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Abstract: In this paper, we present some characterizations of destifetdistributions, especially for dHNBUE, dHNWUE, dNBUE
and dNWUE classes, and their relations with geometricidigion. We characterize the geometric distribution tigtodhe ordered
binomial moment and study the approximation between soswaeilke life classes and geometric distribution via an uppand of the
probability difference. The upper bounds presented ar@mgorous than the ones given previously.
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1 Introduction

In time-to-event studies, discrete lifetimes arise in @asi common situations where either the measurements of time
are often slotted or occurred events are recorded by fixegtHentervals or measured discretely, such as inserting or
joining products. In other reliability testings, often tisithe tested units cannot be monitored continuously, bteaal be
inspected at constant periods, so their failure times cem la¢ treated as discrete random variables. The most common
discrete lift distribution is the geometric, the analogloé £xponential distribution for continuous lifetimes. Base of

the memoryless property, geometric distribution is a besimponent of different kinds of stochastic models and péays
essential role in reliability theory and applied probagtiti models 8,4,14]. However, the geometric imposes limitation on
its use, thus other or general discrete life distributicasstbeen discussed and applied in various situations,1e1g, 19|

and the references therein. Alternatively, the study oféfetion among life distributions becomes a focus in regeats,
concentrating mainly on the approximation among varionsg&iof life distribution classes (or other special disttidos)
describing random phenomena like aging and wearing frofereifit perspective$[21]. Much work has been focused

on continuous life distribution classes, sépfpr a systematic treatment of this topic. There has beetively less work
done among discrete life distribution classes, except thik\w Cheng ], who studied the approximation among the
dNBUE, dDMRL, dIMRL, dDFR and dNWUE classes. Especiallg tesearch on the relation between the geometric and
other discrete life distributions is only at the very bedimn In this article, we focus on the properties of variouscdete

life distributions, particularly for the dHNBUE, dHNWUENBUE and dNWUE classes, and the approximation by the
geometric. The rest of the paper is organized below. In 8e2tive present the definitions and characteristics for various
discrete life distributions, and their relations with gesint distribution. We study the upper bounds to approxamat
dNBUE and dDMRL on the geometric distribution in Secti®inrhe upper bounds improves the ones giverli#.[We
conclude the article with a brief discussion in Sectdon
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2 The Characteristics of Discrete Life Distribution Class

Before presenting some important discrete life distrilmgi we first define some common functions and notations to
be used throughout the paper. For the purpose of notatioplisity and clear presentation, we deno# = {X: a
nonnegative integer valued random variable with finite meanthe sets of nonnegative integers = {0,1,2,---} and
positive integers/; = {1,2,...}. Suppose thaX € .7 follows a discrete life distributiop(k) = P(X = k) with domain

A, then the other functlons are usually deflned as

(1) Distribution functionF (k) = P(X < k) = Z p(i) with 3 =0;
i=0

(2) Survival functionF (k) = 1— F(k) = P(X > k) = % p(i);

(3) Failure rate function (k) = P(X = kX > k) = 2K

(4) The mean lifeu = EX = 5 kp(k) = 5 F(K);
k=0 =

k=1
- L= 1
(5) The mean reliability functio(k) = Tru S F(j) for pu < co.
j=k
ining i Jgkﬁ(j) (1+1)G(k)
(6) The mean remaining lifg(k) = E(X —kIX > k) +1= 0= FR

In probability and statistics, the moments of a random ‘deiaerve as useful metrics that provide a significant amount
of information about a distribution. Rather than expregsite moments by the probability function, we introduce arot
useful expression, in which the momentofs represented by the survival function.

Lemma 1. For X € 2, the rth moment EX= % K" — (k—21)"F(k), re ..

k=1
ProofForr € .4, we simply have
EX" = K'[F(k)—F(k+1

kZO Z +1)]

= S KF z (k=1)F(k) = 3 [K = (k= 1)TF(K) (1)

K= k=1 k=1

In particular, the first two moments age= EX = Z F(k) andEX? = Z (2k—1)F (k).

In the last few decades, many discrete life dlstrlbutlonsevmoposed for modeling life data on various occasions.
Cheng p] summarized the classes of some common discrete life lligtoins in the followings.

Definition 1. Let X € 27, then it belongs to
a) discrete increasing (decreasing) failure rate dIFR (d®Fclass ifA (K) is increasing (decreasing) function for
ke v.

b) discrete increasing (decreasing) failure rate averafeRIA (dDFRA) class iF% (k) is decreasing (increasing) for
ke s

c) discrete increasing (decreasing) mean-residual-lifidL (dDMRL) class ifu (k) is increasing (decreasing) for
ke .
_d) discrete new-better(worse)-than-used dNBU (dNWU)scla®(X —k > jIX > k) < P(X > j), i.e. F(k+ ) <
FIOF() (F(k+ ) > F(QF())) fork,j € 4" _

e) discrete new-better(worse)-than-used-expectati@Ui(dNWUE) class if EX —k|X > k) <EX = p, i.e.G(k) <
F(k) (G(k) > F(k)) forke 1.

f) discrete harmonlcally new-better (worse)-than-usgdeetation dHNBUE (dHNWUE) class if

G(k) < (ﬁ)k (G(Kk) > (M) ), ke .

1+p = 1+u
g) discrete L dL (d) class if Z F(k)s< < (5 Flos > 1+(1—9s)pu

_— forO<s<1.
= Tra-9n ' ) <

The inclusion relations among the above-mentioned clasgesas follows
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CdIFRA CdNBU C
dIFR dNBUEC dHNBUEC dL
Cc dDMRL C

Cc dDFRAC dNWU C
dDFR dNWUEC dHNWUEC dL
c dIMRL C

Specifically, for the geometric random variable- Ged p) with probability functlorP(X k) = qk ke t, Where
the probabilities of success and failure on each triapaaerdq = 1— p, we haveu =EX = and sop=

l+u l+u
k _ k

(hence it can also be written s~ Geo( 1Jr“)) In addition,F (k) = P(X > k) == (ﬁ) , G(k) = (ﬁ) , A (k)=

p= m, u(k) =1+ u, j,k e 4. Clearly, the geometric distribution belongs to all theablife distribution classes.

To explore the relation between the geometric and othereatisdife distributions, we first introduce some definitions
and notations.

Definition 2. The rth ascending factorial moment of the random variableb¥ud the point b is defined as
H(r)(b) = E[(X=Db)()] = E[(X+T —1-b)(X+r—2—-b)---(X-b)] )
Particularly, when b= 0, 1 (0) is called the rth ascending factorial moment, written gs); and when b= EX =

M, Ky (1) is called the rth ascending central moment, writteq%.

By using the finite difference method, Fang and XiB|[derived the ascending factorial moment for the geometric
distribution.
Lemma 2. If X ~ Geq p) with P(X = k) = pdf,k € ., then the rth ascending factorial moment

q

By =BT = DX =2) (X DX =g =l ) r e A 3)

Related to the ascending factorial moment, other commaseygl iInoments and the characteristic index for a distribution
were defined as follow=2[)].

Definition 3. For X € 77, define
(1) the rth order binomial momer = E(* ") = Z (*MP(X = k);

,re .

(2) the rth characteristic index numbey = ‘1 - ﬁ

Obviously,; = %u(r)(fl), and the first binomial momeify = 1+ u and characteristic index; = 0.
For X ~ Geo(ﬁ), by Lemma2, it is easily seen the recursive forfa — fr—1 = 4 with fo = 1, hencep =
i, = (1+ )", and thera, = 0,r € 4. Notice that thex, proportional to thex (up to a constant) defined iB][(actually

o= (H“) o), who pointed out thatr, = 0 cannot guarantee the random variablellowing the geometric distribution.
However, if confining the study to the dHNBUE or dHNWUE cla&heng p] concluded thator, = 0 will be able

to characterize the geometric distribution (thereafter= 0,r € .4"). We may extend to the fact that in dHNBUE or
dHNWUE class,a; = 0 for some integer value> 2 (not necessarilyr, = 0) will leads to the geometric distribution.
Before proving this result, we first present some featured ftNBUE and dHNWUE classes, whose detail proofs were
provided in the Appendix.

Lemma 3. For X € dHNBUE, we havg; < 7 and ;) < u(gr), re. 4, wheref? = (14 u)" andug =rlu(1+p)t
are the rth order binomial and ascending factorial momentﬁeqﬁ) and soay =1— T -

I+p)r:
dHNWUE, therf; > B¢ and ;) > u(gr), and soa, = (1511) —1Lre.

. Alternatively, for Xe

Lemma4. (1) If X € dHNBUE or dHNWUE, thermr, >

B
(1+p)r

=1-

1
<1—— r >2.(2) If X e dNBUE or dANWUE, then, > a,_1, r > 2.
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Now we may prove the following theory about the charact¢ioreof the geometric distribution.

Theorem 1. If X € dHNBUE or dHNWUE with finite megm, then X~ Geo( ) if and only ifa, = O for some integer
value r> 2.

Proof. Sincea, = 0 for anyr > 2 for Geqﬁ), we only need prove the necessity. We hve- (1+ )" from a; =0,
and soG(k) = (1+u) k=0,1,2,... from the proof of Lemma&. ThusF (k) = (1+ i) [G(k) — G(k+1)] = and
thenP(X = k) = F(k) - F(k+1) = (z2;)(£;)¥, ke 4, henceX ~ Geo(w)

The theorem indicates that for d(HNBUE or dHNWUE class, argian=0,r > 2 leads to alby =0,r = 2,3, .... However,
this is not true for other discrete life distribution class€&he following example demonstrates that genemlly= 0 and
a3 = 0 are not equivalent each other.

()",

Example 1. a, = 0 butaz # 0.
Suppose the discrete random variaKldas possible values 0, 2 with probabilitiés‘%, respectively. Thugt = 2,

G(2) =1 J-me =P (@) =§> (£7)? =5, butG(3) = J-Zf( j) =0< (gf5)® = 2. HenceX ¢ dHNBUE

and

or dHNWUE, and we havB, = 3E[(X+2)(X +1)] = 3, 022‘1— 94 | =0andBs = LE[(X+3)(X+2)(X+1)] =

11+1/2)2

— 13/4 | _
o= ‘1 1+1/2§‘ 7 #0.

In the next section, we explore the difference between éisdife distribution and geometric distribution.

3 Approximating Discrete Life Distributions with Geometri ¢ Distribution

There were many researches studying the difference amendistributions, but most works were for the purpose of
the hypothesis testing, such as goodness of fit td§]s |n probability theory, the Kullback-Leibler divergenf#g], a
relative entropy, was often used as a measure of the differbatween two probability distributions. Here we consider
the “reliability difference” [7], in which the research of approximations and upper bouaddken studied among various
discrete life distribution classe84{10], and between geometric and some discrete life distribudiasses such as dDMRL,
dNWUE, dIMRL and dDFR 11, 12]. We focus on the approximation between the geometric ahdratiscrete life
distributions, such as dNBUE and dDMRL classes. The diffeeedefinition is the following.

Definition 4. Suppose XY € 2 with same meanpu, the difference of reliabilities is defined as
A(X,Y) = sup|P(X > k) —P(Y > K)|.
ket

Particularly, the difference betweet ¢ dNBUE or dDMRL andY ~ Ged(i;;) is our interest. Cheng and MaJ]

presented 'big’ upper bounds df(X,Y), and we will provide tight upper bounds to improve the appr@tion. To
examine the comparison among various discrete life digiohs with the geometric distribution, Cheng and M&][
proposed the following measurements.

Definition 5. The following notations are defined as

k
Al = F (9~ G, 9 = (1) ~ B @
k
5(k) = F(k) — <ﬁ) —AK) —n(K), ke A (5)

For the geometric random variable with mearF (k) = G(k) = ( H“) then clearlyA(k) = n (k) = 5(k) =0, ke A

In addition, INBUE (dNWUE) class correspondsA¢k) > 0 (A(k) < 0), and dHNBUE (dHNWUE) class tg (k) >
0(n(k) <0), ke 1. Here are some useful preliminary resultsTn1[2].

Lemmab5. For X € 27, we have

Wnk =1 I:i: (ﬁ)kqA(i), 50 thatd (k) = A(K) — %E: (ﬁ)""A(i);
() AK) < 1 ke,
(3) Al) > ()—m,0<|<k

Now we discuss the approximation of AINBUE and dDMRL classegdometric distribution.
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3.1 The dNBUE Class
First, we briefly present the upper bound givenlg][ The following results play a key role in their work.

Lemma 6. 1.If X € dHNBUE (1(k) >0, k€ %), thenz A(K) = E n(K) = (1+ p)a
k= k=0

2.1fX € dNBUE, then (1)3(K)| < A(K) < /24 <1L (2) —az < & )<1_exp{_1+T“A(k)}, ke A

We also observed the following general result.

Lemma 7. For g >0and0 < x< %, we have x< 1—exp{— M}

Proof. Itis equivalentto show thaft(x) = log(1—x) + /2 > 0in0< x< 3, > 0. Sincef (0) = 0, f (1) = —log 2+

u
1+ loa2+1 £ —VR B (1X) _ rp hend'(x) — — 1 1ip
g2+1> 0, andf’(x) = W Letg(x) = —v/X+ /5 (1-X), t eng(x)_—z—\/)_(— Zp <0
andg(O) = 1*“ > 0. As a result, the unique root gfx) is xo = ”2“717 12“2*2“ > 1. Thus for 0< x < Xo, we have

g(x)>0,thusf ( ) > 0. Hencef(x) > 0in 0< x < 1 < .

For dHNBUE (© dNBUE) class, we know & o, < 1 from Lemmad, and so it results i, < 1— exp{— W}

by Lemma?7. Thus it is straightforward by Lemntato have the following upper bound id 2]

A(X)Y) = sup|d(k)| < max{ag,lexp{lJrT“A(k)}}

ke
gmax{az,l—exp{— %}}
Sl_exp{_ W} (6)

In what follows, we provide a tight upper bound for the difece. Suppose thXt € dNBUE (C dHNBUE) with finite
meany, thenA(k) > 0 and Z A(k) = (1+ p)az from Lemmab. HenceA(K) is bounded and we leA = supA( ).

eN
Obviously, the geometric d|str|but|ornx,( 0) is equivalent toA = 0. The following preliminary results (shown in the
Appendix) will be used for our improved upper bound in Theo&

Lemma 8. Suppose % dNBUE and let = —=V118%(1+i)” 1+8O'2 Y then we have (1)) < A< Ag < (/2492 < 1 - (9)

2(1+p) 1ty = Trp’
ap < 17exp{f”T“Ao}.

Theorem 2. Suppose that % dNBUE and let f— —--V.1 18020k Y Fory ~ Geo( ) we have

20+ p)
A(X,Y)gl—exp{—H—“Ao} <1_expl | 2AHHa | @)
u u
Proof. ForX € dNBUE, by Lemma$ and8, then
~az < 3 < 1-exp - Ak |
< 1eXp{1Z—qu} < 1exp{ %} ®
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Secondly, fory ~ Geo(%) thenP(Y > k) = (1+u> , and so
uo\

A(X,Y) =sup|F(kK)— | =—/— ) | =sup/d(k

(¥) = supF( - (2 ) | = supa()

< max{ ap,1— exp{%Ao}}

= 1—exp{—1+T“Ao} ©)

hence overald (X,Y) <1-— exp{_”T“Ao} < 1—exp{— 2(l+uu)az}_

Note: 1. Theoren2 showed that the new upper bound is smaller than the old or@®.i2.(The equality holds for the old
and new bounds if and only &, = 21“7";12 i.e.ap = ﬁ thusEX? = u2. This leads to a degenerated distribution with
a point mass on a constant varialleHence the tight upper bound holds for any non-degener&N&IUE distribution.
For example, the uniform discrete random variakldas either 0, 1 or 2 with probabilitg each theru = 1, and

F(0)=G(0)=1, F(1)=2>G(1) = 3, F(2) = § > G(2) = {, thusX € dNBUE. In additionB, = 1E(X +2)(X+1) =
—1+/1+48a(1+ p)? _1+\/7 Zuaz 1

10 —1__P _ _1 - _

3, 2 =1 T2 = 6 A = 201+ 1) = 0.37915< ey 6= 0.4082, and so

the new bound + exp{f u“AO} = 0.5315 is strictly smaller than the old boundr]exp{ %} = 0.5580.

3.2 The dDMRL Class

We now consider the approximation between dDMRL and the @doen Notice that ADMRLC dNBUE andpu (k) =
ey AU 9.0

( }“()k)() is decreasing ik € 47, sop(0) = 1+ > p(k) = * *ﬁ() =1+ +() > 1,k e 4. We denoten(k) =
—[1+ p— p(k)]. Here were the preliminary results ihZ].

Lemma 9. Suppose X dDMRL and ke .4/, then
(1)0<h(k) <k;
@) Al = AK) — £55F (9 for hik) < <k

k) —
) Z A= ARk —1;
(4)5( )_ Flo{1—exp| - (1- £82) 1.

The the following result plays an essential role in our sttediynprove the upper bound.

K K K
Lemma 10. IfX € dDMRL, then3 A(i) = Al [% +1} ket

Proof. Since 0< h(k) <k, we denoth+ w=h(k) =k—[1+ p— u(k)] withhe 4/ ,0<w< 1, thusk—h=14pu—

U(k)+w= % + w. By Lemma9 with k > 1, we have
k. ko k kK—i— k—h—1_
izoAEI) - i)%(i?(l) - i:§+1 {A(k)_(i;r—lllz((k)} A (:() g {A(k) - 2(14p) F(k)}
A+ A F 1+u
- gm(gw) - (1(1+u)( RO e 1)k] o
+ U w)F + u
[ e S 2[ 1
The above inequality still holds fdr= 0 sinceA(0) =
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Then we obtain a smaller upper bound in the following.

Theorem 3. Suppose X dDMRL and Ye Geo( H“) then
A(X,Y)glexp{%} (11)

ProofFor X € dDMRL, by Lemmas and10, A(k) = F (k) — G(k), u(k) = % we have

Arma=3 AD =5 A+ 5 A)> 4 [EEAE 4] 4 Al - 1

_ 5 F()
_ AK) | (A+pAK) _ Ak A6k | AK) i=k
=50 [ 209 1] = A [ S }—T{’”'fw] (12)

HenceA(k) < 2ay, and thus-a; < (k) < 1fexp{f”T“A(k)} <1-— eXp{ M} In addition, 0< a < % from

dDMRL ¢ dNBUE c dHNBUE. By elementary calculus, it is easy to shayw< 1 — exp{—%} in0<ax< %
and hence we have

A(X,Y) = sup|d(k)| < max{az,l—exp{—w}} (13)
ke NV H
o 21+ p)ap
=1 exp{ BT } (14)

2
Remarks: 1. The upper bound—bxp{—%} <1- exp{—z (”T“) az}, an upper bound inf2). 2. The equality
holds if and only ifa, =0, i.e. X ~ Geo( ) Hence the tight upper bound holds for any non-geometric &M
distribution. For example, suppose a uniform discrete oamdariableX has either 0, 1 or 2 with probablll@ each then
u=1,andF(0)=G(0) =1,F(1)=3,G(1) = 3.F(2) = 1.G(2) = G,M(O)— T —ou) =2 =3 u2=22=
1,i.e.u(k) is decreasing fok = 0,1, 2, thusX € dDMRL. Also a, = 5, and so the new bound—lexp{— L) }

2
1—exp{—3} =0.4866< 1— exp{z (”T“) az} =1-—exp{—4} =0.7364, the old bound.

2
Cheng and Mal2] presented another upper bouA¢X,Y) < 2 (”T“) (1—eY)a, = U, and we may also improve

itin a similar way by using Lemma&and10as follows. Sincél+ p)a, = éoA(i) +_7§ lA(i) > Ak {( ())( LI 1} n
AKR)[u(K) — 1] = 2K [y + (k)] 20, > AK [1+ b ] By Lemma9(4), we have o
o= AK {Zlﬁ(f'i%} {1_”‘{ ( “(kﬁ)l 1)]}
St )
u u
- (=) (57) 1(112&1?1)2{””[(1’“511)}}
u
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Conpari osns of Two Upper Bounds

[X-1 U, B

Upper Bound
o
o

o

IS
T
\
|

L L L L
o 0.1 0.2 0.3 0.4 0.5
GZ

Fig. 1: Comparison of Two Upper Bounds

Lett=1— “(kTH for dDMRL, we know 1< (k) < pu(0) =1+ u,k € .4/, and sot € [0,1]. Sinceg(t) = tl@i; is
increasing irt € [0,1],9(t) <g(1) =1—e L Then

1 1+pu
—ap < 8(K) < (1—m) Uss Y (16)

P 2+ 2+u

We obtained two upper bounds for dDMRL with the geometridritigtion. However, theoretically neither one is
overall better. For example, a dDMRL distribution with= 5, Figurel displays the curves of the two boundg =

3
1- exp{—%} andU, = Egl(;rle) (1-eHay in 0< ap < 3, showing neither one is uniformly smaller than the
other.

Also 7HU = ‘%”—“)3(1—?1)02 > ay, henceA(X,Y) = ksup|6(k)| < Hhy <u.
eV

4 Conclusions

In this paper, we explored some characterizations of disdife distributions, especially for dAHNBUE, dHNWUE,
dNBUE and dNWUE classes. We investigated the relationsasgeHife distributions to the geometric distribution, and
characterize the geometric distribution by an charadterisumber within dHNBUE and dHNWUE classes.
Furthermore, we provided the approximation through an uppand of difference for AINBUE and dDMRL classes with
geometric distribution, respectively. These upper boungsoved the ones given previously. Some future work is to
address characteristics of other discrete life distrimgi and the relations among these and with the geometric
distribution.
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Appendix

Proof of Lemma&B.
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i
(@]
o
S,
=
=
<
m
o
I
z
©
C
m
=
s
=
ja
Z‘:

< ()% = Fy(k), whereFg(k) is the survival function foig ~ Ged 1), and
r r |

expandingX +r)(X+r—1)---(X+1) = ¥ s(r,i)(X+1) = Z s(rni) (])XJ = i c(r, j)X! with the unsigned Stirling
i i iZo io

numbers(r, j) [15] andc(r, j) = é s(r, |)('J) we have by Lemma,

Br—%E[(X+r)(X+r—1)---(X+l)]:% io (r, j)EXI
! =

=g 2 ey (K —(k=1)1]F(k) = 7 T k=1"F (k) _Z c(r,j) [K = (k—1)]]

j=0 k=1 j=0

1 o _ r . .
=23 FW [ 3 clr DK — 5 clr)(k—1)

s k=1 j=0 =0

1 ©

= kle(k)[(k—i—r—1)(k+r—2)---(k+1)]
_ 1 S E r—1c r71 N2 i
_ Ly El c(r—1,j) {zk1°°kié(k) 3 kJ'@(kJrl)}

(r=1!% K1

1+IJ r—1 00 P
= o 2,0 1) 3 K (k- 1)

1+IJ r-1 00 P
< g EE D) 3 - (- DG

1 r-1
=y B0l LIEX = HELG )0 1 —2) (% 1)

(1+H)3r 1—(1+IJ) =B
soa, = ‘1 15“) =1- (lfu) ForX € dHNWUE with G(k) > ()" = Fy(k), it is easily seen from the above that
B>B=(1+p), and soay = (1f'u) — 1. In a similar manner, through the expansion expresgjpn= E[(X +T —
D(X4r—2)---X] = Z s(r, j)EXJ, we will havep,) < H(g,) for X € dHNBUE, andy) > u(gr) for X € dHNWUE.

i%o

Proof of Lemm&.

Proof(1) Since a similar approach can be applied to the case of ddBWe just prove the result fof € dHNBUE.
Note thatBr = Br_1+ LE[(X+T—1)---(X+1)X] = fr_1+ 52, then

Tl
Br Br—l l-‘(r)
R ¢ BT e WU TG
1—0or_1 IJ(%)

> 11— _
= 1+ ri(1+p)r
_ Qe u 7r!u(1+u)r’l: ar_1
1+u 14p ri(1+u)f 1+u
AlsOE[(X+r)(X+r—21)---(X+1)] > (EX+r)(EX+r—1)---(EX+1)=(u+r)(+r—1)--- (L +1) by Jensen’s

inequality for the convex functiofi(x) = (Xx+r)(X+r—1)---(x+1) in x>0, r > 1, then forX € dHNBUE andr > 2,
we have

(18)

B _, EIXHD)X+r—1)- (X+1)]
(T+p)r 1+ p)
) (T —1)--(p+1 1
(M Ir)(ur!(LLu))r (M+1) <12 (19)

(U+2)(p+1)
2(1+u)? 2<1+u)

ar :1—

<1-

Specifically,op <1-— <5 andag < 6, which were the results irLp].
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(2) ForX € dNBUE with G(k) < F(k),k € .#, from the derivation of Lemma, we have

B = gy SO LSRN IS
< T SO — 1) 5 — (- DIF (20)

_(3+%|ZEéC( —L)EX = (14 p)Brs

In addition,X € dNBUE c dHNBUE, then

=1 g 2 e = o )

Alternatively, forX € dNWUE with G(k) > F (k),k € .4/, we haveB; > (1+ u)B;_1, and soo, = ﬂf—ru)' —1>ar1.

Proof of LemmaB.

Proof. (1) First, by Lemmat, a, < 2(1+u) so it is easily seen that

po< [2Ho2 . K (22)
1+pu = 1+p

Next, we showA < Ag. SinceF (0) = G(0) = 1, thenA(0) = F(0) — G(0) = 0. Duetoz A(k) = (1+u)az > 0, there exists

t such that\(t) > Owitht € 44 Leth(t) =t — (1+ p)A(t) = h+ w, whereh andw are the integer and fraction parts of
h(t), respectively. From Lemmt we know thath > 0, 0 < w < 1. Also sinceA(t) > 0, thent = h+ w+ (14 p)A(t) > h
(i.e.t > h+1). By Lemma5(3), we have

(1+u)a2:éoA(k)2k:%+lAk - :t% [ }
B t—h—1 A+ WAL +w—1
— (-0 [A)- m] i [A o 23)
=3 | w0 ea0+ 2 % (L 1A% + A
e. (14 u)A2(t) +At) — 2a2(1+u) 0. So that
Alt) < Ag= 1TV 1&55%”“ for all A(t) > 0 (24)
thenA= supAKk)= sup {A(t)} <A
ke AV te A4 At)>0

(2) Actually, we have

a2 < 1—eXp{—1—;—qu} —=1l-a,> exp{—%Ao}
-1+ \/1+802(1+u) (25)

<—log(l—az) > — m
= [202 — log?(1— a)| U2+ [4az +log(1 — az) |+ 202 > O

SinceX € dNBUE c dHNBUE, from Lemmad, 0< a; < 1, it is easily seen that® — log?(1— a,) > 0 and 4, +
log(1— ay) > 0. The lemma follows.
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