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Abstract: A simple random walk on a graph is defined in which a particle moves from one vertex to any 

adjacent vertex, each with equal probability. The expected hitting time is the expected number of steps 

to get from one vertex to another before returning to the starting vertex. In this paper, using the electrical 

network approach, we provide explicit formulae for expected hitting times for simple random walks on 

wheel graphs. As a by-product, formulae for expected commute times and expected difference times, 

and bounds for the expected cover times for simple random walks on wheel graphs are obtained. 
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1  Introduction 

Let ( ( ), ( ))G V G E G= be a connected simple graph 

with vertices labeled as 1, 2, ,nK . A simple random 

walk on G is the Markov chain 
n

X , 0n ≥ , that form 

its current vertex i  jumps to one of its 
i

d  neighboring 

vertices with uniform probability, where 
id  denotes the 

degree of i . The hitting time 
iT  of the vertex i  is the 

minimum number of steps the random walk takes to 

reach the vertex, that is, inf{ 0: }i nT n X i= ≥ = . The 

expected hitting time i jE T is the expected value of jT  

of the vertex j  when the walk starts from i . The 

expected commute time ( , )C i j  between i  and j  is 

the expected number of steps for a random walk starting 

at i  to pass through j  and return to i , that is, 

( , )
i j j i

C i j E T E T= + . The quantity 
i j j i

E T E T−  is 

called the expected difference time, and is denoted 

by ( , )D i j . The expected cover time ( )
i

C G  is the 

expected number of steps that it takes a walk that starts 

at i  to visit all vertices of G . The expected cover time 

( )C G  of G  is defined as
( )

max ( )i
i V G

C G
∈

.  

 

It is natural to view a graph G as an electrical network 

with a unit resistor between each pair of nodes 

interconnected by an edge of G . Then one may define 

the resistance distance [1] between vertices i  and j , 

denoted by
ijr  , as the net effective resistance between 

nodes i  and j (were a battery to be connected between 

i  and j ) in the corresponding electrical network. As 

an intrinsic graph metric, resistance distance has been 
extensively studied. For more information, the readers 

are referred to [2-5] and references therein. 

There exists a strong connection between random walks 

on graphs and electrical networks. Perhaps Nash-

Williams [6] was the first person to established such a 

connection. Later on, since the appearance of the book 

of Doyle and Snell [7], more and more attention has 

been devoted to the relation between effective 

resistance (resistance distance) and random walks on 

graphs. Some nice relations, such as the relation 

between resistance distance and the escape probability, 

the relation between resistance distance and the 

expected hitting time, have been established. Here we 

only introduce the elegant result concerning the 

expected hitting time, which is paramount in obtaining 

our main result. 

Theorem 1.1. [8] For a simple random walk on G , we 

have  

1

1
| ( ) | ( ).

2

n

i j ij k ki kj

k

E T E G r d r r
=

= + −∑  (1) 

Simple random walks on graphs arise in many models 

in mathematics and physics and thus it has been studied 

in a wide variety of contexts. For a general introduction 

to random walks on graphs, the reader is referred to the 
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survey paper by Lovász [9] and the textbook [10]. In 
particular, the computation of parameters such as 

expected hitting times, expected difference times and 

expected cover times are of significant importance. 

Sometimes, it is greatly simplified to compute these 

parameters by the electrical network approach. Thus 

computing these parameters via electrical network 

approach becomes more and more popular.  

So far, expected hitting times have been computed for 
some classes of graphs, especially those with some 

degree of symmetry, such as vertex-transitive graphs 

[11-13], edge-transitive graphs [14,15], distance-regular 

graphs [12,16], graphs with cut-vertices [17] and so on. 

The expected cover time of connected graphs has been 

extensively studied. Methods of bounding the cover 

time of graphs have been thoroughly investigated [18-

23]. Several bounds on the cover times of particular 
classes of graphs have been obtained with many 

positive results [24-27]. 

 

In this paper, we consider simple random walks on an 

important class of graphs, namely, wheel graphs. The 

wheel graph 
n

W  is a graph that contains a cycle of 

order 1n − , and for which every graph vertex in the 

cycle is connected to one other vertex (which is known 

as the center). In the present work, first of all, resistance 

distances between all pairs of vertices of the wheel 

graph are completely determined. Then according to the 
relationship between resistance distances and the 

expected hitting times (Theorem 1.1), explicit formulae 

for the expected hitting times for simple random walks 

on wheel graphs are obtained. Finally, simple formulae 

for expected commute times and expected difference 

times are derived according to expected hitting times, 

and lower and upper bounds for the expected cover 

times are determined. 

Resistance distances in 
n

W   

We start with introducing some more concepts and 

notations in graph theory terminology. The adjacency 

matrix ( )A G of graph G  is a n n×  symmetric matrix 

with ( , )i j -th element equal to 1 if vertices i  and j  

are adjacent and 0 otherwise. Let 

1 2( ) ( , , , )nD G diag d d d= K  be the diagonal matrix 

of vertex degrees. Then the Laplacian matrix of G  is 

defined as ( ) ( ) ( )L G D G A G= − . Laplacian matrix 

plays an essential role in the computation of resistance 

distance. One example is to compute resistance 

distances in terms of determinate of sub-matrices of the 

Laplacian matrix. More precisely, let ( )L i  and 

( , )L i j denote the matrices obtained from ( )L G  by 

deleting its i -th row and column, and by deleting its i -

th and j -th rows and columns, respectively. Then it is 

shown that 

Lemma 2.1. [28] Let G  be a connected graph on n  

vertices, 3n ≥ , and 1 i j n≤ ≠ ≤ . Then  

det ( , ) det ( )ijr L i j L i=  (2) 

Suppose that vertices in 
nW  are labeled in such a way 

that the vertices corresponding to the cycle are labeled 

from 1 to 1n −  in cyclic order, and the center is 

labeled as n . In what follows, for convenience, we 

distinguish resistance distances in 
nW  into two types, 

namely, between center and non-center vertices and 

between pairs of non-center vertices. And then 

resistance distances in 
n

W  are computed according to 

different types. 

A. Resistance distances between center and non-

center vertices 

By the symmetry of 
n

W , it is obvious that resistance 

distances between center and any non-center vertices 

are equal. So we may assume that 

1 2 1, 0n n n nr r r r
−

= = = =L .  

Theorem 2.2.  

1 1

0 1 1

1 (3 5) (3 5)
.

5 (3 5) (3 5) 2

n n

n n n
r

− −

− −

+ − −
=

+ + − −

             (3) 

Proof. Since the Laplacian matrix of 
nW  is 

3 1 1

1 3 1 1

( )

1 3 1

1 1 1 3

n

n n

L W

×

− − 
 
− − − 
 =

 
− − 

 − − − 

O O O M

L

, 

if we define 

3 1

1 3 1

,

1 3 1

1 3

n

n n

A

×

− 
 
− − 
 =

 
− − 

 − 

O O O
  

3 1 1

1 3 1

1 3 1

1 1 3

n

n n

B

×

− − 
 
− − 
 =

 
− − 

 − − 

O O O
, 
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and let detn na A=  , detn nb B= , then by Lemma 

2.1,  

0 1 2 1 2 1
det det

n n n n n
r r A B a b

− − − −
= = = .         (4) 

Claim 1. For 1n ≥ , 

1 11 3 5 3 5
[( ) ( ) ].

2 25

n n

n
a + +

+ −
= −

               (5)                                               

1 3b = , 
2 8b =  and for 3n ≥ ,  

3 5 3 5
( ) ( ) 2.

2 2

n n

nb
+ −

= + −                          (6) 

Proof of Claim 1. Frist we prove Eq. (5). It is easy to 

verify that 
1 1

det 3a A= =  and 
2 2

det 8a A= = . For 

3n ≥ , expanding the determinant of nA with respect 

to its first row one may find that 

1 2det 3det detn n nA A A
− −

= − . Thus the sequence 

1{ }n na
∞

=
satisfies the recursion formula 

1 2
3

n n n
a a a

− −
= −  with initial conditions 

1
3a =  and 

2 8a = . Now we solve it. Since the characteristic 

polynomial of the recurrence is 
2 3 1x x− + with 

1 (3 5) / 2x = −  and 
2 (3 5) / 2x = +  as its two 

roots, we may suppose that 

1 2[(3 5) / 2] [(3 5) / 2] .n n

na y y= − + +  

The initial conditions lead to the following linear 

system 

1 2

2 2

1 2

[(3 5) / 2] [(3 5) / 2] 3

[(3 5) / 2] [(3 5) / 2] 8

y y

y y

 − + − =


− + − =

. 

Solving the system for 1y  and 2y we have 

1 (5 3 5) /10y = −  and 2 (5 3 5) /10y = + . 

Hence 
n

a is obtained as desired.  

For 
n

b , it is straightforward to see that 
1

3b = and 

2 8b = . For 3n ≥ , we expand the determinant of nB  

with respect to its first row to obtain 

that
1 2det 3det 2det 2n n nB A A

− −
= − − , which 

means that 
1 2

3 2 2
n n n

b a a
− −

= − − . Hence Eq. (6) 

may be derived from Eq. (5) and Claim 1 is proved. 

Since 
n

W  has at least four vertices, by substituting Eqs. 

(5) and (6) into Eq. (4), we could obtain 
0r . 

 

B. Resistance distances between pairs of non-center 

vertices. 

For any two non-center vertices i  and j , one may 

easily find that the resistance distance between them 

depends only on the distance between them. So we may 

assume that ij kr r=  whenever i  and j are at 

distance k . 

Before computing 
k

r , we introduce two results that will 

be used later. The first one is the famous Foster’s (first) 

formula. 

Lemma 2.3. [17] For G  an n -vertex connected graph 

with edge set ( )E G ,  

( )

1ij

ij E G

r n
∈

= −∑ . 

The second one is a sum rule on resistance distances. 

Lemma 2.4. [30] Let i  and j be vertices of a 

connected graph G . Then 

:

( ) 2i ij ik jk

k k i

d r r r+ − =∑
�

,            (7) 

where k i�  means k  is adjacent to i . 

Now we are ready to compute 
kr  as given in the 

following result. 

Theorem 2.5.  For 1 ( 1) / 2k n≤ ≤ −   ,  

1 1

1 1

1 3 5 3 5
{( ) ( )

2 25

3 5 3 5
[( ) ( ) 2][(3 5) (3 5) ]

2 2 }
(3 5) (3 5) 2

k k

k

k k n n

n n n

r

− −

− −

+ −
= −

+ −
+ − + − −

−

+ + − −

            (8) 

Proof. Firstly we show that the assertion holds for 1r . 

By Foster’s formula, we have 

2 1

, 1 1,1 0 1

( ) 1 1

( 1)( ) 1
n

n n

ij i i n in

ij E W i i

r r r r n r r n
− −

+ −

∈ = =

= + + = − + = −∑ ∑ ∑  

that is, 0 1 1r r+ = . Hence by Eq. (3), we have 

1 1

1 0 1 1

1 (3 5) (3 5)
1 1

5 (3 5) (3 5) 2

n n

n n n
r r

− −

− −

+ − −
= − = −

+ + − −

.          (9) 

Now we show that the assertion also holds for both 
2

r  

and 3r . Apply Lemma 2.4 to pairs of vertices {1,2} and 

{2,3}, we have 
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1,2 1,2 2,2 1, 1 2, 1 1, 2,

1,3 1,2 3,2 1, 1 3, 1 1, 3,

3 + 2

3 + 2

n n n n

n n n n

r r r r r r r

r r r r r r r

− −

− −

+ − − + − =


+ − − + − =
, 

that is, 1 25 2r r− =  and 2 1 33 2r r r+ − = . These 

indicate that 
2 1

5 2r r= −  and 
3 1

16 8r r= − . By 

substituting 1r  into the above equations we can obtain  

2
r  and 

3
r  as desired.  

For 4k ≥ , we claim that 
k

r satisfies the following 

recursion formula  

1 2 34 4k k k kr r r r
− − −

= − +                       (10) 

To prove this, we apply Lemma 2.4 to pairs of vertices 

{1, 2}k −  and {1, 1}k −  to obtain 

1, 2 1,2 2,2 1, 1 2, 1 1, 2,

1, 1 1,2 1,2 1, 1 1, 1 1, 1,

3 + 2

3 + 2

k k n k n n k n

k k n k n n k n

r r r r r r r

r r r r r r r

− − − − − −

− − − − − −

+ − − + − =


+ − − + − =
 

that is,  

2 1 3 1 1

1 1 2 1

3 2

3 2

k k k

k k k

r r r r r

r r r r r

− − −

− −

+ − + − =


+ − + − =
. 

This linear system yields 
1 2 34 4

k k k k
r r r r

− − −
= − +  as 

claimed. 

To solve the recursion relation, first note that the 

characteristic polynomial of the recurrence is 
3 24 4 1x x x− + −  whose roots are 1, 

(3 5) / 2+ and (3 5) / 2− . And then the initial 

conditions 1r , 2r  and 3r  lead to the following linear 

system 

1 2 3 1

2 2

1 2 3 1

3 3

1 2 3 1

[(3+ 5) / 2] [(3 5) / 2]

[(3+ 5) / 2] [(3 5) / 2] 5 2

[(3+ 5) / 2] [(3 5) / 2] 16 8

x x x r

x x x r

x x x r

 + + − =


+ + − = −


+ + − = −

 

Solving the linear system for 
1

x , 
2

x  and 
3

x , we have 

1 1
2 2x r= −

2 1 1 5 / 5x r= − + and 

3 1 1 5 / 5x r= − − . Hence 

1 1 1

3+ 5 5 3 5 5
2 2 ( ) ( 1 ) ( ) ( 1 )

2 5 2 5

k k

k
r r r r

−
= − + − + + − −  

and the desired result is obtained by substituting 
1
r  into 

the above equation. 

In conclusion, resistances distances between all pairs of 

vertices in 
nW can be computed as follows. 

Theorem 2.6. In 
nW , for 1 1i n≤ ≤ − , 

1 1

1 1

1 (3 5) (3 5)

5 (3 5) (3 5) 2

n n

in ni n n n
r r

− −

− −

+ − −
= =

+ + − −

，        (11) 

for 1 1i j n≤ < ≤ −  

1 1

1 1

1 3 5 3 5
{( ) ( )

2 25

3 5 3 5
[( ) ( ) 2][(3 5) (3 5) ]

2 2 }
(3 5) (3 5) 2

ij

k k

ji

k k n n

n n n

r r

− −

− −

+ −
= = −

+ −
+ − + − −

−

+ + − −

        (12) 

where min{ , 1 }k j i n j i= − − − + . 

Expected hitting times, expected commute 

times, expected difference times and expected 
cover times for simple random walks on 

nW  

In this section, firstly explicit formulae for expected 

hitting times for simple random walks on 
n

W  will be 

derived. Secondly, expected commute times and 

expected difference times are also computed according 

to expected hitting times. Finally, bounds for expected 

cover times are determined. 

The following result by Palacios [19] is crucial in 

obtaining our main result. 

Lemma 3.1. [19] Let G be a connected graph with 

edge set ( )E G . Then 

:

2 | ( ) |i j i

j j i

E T E G d= −∑
�

. 

Theorem 3.2. For simple random walks on 
n

W , we 

have 

(1) for 1 1i n≤ ≤ − ,  

3
i n

E T =                                           (13) 

1 1

1 1

4( 1) (3 5) (3 5)
3

5 (3 5) (3 5) 2

n n

n i n n n

n
E T

− −

− −

− + + −
= −

+ + − −

         (14) 

(2) for 1 1i j n≤ < ≤ − ,  

1 1

1 1

2( 1) 3 5 3 5
{( ) ( )

2 25

3 5 3 5
[( ) ( ) 2][(3 5) (3 5) ]

2 2 }
(3 5) (3 5) 2

k k

i j j i

k k n n

n n n

n
ET ET

− −

− −

− + −
= = −

+ −
+ − + − −

−

+ + − −

,                  (15) 

where min{ , 1 }k j i n i j= − − + − . 



 

Yujun Yang:  Simple random walks on wheel graphs          

 

127

Proof. (i) For any two non-center vertices i  and j , 

since 

1 1

n n

k ik k jk

k k

d r d r
= =

=∑ ∑ , by Theorem 1.1, we know 

that 
i n j n

E T E T= . On the other hand, by Lemma 3.1, 

we have 

1

1

2 2( 1) 3( 1)
n

i n n

i

E T n d n
−

=

= × − − = −∑ , and 

thus for each i , 3
i n

E T = . Since for 1 1i n≤ ≤ − , 

0
2 | ( ) | 4( 1)

i n n i n in
E T E T E W r n r+ = = − ,  

1 1

0 1 1

4( 1) (3 5) (3 5)
4( 1) 3 3

5 (3 5) (3 5) 2

n n

n i n n n

n
ET n r

− −

− −

− + + −
= − − = −

+ + − −

. 

(ii) For 1 1i j n≤ < ≤ − , since 

 
1 1

n n

k ik k jk

k k

d r d r
= =

=∑ ∑ , by Theorem 1.1 we have 

| ( ) | 2( 1)
i j j i n ij k

E T E T E W r n r= = = − , where 

min{ , 1 }k j i n i j= − − + − . Hence Eq. (15) is an 

immediately consequence of Eq. (12). 

Now we compute the expected commute times and 

expected difference times for simple random walks on 

n
W  according to expected hitting times.  

Theorem 3.3. For simple random walks on 
n

W , we 

have 

(1) for 1 1i n≤ ≤ − ,  

1 1

1 1

4( 1) (3 5) (3 5)
( , ) ( , )

5 (3 5) (3 5) 2

n n

n n n

n
Ci n Cni

− −

− −

− + + −
= =

+ + − −

       (16) 

for 1 1i j n≤ < ≤ − , 

1 1

1 1

4( 1) 3 5 3 5
( , ) {( ) ( ) -

2 25

3 5 3 5
[( ) ( ) 2][(3 5) (3 5) ]

2 2 }
(3 5) (3 5) 2

k k

k k n n

n n n

n
Ci j

− −

− −

− + −
= −

+ −
+ − + − −

+ + − −

           (17) 

(2) for 1 1i n≤ ≤ − , 

1 1

1 1

4( 1) (3 5) (3 5)
( , ) ( , ) 6

5 (3 5) (3 5) 2

n n

n n n

n
Dni Di n

− −

− −

− + + −
=− = −

+ + − −

,  (18) 

for 1 1i j n≤ < ≤ − , 

( , ) ( , ) 0D i j D j i= = .                           (19) 

Proof. Bearing in mind that for any two vertices i  and 

J, ( , ) ( , )
i j j i

C i j C j i E T E T= = +  and ( , ) i j j iD i j E T E T= − , we 

may obtain Theorem 3.3 immediately from Theorem 

3.2.  

In the end of this section, we discuss bounds for the 

expected cover times for simple random walks on 
n

W . 

Using the electrical approach, Chandra et al. [19] 

proved very useful bounds in terms of R , the electrical 

resistance of the graph, defined as the maximum 

effective resistance between any pair of vertices: 

Theorem 3.3. [19] Let 
,

R=max
i j ij

r be the electrical 

resistance of a graph G  on n vertices with edge set 

( )E G . Then  | ( ) | ( ) (2 (1)) | ( ) | log .E G R C G o E G R n≤ ≤ + For 

the wheel graph 
n

W , we have 

Theorem 3.4.  

1 ( ) 4(2 (1))( 1) log
n

n C W o n n− < < + − . 

Proof. Since it has been shown in the proof of Theorem 

2.5 that 
0 1 1r r+ = , either 

0 1/ 2r ≥  or 
1 1/ 2r ≥ . 

Hence 1/ 2R > . On the other hand, since for any two 

vertices i  and j ,  
0

2 2
ij in nj

r r r r≤ + ≤ < , we have 

2R < . Thus Theorem 3.4 is proved by Theorem 3.3. 
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