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Abstract: This research paper presents a novel statistical model, namely the Odd Half Logistic Chen Distribution, which combines

the continuous Chen distribution with the half logistic-G family of distribution. Where,α and λ are scale parameters and β is the shape

parameter. The model exhibits unimodal characteristics with a negative skewness, while the hazard rate function displays an increasing

J-shaped pattern. The study derives explicit expressions for various important statistical functions, including the reliability/survival

function, hazard rate function, revised hazard rate function, cumulative hazard rate function, quantile function, mode function, and

order statistics. The maximum likelihood estimation method is employed to estimate the model parameters and a simulation study

confirms the efficiency of the approach as the sample size increases, indicated by the decreasing mean squared errors of the individual

parameters. Furthermore, the proposed model is applied to a real-world air quality data analysis in Kathmandu Valley. The finding

reveals that residents of the area experience only seven days of fresh air per month, highlighting the severity of the air pollution problem.

The model is validated through graphical techniques such as P-P plot, Q-Q plot, estimated cumulative distribution function (CDF) with

empirical distribution and numerical tests including the Kolmogorov-Smirnov (KS) test, Anderson Darling test and Cramér–von Mises

test. The parameter estimation, model validation and statistical analysis are performed using R programming. Therefore, the proposed

model emerges as a promising alternative for predicting air quality data and performing reliability analysis in various domains.

Keywords: Chen distribution, Maximum likelihood Estimation, Nepal, Order statistics, PM 2.5 air quality

1 Introduction

The development of novel methods for broadening existing probability distributions has been a significant scholarly
concern in recent years. The theory of distributions has witnessed rapid expansion, facilitated by various approaches such
as compounding of distribution, mixing of distribution, utilizing any distribution as a generator, power transformation
techniques and inverse transformation techniques. The primary objective behind the generalization of new distributions
is to capture the diverse characteristics exhibited by different types of data that cannot be fully explored by conventional
probability distributions [1]. As a result, flexible probability distributions with additional shape parameters have been
explored and proposed in the literature [2].

For instance, the type II half-logistic exponential distribution is formed by employing the type II half logistic
distribution as a generator within the generalized gamma family of distributions [3]. Type I generalized half logistic
distribution is derived through exponential random variable transformation, and a theorem relating the generalized
distribution to the Pareto distribution has been established [4]. This half-logistic distribution has been applied in
reliability analysis. A novel continuous distribution for modelling positive real-life data, achieved through the
transformation of a half logistic random variable, resulting in the development of the generalized half logistic and power
half logistic distributions. The power half logistic distribution, in particular, exhibits greater convexity, concavity, and
heavy-tailedness, depending on the values of its parameters [5]. Furthermore, the half-logistic Lomax distribution,
combining parameters from the half-logistic and Lomax distributions, has been proposed as a new lifetime model,
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commonly utilized in reliability, engineering, and survival analysis. The proposed distribution is heavily tail, decreasing
upside-down bathtub (unimodal) shaped hazard rate function [6]. The half logistic exponential extension model is
developed by compounding the type I half logistic-G family with the exponential extension distribution, resulting in a
flexible distribution with negative-skewed, positive-skewed and symmetrical properties. The hazard rate function of the
proposed distribution is also flexible due to its various shapes, such as monotonically decreasing, increasing and constant
[7]. Hence, numerous other distributions have also been developed to provide flexibility and effectively represent the
diverse characteristics of data.

In terms of parameter estimation, various techniques have been applied in different distribution models. For example,
the odd exponentiated half-logistic exponential distribution employs eight techniques, including maximum likelihood
estimation, least squares, Anderson-Darling, the maximum product of spacing, weighted least squares, Cramér-von
Mises, percentiles, and right-tail Anderson-Darling, to estimate its parameters[8]. Likewise, The Type-II Quasi Lambert-
G family of probability distributions has been employed, utilizing various estimation methods including maximum
likelihood estimation, maximum product spacing estimation, least squares estimation, weighted least squares estimation,
Anderson-Darling estimation, and Cramer-von Mises estimation [9]. Similarly, various estimation techniques have been
employed in the available literature [10,11]. Consequently, this study was motivated by the development of a new
probability distribution, using different estimation methods for modelling of air quality data.

In the context of introducing a new distribution and estimating its parameters using real data, we focus on air quality
data such as the PM2.5 concentration in the Kathmandu Valley, Nepal. PM2.5 refers to fine particulate matter with a
diameter of 2.5 micrometers or less, and it is widely recognized as a crucial indicator of air quality. The World Health
Organization [12] has defined PM2.5 levels below 10 µg/m3 as safe for human health. However, with the impact of global
warming in Nepal, there is a concerning upward trend in PM2.5 levels. Exceeding the threshold of 10 µg/m3 for PM2.5
poses a significant risk of poisoning and adverse health effects for individuals. To address this issue, a new three-parameter
flexible distribution known as the Odd Half Logistic Chen (OHLC) distribution has been proposed as a means to predict
air quality in Kathmandu, Nepal.

2 Material and Methods

2.1 Model Analysis

Let φ(t) be the probability density function of random variable T ∈[a,b],defined on interval −∞ < a ≤ b < ∞. ω(F(x))
be any function of the cumulative distribution function F(x) of any random variable X , which satisfied the following
properties:

ω(F(x)) ∈ [a,b];
ω(F(x))is differentiable and monotonic nondecreasing function; and

ω(F(x))→ a as x → −∞ andω(F(x))→ b as x → ∞.

Let, ω(F(x)) is an odd function and F(x) = 1− eλ(1−exp(xβ )) is a cumulative distribution function of Chen distribution

which satisfied the above properties, and odd function can be written as;ω(F(x)) = exp
{

−λ
(

1− exp
(

xβ
))}

−1; where,β
is shape parameter and λ is the scale parameter. Similarly, the T-X family of distribution is an extended form of beta
generated distribution, where random variable T serves as a generator instead of a beta random [13] defined as;

F (x) =
∫ ω(F(x))

a
φ(t)dt; (1)

where,φ(t) as a generator which has been used for probability density function of the half logistic distribution. The half
logistic distribution has widespread application of reliability and survival data modeling [6]. The pdf of φ(t) is

φ (t) =
2αe−αt

(1+ e−αt)2
; t > 0,α > 0. (2)

Applying the equation (2) in equation (1) and integrating equation (1) using ω(F(x))=exp
{

−λ
(

1− exp
(

xβ
))}

− 1; it
yields the Cumulative Distribution Function (CDF) of the Odd Half Logistic Chen (OHLC) distribution,

F (x) =

∫ exp{−λ(1−exp(xβ ))}−1

0

2αe−αt

(1+ e−αt)2
dt
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Fig. 1: Plot of density function (left panel) and hazard rate function (right panel) of odd half logistic Chen distribution.

=
1− exp

[

α
{

1− exp
{

−λ
(

1− exβ
)}}]

1+ exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}] ;x ≥ 0,α > 0,β > 0,λ > 0. (3)

The corresponding Probability Density Function (PDF) of proposed distribution is

f (x) =
2αβ λ xβ−1exβ

exp
{

−λ
(

1− exβ
)}

exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}]

[

1+ exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}]]2

;x ≥ 0,α > 0,β > 0,λ > 0. (4)

The hazard rate function is the conditional density given that the event has not occurred before time x,

h(x) =
αβ λ xβ−1exβ

exp
{

−λ
(

1− exβ
)}

1+ exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}] ;x ≥ 0,α > 0,β > 0,λ > 0. (5)

The fig. 1 suggests that the probability density function plot exhibits a negative skew, while the hazard rate function
shows a monotonically increasing and J-shaped form. The survival function of the proposed distribution is

R(x) =
2exp

[

α
{

1− exp
{

−λ
(

1− exβ
)}}]

1+ exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}] . (6)

Likewise, the reverse hazard rate function is also significant in reliability and survival data analysis. It is defined as the
ratio of the density function to the distribution function. The reverse hazard rate function of the proposed model is

r(x) =

2αβ λ xβ−1exβ
exp
{

−λ
(

1− exβ
)}

exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}]

[

1− exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}]]

1+ exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}] . (7)
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The cumulative hazard rate function is defined as the integral of the hazard rate function from time 0 up to a specific
time x. It represents the cumulative risk or accumulated failure probability up to that point in time. Mathematically,
H(x) =− ln [R(x)].

H(x) =− ln(2)−α
[

1−
{

exp
{

−λ
(

1− exβ
)}}]

+ ln
[

1+ exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}]]

. (8)

2.2 Statistical Properties

In this section some properties of the OHLC distribution have been derived. The proposed distribution derived from the
generalized binomial and exponential series [14]. For,|z|< 1, n > 0; we have,

(1+ z)−n = ∑∞
i=0(−1)i

(

n+ i− 1
i

)

zi;(1− z)n = ∑∞
j=0(−1) j

(

n

j

)

z j;and e−ax = ∑∞
k=0(−1)k (ax)k

k!

The PDF of proposed distribution (4) derived by using the generalized binomial and exponential series as,

f (x) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

κi jklmxβ−1e(m+1)xβ
; (9)

where,κi jklm =
2αβ λ (−1)i+ j+k+l+m(i+1)K+1{λ ( j+1)}l

(

k

j

)(

l

m

)

k!l!
.

Similarly, the CDF of proposed distribution (3) derived by using the generalized binomial and exponential series as,

F(x) = 1−
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

ξi jklmemxβ
(10)

where,

ξi jklm =

(−1)i+ j+k+l+m{(1− i)α} j {λ k}l

(

j

k

)(

l

m

)

j!l!
.

2.2.1 Quantile Function and Median

The quantile functions are utilized in the theoretical aspects of probability theory. They serve as an alternative to the
probability density function and cumulative distribution function and are used to calculate statistical measures such as
the median, skewness, and kurtosis. The quantile function is defined as follows: Q(ρ) = F−1(x). Consequently, the
corresponding quantile function of the proposed distribution is

F−1(x) = Q(ρ) =

[

ln

[

1+
1

λ
ln

{

1−
1

α
ln

(

1−ρ

1+ρ

)}]]
1
β

;0 < ρ < 1. (11)

Whereas, in particular, the median is derived by setting ρ = 1
2

in quantile function (11), we get;

Median =

[

ln

[

1+
1

λ
ln

{

1−
1

α
ln

(

1

3

)}]]
1
β

.

2.2.2 Mode

To calculate the mode of the proposed distribution, we need to find the maximum recurring value. This can be achieved by
differentiating equation (4) with respect to the variable x or by taking the logarithm of equation (4), which is an equivalent
approach.

ln f (x) = ln(2αβ λ )+ (β − 1) ln(x)+ xβ −λ
(

1− exβ
)

+α
{

1− exp
{

−λ
(

1− exβ
)}}

− 2ln
[

1+ exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}]] (12)
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The equation (12) is differentiating with respect to x and apply the condition f (x) 6= 0 and f ′(x) = 0, the mode of proposed
distribution is

β
[

1+ xβ
{

1+λ exβ
{

1−α exp
{

−λ
(

1− exβ
)}}}]

+
f (x)

x

[

1+ exp
[

α
{

1− exp
{

−λ
(

1− exβ
)}}]]

= 1

The above equation is nonlinear equation which is solved by numerical methods.

2.2.3 Order Statistics

Order statistics play a crucial role in various fields of statistics, including reliability analysis and life testing. Order
statistics involve arranging a set of observations in ascending or descending order and studying the properties of specific
positions within the ordered sequence. They provide valuable insights into the distribution, variability and extreme
values of a dataset, which are essential in reliability analysis and life testing applications. Order statistics have been
widely used in many fields of statistics, including reliability and life testing. Let, X1,X2, ...,Xn be random sample from
(4) andX1:n ≤ X2:n ≤ ... ≤ Xn:n are the corresponding order statistics. The probability density function of rth order
statistics sayXr:n;1 ≤ r ≤ n [15] is

fr:n(x) =
n!

(r− 1)!(n− r)!
f (x) [F(x)]r−1 [1−F(x)]n−r . (13)

We apply the equation (9) and (10) in equation (13) then it becomes the equation

fr:n(x) =
n!

(r−1)!(n−r)! ∑∞
i=0 ∑∞

j=0 ∑∞
k=0 ∑∞

l=0 ∑∞
m=0 κi jklmx(r)

β−1e
(m+1)x(r)

β

[

1−∑∞
i=0 ∑∞

j=0 ∑∞
k=0 ∑∞

l=0 ∑∞
m=0 ξi jklme

mx(r)
β
]r−1 [

∑∞
i=0 ∑∞

j=0 ∑∞
k=0 ∑∞

l=0 ∑∞
m=0 ξi jklme

mx(r)
β
]n−r (14)

When, r = n then from equation (14), the pdf of the largest order statistics Xn:nis

fn:n(x) = n
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

κi jklmx(n)
β−1e

(m+1)x(n)
β

[

1−
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

ξi jklme
mx(n)

β

]n−1

;x(n) > 0

Similarly, r = 1, then from equation (14), the pdf of smallest order statistics x1:1 is

f
1:n
(x) = n

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

κi jklmx(1)
β−1e

(m+1)x(1)
β

[

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

ξi jklme
mx(1)

β

]n−1

;x(1) > 0.

2.3 Maximum Likelihood Estimation

We have to estimate the unknown parameters of proposed model by maximum likelihood estimation. Let, x1,x2, ...,xnare
random sample drawn from OHLC distribution with parameters(α, β ,and λ ), then likelihood function of proposed
distribution is product of nth time of sample of proposed distribution. Mathematically, ℓ(x;

∼
ζ ) = ∏n

i=1 f (xi;∼ζ )where,
∼
ζ is

the parameters pace belong to(α, β ,and λ ). The likelihood function is equivalent to log likelihood function. Therefore,
log likelihood function of proposed distribution is

ℓ(x;
∼
ζ ) = n ln(2αβ λ )+ (β − 1)∑n

i=1 ln(xi)+∑n
i=1 xi

β −λ ∑n
i=0

(

1− exi
β
)

+α ∑n
i=0

{

1− exp
{

−λ
(

1− exi
β
)}}

− 2∑n
i=0 ln

[

1+ exp
[

α
{

1− exp
{

−λ
(

1− exi
β
)}}]]

.
(15)

The parameters are obtained by partial differentiating in equation (15) with respect to (α, β ,and λ ).

Let,ξi = exp
{

−λ
(

1− exi
β
)}

and υi = exp
[

α
{

1− exp
{

−λ
(

1− exi
β
)}}]

we have
∂ℓ(x;

∼
ζ )

∂α
=

n

α
+

n

∑
i=1

(1− ξi)− 2
n

∑
i=1

(

υi (1− ξi)

1+υi

)

. (16)
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∂ℓ(x;∼ζ )

∂β = n
β +∑n

i=1 ln(xi)+∑n
i=1 xi

β ln(xi)+λ ∑n
i=1 xi

β ln(xi)exi
β

−αλ ∑n
i=1 ξixi

β ln(xi)exi
β
+ 2αλ ∑n

i=1
ξiυi

1+υi
xi

β ln(xi)exi
β . (17)

∂ℓ(x;
∼
ζ )

∂λ
=

n

λ
−

n

∑
i=1

(

1− exi
β
)

+α
n

∑
i=1

ξi

(

1− exi
β
)

− 2α
n

∑
i=1

υiξi

1+υi

(

1− exi
β
)

. (18)

Finally, solving and estimating non-linear equations
∂ ln(ℓ)

∂α = 0, ∂ ln(ℓ)
∂β = 0, ∂ ln(ℓ)

∂λ = 0 and estimate (α̂ , β̂ and λ̂ ) for

parameters (α , β , and λ ). Furthermore, the asymptotic normality of MLEs, approximate 100(1 − γ)% confidence

intervals of α β , and λ can be constructed as: α̂ ± zγ/2SE(α̂), β̂ ± zγ/2SE(β̂),λ̂ ± zγ/2SE(λ̂) and δ̂ ± zγ/2SE(δ̂ );zγ/2is
the upper percentile of standard normal variate.

3 Results and Discussion

Data Analysis

Data analysis is a crucial technique used to draw valid conclusions based on facts and information. In order to assess the
suitability of the proposed model for a given dataset, two different techniques have been employed: simulation study and
real data analysis. In a simulation study, the proposed model is applied to simulated data that generating data according
to the proposed model and comparing the results with known properties or characteristics. On the other hand, real data
analysis involves applying the proposed model to actual observed data. Hence, using both methods, we can evaluate the
performance and adequacy of the model.

3.1 Simulation Study

In order to validate the theoretical performance of the maximum likelihood estimators for the new probability distribution,
a Monte Carlo simulation was conducted. The goal of this simulation was to examine the performance of estimation
methods, primarily in terms of mean square errors (MSEs), across different sample sizes. For the purpose of estimation,
10,000 random samples of size 50, 100, 200, and 500 were generated from R programming. These samples were drawn
from the proposed probability distribution to closely on real-world scenarios.

1.Compute the MLEs for 10000 samples, say
(

α̂i, β̂i, λ̂ i

)

;for i=1, 2, . . . , 10000.

2.Compute the mean square error (MSEs) of different sample size as MSE
∼
δ (n) = 1

10000 ∑10000
i=1

(

∼
δ̂i − ∼

δ
)2

,where

δ = (α,β ,λ ).

3.To calculate the MSEs, the initial parameter values of the proposed distribution;(α = 1.0,β = 1.5 and
λ = 2.0),and(α = 1.5,β = 2.0 and λ = 2.5)has been set.

For the given sample sizes of 100, 200, 300, 400 and 500, the maximum likelihood estimation method is applied
to estimate the parameters. The MSEs for individual parameters are then computed. Upon analyzing the results, it is
observed that as the sample size increases, the MSEs for the individual parameters decrease. This finding emphasizes
the effectiveness of the maximum likelihood estimation method in accurately estimating the parameters of the proposed
distribution. The decreasing MSEs indicate that with larger sample sizes, the estimators tend to converge towards the true
parameter values, resulting in more precise and reliable estimations (Fig 2.).

3.2 Real Data Analysis

In the Kathmandu valley, there are seven air quality monitoring stations: Ratnapark, Sankhapark, Bhaisepati, Pulchowk,
Bhaktapur, Kirtipur, and Dhulikhel. Among the seven places, we randomly selected four location; Bhaktapur, Bhaisepati,
Kirtipur, and Ratnapark as sample sites. The researchers obtained data on particulate matter (PM 1, PM 2.5, PM 10) and
total suspended particulates (TSP) for the period from January 1, 2021, to December 31, 2021, from the Department of
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Fig. 2: Plot of mean square error of different values with different sample size.

Environment, Kathmandu, Nepal [16]. Specifically, the researchers focused on the PM2.5(µ/m3) dataset for proposed
distribution because PM2.5 is the most important air pollutant among PM1, PM10, and TSP due to its small size, deep
lung penetration, and association with various serious health problems, including heart disease, stroke, lung cancer,
asthma, chronic bronchitis, and premature death. Monitoring and reducing PM 2.5 levels is crucial for protecting public
health issue. Also, World Health Organization (WHO) recommended that the air quality levels of PM 2.5 exceeded
10µ/m3, which is considered dangerous for human health [12].

3.2.1 Exploratory Data Analysis

The descriptive statistics of the data reveal a significantly skewed distribution and notably high levels of PM 2.5 in the
Kathmandu Valley. This observation strongly suggests that the air quality in the Kathmandu Valley exceeded the
threshold outlined by the WHO, indicating a severe deterioration in air quality conditions (Table 1, Fig. 3 and 4).

Table 1: Descriptive statistic of PM 2.5 level in different station in Kathmandu Valley

Location Minimum Q1 Mean Median Q3 Maximum

Bhakatpur 6.33 13.93 54.69 55.90 78.68 226.19
Bhaisipati 4.90 13.30 54.11 46.85 78.25 238.30
Kritipur 5.30 13.15 42.08 23.08 61.83 210.80
Ratnapark 8.88 16.82 53.92 48.36 80.95 206.03

Similarly, we have presented the data using box plots to explain the variations in different locations during distinct
seasons. The seasons has been defined as Nepalese contest: Winter spans from November 17 to March 15, Spring occurs
from March 16 to May 14, Summer extends from May 15 to September 17, and Autumn encompasses the period from
September 18 to November 16. The findings revealed that the air quality levels in the Kathmandu Valley were problematic
during the Spring and Winter seasons. This implies that there are significant challenges related to air quality during these
particular seasons. However, it was contradiction finding on Kirtipur and Bhaktapur in spring, autumn and winter season.
(Fig. 5 and 6).
The TTT plot is a useful tool to understand the behavior of data’s Hazard Rate Function (HRF). A diagonal line suggests a
constant HRF, while a concave TTT plot indicates an increasing HRF and a convex TTT plot suggests a decreasing HRF.
The shape can also be a combination of concave and convex, indicating a unimodal or bathtub hazard rate. In Figure 7
and 8, the scaled TTT plot has a concave shape as well as convex, indicating that the air quality data has a unimodal or
bathtub hazard rate. This confirms that the proposed distribution is suitable for modelling the data (Fig. 7, 8).
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Fig. 3: Histogram and density plot of Bhaisipati, Ratnapark and Bhakatpur along with the data points.

Fig. 4: Histogram and density plot (left panel) of Kirtipur and boxplot (right panel) along with the data points of different location like

as spring, summer, autumn and winter.

Fig. 5: Boxplot along with the data points of Bhaktapur (left panel) and Kirtipur (right panel) according to spring, summer, autumn and

winter.
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Fig. 6: Boxplot along with the data points of Ratnapark (left panel) and Bhaisepati (right panel) according to spring, summer, autumn

and winter.

Fig. 7: TTT plots (Bhakatpur) and (Kritipur) along with the data points.

Fig. 8: TTT plots (Bhaisepati) and (Ratnapark) along with the data points.
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3.2.2 Parameter Estimation

The estimated parameters and their corresponding standard errors were obtained using the maximum likelihood
estimation method with the ”CG” method in the R software [17,18]. The parameters were estimated and presented
separately for different seasons. Table 2 summarizes the estimated parameter values and their corresponding standard
errors. The findings revealed that during the Autumn season, there was no significant variation observed in the estimates
of all parameters. However, in the Summer, Spring, and Winter seasons, significant variations were observed in the shape
parameters, indicating differences in the spread or variability of the data across these seasons. The finding revel that
shape parameter (β < 1) indicates that the failure rate decreases over time. In the context of air quality data, this suggests
that air quality is more likely to worse at early season. On the other hand, no significant variation was observed in the
scale parameters (α and λ ) , suggesting that the data did not differ significantly across these seasons (Table 2).

Table 2: Estimated value of MLE with SE of four different seasons
Seasons α̂ t-value P-value β̂ t-value P-value λ̂ t-value P-value

Summer 0.01281

(0.00903)

1.419 0.156 0.19558

(0.01772)

11.037 <0.001 1.02793

(0.25451)

4.039 <0.001

Winter 0.003925

(0.003171)

1.238 0.216 0.14816

(0.0118)

12.478 <0.001 0.99875

(0.25126)

3.975 <0.001

Spring 0.01357

(0.01569)

0.865 0.3873 0.12017

(0.02026)

5.932 <0.001 1.04404

(0.44785)

2.331 0.0197

Autumn 0.01901

(0.06839)

0.278 0.7811 0.13633

(0.07571)

1.801 0.0718 1.08364

(1.45430)

0.745 0.4562

Parentheses indicate the standard error

3.2.3 Prediction of PM 2.5 Air Quality in Kathmandu Valley

Based on the estimated parameter values, PM2.5 air quality levels of <10 µg/m3 are considered safe for human health,
whereas ≥10 µg/m3 pose serious threats of poisoning for human health [12]. Here, air quality predictions for four
different seasons reveal a significant prevalence of poor air quality in Kathmandu. During summer, 69.74% of the
observed air samples exceeded the safe threshold for PM2.5 levels of 10 µg/m3 or less. This percentage increased to
78.53% in autumn, 88.88% in spring, and 95.94% in winter. Only 7 days per month exhibited acceptable air quality,
while the remaining 23 days per month posed a substantial risk of poisoning due to elevated PM2.5 levels. These
findings emphasize a significant public health burden, contributing to an increased occurrence of respiratory morbidities
such as chronic obstructive pulmonary disease and acute respiratory infections, including pneumonia, within the
Kathmandu Valley (Table 3).

Table 3: Prediction of air quality in four different seasons by proposed model.

Seasons (0-5) µ/m3 (5-10) µ/m3 (≥10) µ/m3

Summer Predicted probability 0.1238 0.1787 0.6974

Expected days/month 04 06 20

Autumn Predicted probability 0.1285 0.0861 0.7853

Expected days/month 04 03 23

Spring Predicted probability 0.0732 0.0379 0.8888

Expected days/month 03 02 25

Winter Predicted probability 0.0232 0.1733 0.9593

Expected days/month 01 01 28

3.2.4 Model Validation

The development of a new model necessitates the validation process, which includes obtaining sample data from
different seasons. However, for this particular case, only winter and spring season has been presented due to the higher
likelihood (95.93%) and (88.88%) of experiencing foul weather during these seasons. To validate the winter data using
the proposed model, various goodness-of-fit criteria were employed. The Anderson-Darling test (An=2.0488, p-value =
0.08714), Kolmogorov-Smirnov test (D=0.25107, p-value = 0.1123) and the Cramér–von Mises test (Ω2=0.40481,
p-value 0.069) respectively. These criteria indicated that the proposed distribution is valid. Furthermore, to assess the
validity of the model fit, a Q-Q plot is constructed, representing the relationship between the ordered values derived from
the dataset and the corresponding quantiles obtained from the theoretical distribution. Additionally, a P-P plot is
generated, illustrating the comparison between the cumulative probabilities derived from the dataset and those
originating from the proposed distribution. These plots collectively demonstrate that the model has been fitted
appropriately, thus indicating the validity of the proposed distribution for the given dataset (Fig 9). Similarly, to validate
the Spring season data using the proposed model, various goodness-of-fit criteria were applied likes
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Fig. 9: Q-Q plot (left panel) and P-P plot (right panel) along with Winter seasons.

Fig. 10: Q-Q plot (left panel) and P-P plot (right panel) along with Spring seasons.

Kolmogorov-Smirnov test (D=0.082978, p-value = 0.07108) and Anderson Darling test (An=2.3995, p-value = 0.05602)
and Cramér–von Mises test (Ω2=0.32656, p-value 0.1139) respectively. These results indicate that the proposed
distribution remains valid for the Spring season. This is supported by Q-Q plot and the P-P plot of the proposed
distribution (Fig. 10).

A plot is created to compare the empirical cumulative distribution function with the theoretical cumulative distribution
function. The empirical cumulative distribution represents the observed cumulative probability of the dataset, while the
CDF corresponds to the cumulative probability based on the theoretical distribution. This plot allows for an evaluation
of the agreement between the observed data and the theoretical distribution. Evidenced by the empirical cumulative
distribution function plotted against the theoretical cumulative distribution function proposed model, it is observed that
the proposed model is satisfactory and valid on both seasons (Fig. 11).

4 Discussion:

The proposed model is based on the odd function of the Chen distribution with a half logistic distribution as a generator,
resulting in a unimodal distribution with a monotonically increasing and J-shaped hazard rate function. This distribution
has been extensively applied in various domains, including its utilization for studying PM2.5 levels in the Kathmandu
Valley to assess air quality. Additionally, researchers have successfully employed different mathematical models such
as linear programming, skewed data capturing models, higher-order decision rules, and data envelopment analysis for
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Fig. 11: Empirical cumulative distribution function verses theoretical cumulative distribution function of Spring seasons (left panel)

and winter season (right panel)

studying air pollution [19]. Furthermore, fitting air pollution data has been accomplished through the use of the generalized
λ distribution [20]. Likewise, a discrete-time Markov chain model has been employed to determine the quality of air in the
environment [21]. Given the diverse models employed by various researchers, the development of a new model is utilized
for predicting air quality in the Kathmandu Valley, Nepal, as employed by the authors. The selection of air quality data
for analysis is motivated by the significance of air pollution as a critical environmental concern in the Kathmandu Valley,
which encompasses the capital city of Nepal [22].
A study conducted in Kathmandu revealed that adverse weather conditions significantly contribute to the air pollution
issue in the city. Out of the 30 days in a month, only seven days were deemed suitable for fresh air quality, while the
remaining 23 days exhibited poor air quality. Long-term exposure to PM2.5 has the ability to penetrate deep into the
lungs, corrode the alveolar wall, and impair lung functions, thereby posing a significant threat to public health [23].
Furthermore, research conducted by Lopez-Feldman et al. [24] found a positive relationship between PM2.5 air pollution
and the probability of mortality after contracting COVID-19. Moreover, a nationwide investigation in China by Chen et
al. [25] provided robust evidence of the associations between short-term exposure to PM2.5 and increased mortality from
various cardiopulmonary diseases. The study revealed that even a 10 µg/m3 increase in daily PM2.5 concentrations was
significantly associated with a percentage increase in mortality from non-accidental causes, cardiovascular diseases,
hypertension, coronary heart diseases, stroke, respiratory diseases, and chronic obstructive pulmonary disease. Similarly,
Liu et al. [26] conducted a comprehensive global analysis across more than 600 cities, reinforcing the link between
mortality and PM concentration. Their findings demonstrated independent associations between short-term exposure to
PM2.5 and daily all-cause, cardiovascular, and respiratory mortality. Hence, the higher the exposure to PM2.5 air
pollution, the greater the increase in mortality rates from various cardiopulmonary diseases. Thus, we focused on
minimizing PM2.5 concentrations in order to mitigate the negative health effects associated with air pollution.

5 Conclusion

This study focuses on the development of a new distribution called the Odd Half Logistic Chen distribution. This
distribution is obtained by compounding the half logistic-G family with the odd function of the Chen distribution,
resulting in a negatively skewed distribution. The researchers derive important properties of this distribution, including
quintile and median, mode, and order statistic. The parameters of the distribution are estimated using maximum
likelihood estimation methods, and the applicability of this estimation technique is tested through simulation studies and
real data analysis.

To understand the characteristics of the proposed distribution and predict air quality, the researchers analyze PM2.5
air quality data from stations in Bhaktapur, Bhaisepati, Kirtipur, and Ratnapark of Kathmandu Valley. Since there is no
variation in location, the analysis is conducted based on seasonal variations. In Kathmandu, fresh air suitable for human
health is available only for seven days per month. The researchers utilize the sample data to assess the efficiency of the
proposed model, and different criteria are employed to validate its performance. The results indicate that the proposed
model provides reasonably better predictions. Therefore, Odd Half Logistic Chen distribution offers an alternative model
for predicting air quality and other environmental data.
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