, under the assumption that R0 < 1, we model changes in the numbers of these four populations.

Conclusion: A shorter length of the epidemic is caused by a drop in the starting value of vulnerable people at the start of the outbreak.

While this is happening, a lower level is reached by the peak of verified cases very immediately. Although around 20 days later than

in Case 2, the number of the four communities in Case 1 begins to stabilize about day 160. The pandemic will continue in Case 1

since neither the exposure nor the afflicted communities can completely vanish. But as seen in Case 1, once the four communities

have stabilized, the whole community will be made up of the vaccinated susceptible and recovered community. This goal for epidemic

control is of top importance. Similar amounts of time are used by the exposed and infected communities in Cases 1 and 2, although

Case 1’s peak is greater. Therefore, we may conclude from these results that both government engagement and vaccination have an

effect on the dynamics of the epidemic. The results of the research above indicate that m and k1 both contribute to the prevention and

management of the pandemic. As a result, we will particularly research how well m and k1 work to regulate COVID-19. The starting

point is (120, 0, 15, 1, 0). We will note changes in the populations exposed to the quarantined virus W(t) and I(t), respectively. Fractional

order derivations, which might be the most outstanding and dependable compared to classical order, were greater efficient in explaining

bodily approaches. In contrast, those operators are extra worthwhile than current non-integer order fashions. The supplied numerical

results represent the conduct of the dynamics that may be observed within the one-of-a-kind fractal orders.

6 Conclusion

Mathematical modeling plays a crucial role in manipulating, preparing for, and navigating the terrible impacts of infectious illnesses

on society via historical decline. The outcome of the fractional order version has a memory impact on the fashionable version, in

contrast to the classical version. Critiques of the suggested strategy that are both qualitative and quantitative are also explored. The

analysis of the fractal fractional operators is further explored in great depth. Additionally, utilizing the Mittag-Leffler Kernel, we

developed a numerical simulation of a kind of fractional differential equations. We utilized Matlab to simulate the consequences for

extremely high fractional order and fractal size values. We’ve seen that the ground-breaking operator yields excellent results even

when used in the mathematical modeling of the COVID-19 SEWIR model. The figures show that changing the fractal order has an

impact on how the recommended model behaves. The illustrations show how fractal and fractional orders interact. We discover that

the suggested model is effectively useable as a modeling tool and also offers insight into the dynamics of disturbances thanks to the

graphical impact. The fractional order analyzes the frame in which the diseased character is comprised of diseases from the beginning

to the conclusion, as opposed to the non-integer order derivation, which analyzes the illness in one section unambiguously. It makes it

easier to study the entire behavior of COVID-19 use from beginning to end. The results of this study can help by giving information to

policy-makers and public health professionals so that they can stop the spread of COVID-19.
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