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Abstract: In this paper, we present some characterizations of discrete life distributions, especially for dHNBUE, dHNWUE, dNBUE
and dNWUE classes, and their relations with geometric distribution. We characterize the geometric distribution through the ordered
binomial moment and study the approximation between some discrete life classes and geometric distribution via an upperbound of the
probability difference. The upper bounds presented are more rigorous than the ones given previously.
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1 Introduction

In time-to-event studies, discrete lifetimes arise in various common situations where either the measurements of time
are often slotted or occurred events are recorded by fixed length intervals or measured discretely, such as inserting or
joining products. In other reliability testings, often times the tested units cannot be monitored continuously, but instead be
inspected at constant periods, so their failure times can also be treated as discrete random variables. The most common
discrete lift distribution is the geometric, the analog of the exponential distribution for continuous lifetimes. Because of
the memoryless property, geometric distribution is a basiccomponent of different kinds of stochastic models and playsan
essential role in reliability theory and applied probabilistic models [3,4,14]. However, the geometric imposes limitation on
its use, thus other or general discrete life distributions have been discussed and applied in various situations, e.g. [1,17,19]
and the references therein. Alternatively, the study of therelation among life distributions becomes a focus in recentyears,
concentrating mainly on the approximation among various kinds of life distribution classes (or other special distributions)
describing random phenomena like aging and wearing from different perspectives [5,21]. Much work has been focused
on continuous life distribution classes, see [6] for a systematic treatment of this topic. There has been relatively less work
done among discrete life distribution classes, except the work in Cheng [6], who studied the approximation among the
dNBUE, dDMRL, dIMRL, dDFR and dNWUE classes. Especially, the research on the relation between the geometric and
other discrete life distributions is only at the very beginning. In this article, we focus on the properties of various discrete
life distributions, particularly for the dHNBUE, dHNWUE, dNBUE and dNWUE classes, and the approximation by the
geometric. The rest of the paper is organized below. In Section2 we present the definitions and characteristics for various
discrete life distributions, and their relations with geometric distribution. We study the upper bounds to approximate
dNBUE and dDMRL on the geometric distribution in Section3. The upper bounds improves the ones given in [12]. We
conclude the article with a brief discussion in Section4.
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2 The Characteristics of Discrete Life Distribution Class

Before presenting some important discrete life distributions, we first define some common functions and notations to
be used throughout the paper. For the purpose of notation simplicity and clear presentation, we denoteH = {X: a
nonnegative integer valued random variable with finite meanµ}, the sets of nonnegative integersN = {0,1,2, · · ·} and
positive integersN+ = {1,2, ...}. Suppose thatX ∈ H follows a discrete life distributionp(k) = P(X = k) with domain
N , then the other functions are usually defined as

(1) Distribution functionF(k) = P(X < k) =
k−1
∑

i=0
p(i) with

−1
∑

i=0
= 0;

(2) Survival functionF(k) = 1−F(k) = P(X ≥ k) =
∞
∑
i=k

p(i);

(3) Failure rate functionλ (k) = P(X = k|X ≥ k) = p(k)
F(k)

;

(4) The mean lifeµ = EX =
∞
∑

k=0
kp(k) =

∞
∑

k=1
F(k);

(5) The mean reliability functionG(k) =
1

1+ µ
∞
∑
j=k

F( j) for µ < ∞.

(6) The mean remaining lifeµ(k) = E(X− k|X ≥ k)+1=

∞
∑

j=k
F( j)

F(k)
= (1+µ)G(k)

F(k)
.

In probability and statistics, the moments of a random variable serve as useful metrics that provide a significant amount
of information about a distribution. Rather than expressing the moments by the probability function, we introduce another
useful expression, in which the moment ofX is represented by the survival function.

Lemma 1. For X ∈ H , the rth moment EXr =
∞
∑

k=1
[kr − (k−1)r]F(k), r ∈ N .

Proof.For r ∈ N , we simply have

EXr =
∞

∑
k=0

krP(X = k) =
∞

∑
k=0

kr [F(k)−F(k+1)]

=
∞

∑
k=1

krF(k)−
∞

∑
k=1

(k−1)rF(k) =
∞

∑
k=1

[kr − (k−1)r]F(k) (1)

In particular, the first two moments areµ = EX =
∞
∑

k=1
F(k) andEX2 =

∞
∑

k=1
(2k−1)F(k).

In the last few decades, many discrete life distributions were proposed for modeling life data on various occasions.
Cheng [6] summarized the classes of some common discrete life distributions in the followings.

Definition 1. Let X∈ H , then it belongs to
a) discrete increasing (decreasing) failure rate dIFR (dDFR) class ifλ (k) is increasing (decreasing) function for

k∈ N .

b) discrete increasing (decreasing) failure rate average dIFRA (dDFRA) class ifF
1
k (k) is decreasing (increasing) for

k∈ N .
c) discrete increasing (decreasing) mean-residual-life dIMRL (dDMRL) class ifµ(k) is increasing (decreasing) for

k∈ N .
d) discrete new-better(worse)-than-used dNBU (dNWU) class if P(X − k ≥ j|X ≥ k) ≤ P(X ≥ j), i.e. F(k+ j) ≤

F(k)F( j) (F(k+ j)≥ F(k)F( j)) for k, j ∈ N .
e) discrete new-better(worse)-than-used-expectationdNBUE (dNWUE) class if E(X−k|X ≥ k)≤EX= µ , i.e.G(k)≤

F(k) (G(k)≥ F(k)) for k∈ N .
f) discrete harmonically new-better (worse)-than-used-expectation dHNBUE (dHNWUE) class if

G(k)≤
(

µ
1+µ

)k
(G(k)≥

(

µ
1+µ

)k
), k∈ N .

g) discrete L dL (dL) class if
∞
∑

k=0
F(k)sk ≤ 1+ µ

1+(1− s)µ
(

∞
∑

k=0
F(k)sk ≥ 1+ µ

1+(1− s)µ
) for 0< s≤ 1.

The inclusion relations among the above-mentioned classesare as follows

c© 2013 NSP
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⊂ dIFRA ⊂ dNBU ⊂
dIFR dNBUE⊂ dHNBUE⊂ dL

⊂ dDMRL ⊂

⊂ dDFRA⊂ dNWU⊂
dDFR dNWUE⊂ dHNWUE⊂ dL

⊂ dIMRL ⊂
Specifically, for the geometric random variableX ∼ Geo(p) with probability functionP(X = k) = pqk,k∈N , where

the probabilities of success and failure on each trial arep andq= 1−p, we haveµ =EX= q
p, and sop= 1

1+µ andq= µ
1+µ

(hence it can also be written asX ∼Geo
(

1
1+µ

)

). In addition,F(k) = P(X ≥ k) = qk =
(

µ
1+µ

)k
, G(k) =

(

µ
1+µ

)k
, λ (k) =

p= 1
1+µ , µ(k) = 1+ µ , j,k ∈ N . Clearly, the geometric distribution belongs to all the above life distribution classes.

To explore the relation between the geometric and other discrete life distributions, we first introduce some definitions
and notations.

Definition 2. The rth ascending factorial moment of the random variable X about the point b is defined as

µ(r)(b) = E[(X−b)(r)] = E [(X+ r −1−b)(X+ r −2−b) · · ·(X−b)] (2)

Particularly, when b= 0,µ(r)(0) is called the rth ascending factorial moment, written asµ(r); and when b= EX =

µ ,µ(r)(µ) is called the rth ascending central moment, written asµ ′
(r).

By using the finite difference method, Fang and Xu [13] derived the ascending factorial moment for the geometric
distribution.

Lemma 2. If X ∼ Geo(p) with P(X = k) = pqk,k∈ N , then the rth ascending factorial moment

µg
(r) = E [(X+ r −1)(X+ r −2) · · ·(X+1)X] = r!

q
pr = r!µ(1+ µ)r−1, r ∈ N+. (3)

Related to the ascending factorial moment, other commonly used moments and the characteristic index for a distribution
were defined as follows [20].

Definition 3. For X ∈ H , define

(1) the rth order binomial momentβr = E
(X+r

r

)

=
∞
∑

k=0

(k+r
r

)

P(X = k);

(2) the rth characteristic index numberαr =
∣

∣

∣
1− βr

(1+µ)r

∣

∣

∣
, r ∈ N .

Obviously,βr =
1
r! µ(r)(−1), and the first binomial momentβ1 = 1+ µ and characteristic indexα1 = 0.

For X ∼ Geo
(

1
1+µ

)

, by Lemma2, it is easily seen the recursive formβr − βr−1 = q
pr with β0 = 1, henceβr =

1
pr = (1+µ)r , and thenαr = 0, r ∈ N . Notice that theα2 proportional to theα (up to a constant) defined in [6] (actually

α2 =( µ
1+µ )

2α), who pointed out thatα2 = 0 cannot guarantee the random variableX following the geometric distribution.
However, if confining the study to the dHNBUE or dHNWUE class,Cheng [6] concluded thatα2 = 0 will be able
to characterize the geometric distribution (thereafterαr = 0, r ∈ N ). We may extend to the fact that in dHNBUE or
dHNWUE class,αr = 0 for some integer valuer ≥ 2 (not necessarilyα2 = 0) will leads to the geometric distribution.
Before proving this result, we first present some features for dHNBUE and dHNWUE classes, whose detail proofs were
provided in the Appendix.

Lemma 3. For X ∈ dHNBUE, we haveβr ≤ β g
r andµ(r) ≤ µg

(r), r ∈ N , whereβ g
r = (1+µ)r andµg

(r) = r!µ(1+µ)r−1

are the rth order binomial and ascending factorial moments for Geo( 1
1+µ ), and soαr = 1− βr

(1+µ)r . Alternatively, for X∈
dHNWUE, thenβr ≥ β g

r andµ(r) ≥ µg
(r), and soαr =

βr
(1+µ)r −1, r ∈ N .

Lemma 4. (1) If X ∈ dHNBUE or dHNWUE, thenαr ≥
αr−1

1+ µ
. In addition, for X∈ dHNBUE, we haveαr = 1−

βr

(1+ µ)r < 1− 1
r!
, r ≥ 2. (2) If X ∈ dNBUE or dNWUE, thenαr ≥ αr−1, r ≥ 2.
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Now we may prove the following theory about the characterization of the geometric distribution.

Theorem 1. If X ∈ dHNBUE or dHNWUE with finite meanµ , then X∼Geo
(

1
1+µ

)

if and only ifαr = 0 for some integer

value r≥ 2.

Proof. Sinceαr = 0 for anyr ≥ 2 for Geo( 1
1+µ ), we only need prove the necessity. We haveβr = (1+µ)r from αr = 0,

and soG(k) = ( µ
1+µ )

k, k= 0,1,2, ... from the proof of Lemma3. ThusF(k) = (1+ µ)
[

G(k)−G(k+1)
]

= ( µ
1+µ )

k, and

thenP(X = k) = F(k)−F(k+1) = ( 1
1+µ )(

µ
1+µ )

k, k∈ N , henceX ∼ Geo
(

1
1+µ

)

.

The theorem indicates that for dHNBUE or dHNWUE class, any oneαr = 0, r ≥ 2 leads to allαr = 0, r = 2,3, .... However,
this is not true for other discrete life distribution classes. The following example demonstrates that generallyα2 = 0 and
α3 = 0 are not equivalent each other.

Example 1. α2 = 0 butα3 6= 0.
Suppose the discrete random variableX has possible values 0, 2 with probabilities3

4,
1
4, respectively. Thusµ = 1

2, and

G(2) = 1
1+µ

∞
∑
j=2

F( j) = 1
1+µ F(2) = 1

6 > ( µ
1+µ )

2 = 1
9, butG(3) = 1

1+µ
∞
∑
j=3

F( j) = 0< ( µ
1+µ )

3 = 1
27. HenceX /∈ dHNBUE

or dHNWUE, and we haveβ2 =
1
2E[(X+2)(X+1)] = 9

4, α2 =
∣

∣

∣
1− 9/4

(1+1/2)2

∣

∣

∣
= 0 andβ3 =

1
6E[(X+3)(X+2)(X+1)] =

13
4 , α3 =

∣

∣

∣
1− 13/4

(1+1/2)3

∣

∣

∣
= 1

27 6= 0.

In the next section, we explore the difference between discrete life distribution and geometric distribution.

3 Approximating Discrete Life Distributions with Geometri c Distribution

There were many researches studying the difference among the distributions, but most works were for the purpose of
the hypothesis testing, such as goodness of fit tests [18]. In probability theory, the Kullback-Leibler divergence[16], a
relative entropy, was often used as a measure of the difference between two probability distributions. Here we consider
the “reliability difference” [7], in which the research of approximations and upper bounds has been studied among various
discrete life distribution classes [8–10], and between geometric and some discrete life distribution classes such as dDMRL,
dNWUE, dIMRL and dDFR [11, 12]. We focus on the approximation between the geometric and other discrete life
distributions, such as dNBUE and dDMRL classes. The difference definition is the following.

Definition 4. Suppose X,Y ∈ H with same meanµ , the difference of reliabilities is defined as
∆(X,Y) = sup

k∈N

|P(X ≥ k)−P(Y ≥ k)|.

Particularly, the difference betweenX ∈ dNBUE or dDMRL andY ∼ Geo( 1
1+µ ) is our interest. Cheng and Ma [12]

presented ’big’ upper bounds of∆(X,Y), and we will provide tight upper bounds to improve the approximation. To
examine the comparison among various discrete life distributions with the geometric distribution, Cheng and Ma [12]
proposed the following measurements.

Definition 5. The following notations are defined as

A(k) = F(k)−G(k), η(k) =
(

µ
1+ µ

)k

−G(k) (4)

δ (k) = F(k)−
(

µ
1+ µ

)k

= A(k)−η(k), k∈ N . (5)

For the geometric random variable with meanµ , F(k) = G(k) =
(

µ
1+µ

)k
, then clearly,A(k) = η(k) = δ (k) = 0, k∈ N .

In addition, dNBUE (dNWUE) class corresponds toA(k) ≥ 0 (A(k) ≤ 0), and dHNBUE (dHNWUE) class toη(k) ≥
0 (η(k) ≤ 0), k∈ N . Here are some useful preliminary results in [7,12].

Lemma 5. For X ∈ H , we have

(1) η(k) = 1
µ

k−1
∑

i=0

(

µ
1+µ

)k−i
A(i), so thatδ (k) = A(k)− 1

µ

k−1
∑

i=0

(

µ
1+µ

)k−i
A(i);

(2) A(k)≤ k
1+µ ,k∈ N ;

(3) A(i)≥ A(k)− k−i
1+µ ,0≤ i ≤ k.

Now we discuss the approximation of dNBUE and dDMRL classes by geometric distribution.

c© 2013 NSP
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3.1 The dNBUE Class

First, we briefly present the upper bound given in [12]. The following results play a key role in their work.

Lemma 6. 1. If X ∈ dHNBUE (η(k)≥ 0, k∈ N ), then
∞
∑

k=0
A(k) =

∞
∑

k=0
η(k) = (1+ µ)α2.

2. If X ∈ dNBUE, then (1)|δ (k)| ≤ A(k)≤
√

2µα2
1+µ ≤ µ

1+µ ; (2) −α2 ≤ δ (k)≤ 1−exp
{

− 1+µ
µ A(k)

}

, k∈ N .

We also observed the following general result.

Lemma 7. For µ > 0 and0≤ x< 1
2, we have x≤ 1−exp

{

−
√

2(1+µ)x
µ

}

.

Proof. It is equivalent to show thatf (x) = log(1−x)+
√

2(1+µ)x
µ ≥0 in 0≤ x< 1

2,µ >0. Sincef (0)= 0, f (1
2)=− log2+

√

1+µ
µ >− log2+1> 0, andf ′(x) =

−√
x+

√

1+µ
2µ (1−x)

√
x(1−x) . Let g(x) =−√

x+
√

1+µ
2µ (1−x), theng′(x) =− 1

2
√

x −
√

1+µ
2µ < 0

andg(0) =
√

1+µ
2µ > 0. As a result, the unique root ofg(x) is x0 =

1+2µ−
√

3µ2+2µ
1+µ > 1

2. Thus for 0≤ x < x0, we have

g(x)> 0, thus f ′(x)> 0. Hencef (x) ≥ 0 in 0≤ x< 1
2 < x0.

For dHNBUE (⊃ dNBUE) class, we know 0≤ α2 <
1
2 from Lemma4, and so it results inα2 ≤ 1−exp

{

−
√

2(1+µ)α2
µ

}

by Lemma7. Thus it is straightforward by Lemma6 to have the following upper bound in [12]

∆(X,Y) = sup
k∈N

|δ (k)| ≤ max

{

α2,1−exp

{

−1+ µ
µ

A(k)

}}

≤ max

{

α2,1−exp

{

−
√

(1+ µ)α2

µ

}}

≤ 1−exp

{

−
√

2(1+ µ)α2

µ

}

(6)

In what follows, we provide a tight upper bound for the difference. Suppose thatX ∈ dNBUE (⊂ dHNBUE) with finite

meanµ , thenA(k) ≥ 0 and
∞
∑

k=0
A(k) = (1+ µ)α2 from Lemma5. HenceA(k) is bounded and we letA = sup

k∈N

A(k).

Obviously, the geometric distribution (αr = 0) is equivalent toA = 0. The following preliminary results (shown in the
Appendix) will be used for our improved upper bound in Theorem 2.

Lemma 8. Suppose X∈ dNBUE and let A0 =
−1+

√
1+8α2(1+µ)2
2(1+µ) , then we have (1) A(k) ≤ A≤ A0 ≤

√

2µα2
1+µ ≤ µ

1+µ ; (2)

α2 ≤ 1−exp
{

− 1+µ
µ A0

}

.

Theorem 2. Suppose that X∈ dNBUE and let A0 =
−1+

√
1+8α2(1+µ)2
2(1+µ) . For Y ∼ Geo

(

1
1+µ

)

, we have

∆(X,Y)≤ 1−exp

{

−1+ µ
µ

A0

}

≤ 1−exp

{

−
√

2(1+ µ)α2

µ

}

. (7)

Proof. ForX ∈ dNBUE, by Lemmas6 and8, then

−α2 ≤ δ (k)≤ 1−exp

{

−1+ µ
µ

A(k)

}

≤ 1−exp

{

−1+ µ
µ

A0

}

≤ 1−exp

{

−
√

2(1+ µ)α2

µ

}

(8)
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Secondly, forY ∼ Geo
(

1
1+µ

)

, thenP(Y ≥ k) = ( µ
1+µ )

k, and so

∆(X,Y) = sup
k∈N

∣

∣

∣

∣

∣

F(k)−
(

µ
1+ µ

)k
∣

∣

∣

∣

∣

= sup
k∈N

|δ (k)|

≤ max

{

α2,1−exp

{

−1+ µ
µ

A0

}}

= 1−exp

{

−1+ µ
µ

A0

}

(9)

hence overall∆(X,Y)≤ 1−exp
{

− 1+µ
µ A0

}

≤ 1−exp

{

−
√

2(1+µ)α2
µ

}

.

Note: 1. Theorem2 showed that the new upper bound is smaller than the old one in (6). 2. The equality holds for the old

and new bounds if and only ifA0 =
√

2µα2
1+µ , i.e.α2 =

µ
2(1+µ) , thusEX2 = µ2. This leads to a degenerated distribution with

a point mass on a constant variableX. Hence the tight upper bound holds for any non-degenerated dNBUE distribution.
For example, the uniform discrete random variableX has either 0, 1 or 2 with probability13 each, thenµ = 1, and
F(0) = G(0) = 1, F(1) = 2

3 > G(1) = 1
2, F(2) = 1

3 > G(2) = 1
6, thusX ∈ dNBUE. In additionβ2 =

1
2E(X+2)(X+1) =

10
3 , α2 = 1− β2

(1+µ)2 = 1
6,A0 =

−1+
√

1+8α2(1+ µ)2

2(1+ µ)
=

−1+
√

19
3

4
= 0.37915<

√

2µα2

1+ µ
=

√

1
6
= 0.4082, and so

the new bound 1−exp
{

− 1+µ
µ A0

}

= 0.5315 is strictly smaller than the old bound 1−exp

{

−
√

2(1+µ)α2
µ

}

= 0.5580.

3.2 The dDMRL Class

We now consider the approximation between dDMRL and the geometric. Notice that dDMRL⊂ dNBUE andµ(k) =

(1+µ)G(k)
F(k)

is decreasing ink ∈ N , so µ(0) = 1+ µ ≥ µ(k) =

∞
∑
j=k

F( j)

F(k)
= 1+

∞
∑

j=k+1
F( j)

F(k)
≥ 1,k ∈ N . We denoteh(k) =

k− [1+ µ− µ(k)]. Here were the preliminary results in [12].

Lemma 9. Suppose X∈ dDMRL and k∈ N , then
(1) 0≤ h(k)≤ k;
(2) A(i)≥ A(k)− k−i

1+µ F(k) for h(k)≤ i ≤ k;

(3)
∞
∑

i=k+1
A(i)≥ A(k)[µ(k)−1];

(4) δ (k)≤ F(k)
{

1−exp
[

−
(

1− µ(k)−1
µ

)]}

.

The the following result plays an essential role in our studyto improve the upper bound.

Lemma 10. If X ∈ dDMRL, then
k
∑

i=0
A(i)≥ A(k)

2

[

(1+µ)A(k)
F(k)

+1
]

,k∈ N .

Proof. Since 0≤ h(k)≤ k, we denoteh+ω = h(k) = k− [1+ µ − µ(k)] with h∈ N ,0≤ ω < 1, thusk−h= 1+ µ −
µ(k)+ω = (1+µ)A(k)

F(k)
+ω . By Lemma9 with k≥ 1, we have

k
∑

i=0
A(i)≥

k
∑

i=h+1
A(i)≥

k
∑

i=h+1

[

A(k)− k− i
1+ µ

F(k)

]

= (k−h)

[

A(k)− k−h−1
2(1+ µ)

F(k)

]

=

(

(1+ µ)A(k)
F(k)

+ω
)[

A(k)− F(k)
2(1+ µ)

(

(1+ µ)A(k)
F(k)

+ω −1

)]

=
1
2

[

(1+ µ)A2(k)

F(k)
+A(k)+

ω(1−ω)F(k)
1+ µ

]

≥ A(k)
2

[

(1+ µ)A(k)
F(k)

+1

]

(10)

The above inequality still holds fork= 0 sinceA(0) = 0.
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Then we obtain a smaller upper bound in the following.

Theorem 3. Suppose X∈ dDMRL and Y∈ Geo
(

1
1+µ

)

, then

∆(X,Y)≤ 1−exp

{

−2(1+ µ)α2

µ

}

(11)

Proof.ForX ∈ dDMRL, by Lemmas9 and10, A(k) = F(k)−G(k),µ(k) = (1+µ)G(k)
F(k)

, we have

(1+ µ)α2 =
∞
∑

i=0
A(i) =

k
∑

i=0
A(i)+

∞
∑

i=k+1
A(i)≥ A(k)

2

[

(1+µ)A(k)
F(k)

+1
]

+A(k)[µ(k)−1]

= A(k)
2

[

(1+µ)A(k)
F(k)

+2µ(k)−1
]

= A(k)
2

[

µ + (1+µ)G(k)
F(k)

]

= A(k)
2



µ +

∞
∑
j=k

F( j)

F(k)





= A(k)
2



1+ µ +

∞
∑

j=k+1
F( j)

F(k)



≥ (1+µ)A(k)
2

(12)

HenceA(k)≤ 2α2, and thus−α2 ≤ δ (k)≤ 1−exp
{

− 1+µ
µ A(k)

}

≤ 1−exp
{

− 2(1+µ)α2
µ

}

. In addition, 0≤ α2 <
1
2 from

dDMRL ⊂ dNBUE⊂ dHNBUE. By elementary calculus, it is easy to showα2 ≤ 1−exp
{

− 2(1+µ)α2
µ

}

in 0≤ α2 <
1
2,

and hence we have

∆(X,Y) = sup
k∈N

|δ (k)| ≤ max

{

α2,1−exp

{

−2(1+ µ)α2

µ

}}

(13)

= 1−exp

{

−2(1+ µ)α2

µ

}

(14)

Remarks: 1. The upper bound 1−exp
{

− 2(1+µ)α2
µ

}

≤ 1−exp

{

−2
(

1+µ
µ

)2
α2

}

, an upper bound in [12]. 2. The equality

holds if and only ifα2 = 0, i.e. X ∼ Geo
(

1
1+µ

)

. Hence the tight upper bound holds for any non-geometric dDMRL

distribution. For example, suppose a uniform discrete random variableX has either 0, 1 or 2 with probability13 each, then

µ =1, andF(0)=G(0)=1,F(1)= 2
3,G(1)= 1

2,F(2)=
1
3,G(2)= 1

6,µ(0)=
2G(0)
F(0)

=2,µ(1)= 2G(1)
F(1)

= 3
2,µ(2)=

2G(2)
F(2)

=

1, i.e.µ(k) is decreasing fork = 0,1,2, thusX ∈ dDMRL. Also α2 =
1
6, and so the new bound 1−exp

{

− 2(1+µ)
µ α2

}

=

1−exp{− 2
3}= 0.4866< 1−exp

{

−2
(

1+µ
µ

)2
α2

}

= 1−exp
{

− 4
3

}

= 0.7364, the old bound.

Cheng and Ma [12] presented another upper bound∆(X,Y)≤ 2
(

1+µ
µ

)2
(1−e−1)α2 =U , and we may also improve

it in a similar way by using Lemmas9 and10as follows. Since(1+µ)α2 =
k
∑

i=0
A(i)+

∞
∑

i=k+1
A(i)≥ A(k)

2

[

(1+µ)A(k)
F(k)

+1
]

+

A(k)[µ(k)−1] = A(k)
2 [µ + µ(k)],2α2 ≥ A(k)

[

1+ µ(k)−1
1+µ

]

. By Lemma9(4), we have

δ (k) ≤ 2α2F(k)

A(k)

[

1+
µ(k)−1

1+ µ

]

{

1−exp

[

−
(

1− µ(k)−1
µ

)]}

=
2α2

[

1+
µ(k)−1

1+ µ

][

1− µ(k)
1+ µ

]

{

1−exp

[

−
(

1− µ(k)−1
µ

)]}

=

(

1− 1
µ(k)+ µ

)(

1+ µ
µ

)2 2α2

1−
(

µ(k)−1
µ

)2

{

1−exp

[

−
(

1− µ(k)−1
µ

)]}

(15)
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Fig. 1: Comparison of Two Upper Bounds

Let t = 1− µ(k)−1
µ , for dDMRL, we know 1≤ µ(k) ≤ µ(0) = 1+ µ ,k ∈ N , and sot ∈ [0,1]. Sinceg(t) = 1−e−t

t(2−t) is

increasing int ∈ [0,1],g(t)≤ g(1) = 1−e−1. Then

−α2 ≤ δ (k)≤
(

1− 1
µ(k)+ µ

)

U ≤ 1+ µ
2+ µ

U (16)

Also 1+µ
2+µ U = 2(1+µ)3

µ2(2+µ)(1−e−1)α2 > α2, hence∆(X,Y) = sup
k∈N

|δ (k)| ≤ 1+µ
2+µ U <U .

We obtained two upper bounds for dDMRL with the geometric distribution. However, theoretically neither one is
overall better. For example, a dDMRL distribution withµ = 5, Figure1 displays the curves of the two boundsU1 =

1− exp
{

− 2(1+µ)α2
µ

}

andU2 = 2(1+µ)3
µ2(2+µ)(1−e−1)α2 in 0 ≤ α2 < 1

2, showing neither one is uniformly smaller than the

other.

4 Conclusions

In this paper, we explored some characterizations of discrete life distributions, especially for dHNBUE, dHNWUE,
dNBUE and dNWUE classes. We investigated the relations of those life distributions to the geometric distribution, and
characterize the geometric distribution by an characteristic number within dHNBUE and dHNWUE classes.
Furthermore, we provided the approximation through an upper bound of difference for dNBUE and dDMRL classes with
geometric distribution, respectively. These upper boundsimproved the ones given previously. Some future work is to
address characteristics of other discrete life distributions and the relations among these and with the geometric
distribution.
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Appendix

Proof of Lemma3.
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Proof.For X ∈ dHNBUE with G(k) ≤ ( µ
1+µ )

k = Fg(k), whereFg(k) is the survival function forXg ∼ Geo( 1
1+µ ), and

expanding(X+ r)(X+ r−1) · · · (X+1) =
r
∑

i=0
s(r, i)(X+1)i =

r
∑

i=0
s(r, i)

i
∑
j=0

( i
j

)

X j =
r
∑
j=0

c(r, j)X j with the unsigned Stirling

numbers(r, j) [15] andc(r, j) =
r
∑
i= j

s(r, i)
( i

j

)

, we have by Lemma1,

βr =
1
r!

E[(X+ r)(X+ r −1) · · ·(X+1)] = 1
r!

r
∑
j=0

c(r, j)EX j

=
1
r!

r
∑
j=0

c(r, j)
∞
∑

k=1

[

k j − (k−1) j
]

F(k) = 1
r! ∑k= 1∞F(k)

r
∑
j=0

c(r, j)
[

k j − (k−1) j
]

=
1
r!

∞
∑

k=1
F(k)

[

r
∑
j=0

c(r, j)k j −
r
∑
j=0

c(r, j)(k−1) j

]

=
1

(r −1)!

∞
∑

k=1
F(k)[(k+ r −1)(k+ r −2) · · ·(k+1)]

=
1

(r −1)!

∞
∑

k=1
F(k)∑ j = 0r−1c(r −1, j)k j = 1

(r−1)!

r−1
∑
j=0

c(r −1, j)
∞
∑

k=1
k jF(k)

=
1+ µ
(r −1)!

r−1
∑
j=0

c(r −1, j)

[

∑k= 1∞k j G(k)−
∞
∑

k=1
k jG(k+1)

]

=
1+ µ
(r −1)!

r−1
∑
j=0

c(r −1, j)
∞
∑

k=1
[k j − (k−1) j]G(k)

≤ 1+ µ
(r −1)!

r−1
∑
j=0

c(r −1, j)
∞
∑

k=1
[k j − (k−1) j]Fg(k)

=
1+ µ
(r −1)!

r−1
∑
j=0

c(r −1, j)EX j
g = 1+µ

(r−1)! E[(Xg+ r −1)(Xg+ r −2) · · ·(Xg+1)]

= (1+ µ)β g
r−1 = (1+ µ)r = β g

r

(17)

soαr =
∣

∣

∣
1− βr

(1+µ)r

∣

∣

∣
= 1− βr

(1+µ)r . ForX ∈ dHNWUE with G(k)≥ ( µ
1+µ )

k = Fg(k), it is easily seen from the above that

βr ≥ β g
r = (1+ µ)r , and soαr =

βr
(1+µ)r − 1. In a similar manner, through the expansion expressionµ(r) = E[(X + r −

1)(X+ r −2) · · ·X] =
r
∑
j=0

s(r, j)EX j , we will haveµ(r) ≤ µg
(r) for X ∈ dHNBUE, andµ(r) ≥ µg

(r) for X ∈ dHNWUE.

Proof of Lemma4.

Proof.(1) Since a similar approach can be applied to the case of dHNWUE, we just prove the result forX ∈ dHNBUE.
Note thatβr = βr−1+

1
r! E[(X+ r −1) · · ·(X+1)X] = βr−1+

µ(r)
r! , then

αr = 1− βr

(1+ µ)r = 1− βr−1

(1+ µ)r −
µ(r)

r!(1+ µ)r

≥ 1− 1−αr−1

1+ µ
−

µg
(r)

r!(1+ µ)r

=
αr−1

1+ µ
+

µ
1+ µ

− r!µ(1+ µ)r−1

r!(1+ µ)r =
αr−1

1+ µ
(18)

Also E[(X+ r)(X + r −1) · · ·(X+1)] ≥ (EX+ r)(EX+ r −1) · · ·(EX+1) = (µ + r)(µ + r −1) · · · (µ +1) by Jensen’s
inequality for the convex functionf (x) = (x+ r)(x+ r −1) · · ·(x+1) in x≥ 0, r ≥ 1, then forX ∈ dHNBUE andr ≥ 2,
we have

αr = 1− βr

(1+ µ)r = 1− E[(X+ r)(X+ r −1) · · ·(X+1)]
r!(1+ µ)r

≤ 1− (µ + r)(µ + r −1) · · ·(µ +1)
r!(1+ µ)r < 1− 1

r!
(19)

Specifically,α2 ≤ 1− (µ+2)(µ+1)
2(1+µ)2 = µ

2(1+µ) <
1
2 andα3 <

5
6, which were the results in [12].
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(2) ForX ∈ dNBUE with G(k)≤ F(k),k ∈ N , from the derivation of Lemma3, we have

βr =
1+ µ
(r −1)!

∑r−1
j=0C(r −1, j)∑∞

k=1[k
j − (k−1) j ]G(k)

≤ 1+ µ
(r −1)!

∑r−1
j=0C(r −1, j)∑∞

k=1[k
j − (k−1) j ]F(k)

=
1+ µ
(r −1)!

∑r−1
j=0C(r −1, j)EX j = (1+ µ)βr−1

(20)

In addition,X ∈ dNBUE⊂ dHNBUE, then

αr = 1− βr

(1+ µ)r ≥ 1− (1+ µ)βr−1

(1+ µ)r = 1− βr−1

(1+ µ)r−1 = αr−1 (21)

Alternatively, forX ∈ dNWUE withG(k)≥ F(k),k∈ N , we haveβr ≥ (1+ µ)βr−1, and soαr =
βr

(1+µ)r −1≥ αr−1.

Proof of Lemma8.

Proof. (1) First, by Lemma4, α2 ≤ µ
2(1+µ) , so it is easily seen that

A0 ≤
√

2µα2

1+ µ
≤ µ

1+ µ
(22)

Next, we showA≤A0. SinceF(0)=G(0)= 1, thenA(0)=F(0)−G(0)= 0. Due to
∞
∑

k=0
A(k) = (1+µ)α2 >0, there exists

t such thatA(t)> 0 with t ∈ N+. Let h(t) = t − (1+ µ)A(t) = h+ω , whereh andω are the integer and fraction parts of
h(t), respectively. From Lemma5, we know thath≥ 0, 0≤ ω < 1. Also sinceA(t)> 0, thent = h+ω +(1+µ)A(t)> h
(i.e. t ≥ h+1). By Lemma5(3), we have

(1+ µ)α2 =
∞
∑

k=0
A(k)≥

t
∑

k=h+1
A(k)≥

t
∑

k=h+1

[

A(t)− t − k
1+ µ

]

= (t −h)

[

A(t)− t −h−1
2(1+ µ)

]

= [(1+ µ)A(t)+ω ]

[

A(t)− (1+ µ)A(t)+ω −1
2(1+ µ)

]

=
1
2

[

(1+ µ)A2(t)+A(t)+
ω(1−ω)

1+ µ

]

≥ 1
2
[(1+ µ)A2(t)+A(t)]

(23)

i.e. (1+ µ)A2(t)+A(t)−2α2(1+ µ)≤ 0. So that

A(t)≤ A0 =
−1+

√

1+8α2(1+ µ)2

2(1+ µ)
for all A(t)> 0 (24)

thenA= sup
k∈N

A(k) = sup
t∈N+ ,A(t)>0

{A(t)} ≤ A0.

(2) Actually, we have

α2 ≤ 1−exp

{

−1+ µ
µ

A0

}

⇐⇒ 1−α2 ≥ exp

{

−1+ µ
µ

A0

}

⇐⇒ log(1−α2)≥−−1+
√

1+8α2(1+ µ)2

2µ
⇐⇒ [2α2− log2(1−α2)]µ2+[4α2+ log(1−α2)]µ +2α2 ≥ 0

(25)

SinceX ∈ dNBUE ⊂ dHNBUE, from Lemma4, 0≤ α2 < 1
2, it is easily seen that 2α2− log2(1−α2) ≥ 0 and 4α2+

log(1−α2)≥ 0. The lemma follows.
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