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Abstract: Multivariate regression estimates based on ranks and glerext ranks are proposed. These estimates are based on a
transformation and retransformation technique that ugks'3 (1987)M-estimator of scatter. The proposed estimates are obtained
retransforming the componentwise rank-based estimateazavis and McKean (1993) and a componentwise generaliaekl r
estimate. Asymptotic properties of the estimates are ksitialol under some regularity conditions. It is shown thahlestimates have

a multivariate normal limiting distribution. The influendenction of the retransformed generalized rank estimate &ndbounded
influence in both factor and response spaces. It is shownighra simulation study that the transformed-retransforlRezthd GR
estimates are highly efficient compared to the componeatR|SGR and least absolute deviations estimates. Also, i3 that the

new estimates perform better than the least squares estintgn the errors have a heavy tailed distribution. An exarilpistrating

the estimation procedures is presented.

Keywords: Asymptotic distributions; Efficiency; Robust; Regressi@aR-estimators; R-estimators; Least squares; Simulstion
Wilcoxon.

1 Introduction

Suppose we have a matrix of response variaBlegich follow the multivariate linear model
Y=X%+E, (1.1)

whereX is ann x d matrix of regression coefficientss is anp x d matrix of regression parameters, ads ann x d
matrix of random errors whose rows have covariance matri/e wish to estimate and make inference on the parameters
AB.

The least squares estimate#f @Ls = (X'X)~IX"Y, has two advantages besides being easy to compute, it is affin
equivariant. It is equivariant under constant shifts andtiplication by arbitrary nonsingular matrices. It is thptinal
estimator ofZ when the distribution of the errors is multivariate normtdbwever, it is not robust if the errors have a
heavy tailed distribution.

There are several approaches in the literature competitnghaé LS method and producing estimators that are robust
and more efficient. One approach is to use a robust fit on eatip@oent separately. Rao (1988) used this approach
where the robust fit was based on the least absolute desdti/D) estimators. Davis and McKean (1993) developed a
rank-based theory for the multivariate linear model in a ngrsimilar to its development for the univariate linear mipd
see Hettmansperger and McKean (2011). The estimates angooemt-wise R estimates for general score functions,
including the sign (LAD) and Wilcoxon scores. Besides eation, their analysis includes confidence regions and tests
of general linear multivariate hypotheses. However, tfieiency of these estimates slips when the variables ardyhigh
correlated. We extend their theory to positive breakdoviimeges (see Theore#4). Hence, the analysis includes a large
family of estimates, including highly efficient and posgtiireakdown estimates.

Maronna and Morgethaler (1986) proposed the covarianémasin approach to estimate the parameters of a
univariate linear regression model. The data are sumnthiigea covariance matrix of the concatenated vector of
explanatory variables and response variable. A robusinesti of the covariance matrix leads to a robust regression
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estimate. Ollila, Hettmansperger and Oja (2002) used dasimpproach in multivariate linear regression. They shtbwe
under some conditions that the sign covariance matrix (S€g)ession estimate is a consistent estimatggphffine
equivariant, and asymptotically normal. It has a boundédence function in both the andy spaces.

Chakraborty (1996) proposed an extension of LAD based otrémsformation and retransformation technique. He
computed his transformation matrix from a subset of the dalféech must be chosen. He called his estimate,
TREMMER, (Transformation-Retransformation Estimate inltitariate Median Regression). In his paper, he proved
that the TREMMER is asymptotically normal and highly effidigelative to LAD especially when the correlation
between the response variables increases. The choice diptieal o was based on minimizing the asymptotic
generalized variance of the TREMMER. Chakraborty and Chayd997) applied the TREMMER algorithm to Davis
and McKean (1993) componentwise rank regression estirhateig based on the Wilcoxon scores. They proved that
their estimate inherits its asymptotic normality and rdbass from the Wilcoxon estimate. The transformation matri
was chosen such that the asymptotic generalized varian\gz’é@%’ — ) is minimum.

In this paper, we propose robust transformation-retransdtion estimates for a general multivariate linear model.
The procedure is based on three steps, (Section 2). Fiesitn#irix of responses is transformed using Tyler's (1987)
multivariate scatter matrix. Then the Davis and McKeamestés are obtained on the transformed observations. In the
third step, these estimates are retransformed. Generalsscan be used for the R estimates; hence, these estimates ca
optimized if knowledge of the error distribuion is known. \leall call this type of estimate transformed-retransfatiRe
(TRR) estimates. The estimates using the GR estimates ld&d tize transformed-retransformed GR (TRGR) estimates.
We show the TRR and TRGR estimates satisfy some equivarfanoperties and obtain their asymptotic distributions
in Sections 2 and 4. The TRR estimates have bounded influemotidns in they space and possess good efficiency
properties. The TRGR estimates have positive breakdowrhawd a bounded influence function in both thandy
spaces. The efficieny of either estimate does not slip fdrlfigorrelated data. Unlike Chakraborty’s (1996) estimtte
transformation is based on all the data. Hence, no subskedldta has to be chosen. These estimates offer the user a
large class of estimates from which to choose includingliigfficient estimates and positive breakdown estimatesfall
which are quickly computed.

Consistent estimators of the asymptotic standard dewistiwe available. Also, because of the quick computation
bootstrap estimates of the standard errors can be used ferate sized data sets. We discuss both in the paper and
compare them on an example in Section 3. Section 5 presenteshlts of simulation studies which demonstrated the
high efficiency of the new estimates relative to LAD. In peutar, our transformation-retransformation rank estemat
performs as well as or better than the estimate of Chaknabad Chauduri (1997).

2 Transformation-Retransformation R and GR Estimators

In this section, we describe the transformed-retransfdriRgTRR) and GR (TRGR) estimators. We consider the
multivariate linear model
Y =Bo+ B Xi+¢&, i=1...n, (2.1)

wherey, € 09 is a vector of response variablasc [P is a vector of constant regressgg, € (¢ is an unknown vector
of intercepts, % is ap x d matrix of unknown regression coefficients, agde 09 is a vector of random errors. The
random errorgs, ..., €y are assumed to be independent and identically distribuittcBje] = 0 and Cove) = X, where
2 is a symmetric positive definite matrix. Let

Vi 1 Xy &

D= X= ) E=) )

Y 1 Xy €
/

Then we can write modeR(1) in a matrix form as

Y =

Y=X%+E. 2.2)

The algorithm for the transformed-retransformed R (TRRi&sor is:

1.Transformation Step. Fit Model (2.1) using LS and obtain the LS residuads,€,,...,€n. Then obtain the
transformatior) matribA = A(€1,€>,...,&n), as described in Sectidh1 and use it to get the transformed response
variablesz; = Ay, fori=1,...,n.
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e Y R /
2. R-Estimation Step.Obtain the component-wise R estimatér = ([30S %"14,) , onthe datdxs,2;),...,(Xn, 2,), @s

described in Sectiof.2 N N .
3.Retransformation Step.RetransformZg to obtain the TRR estimat&@trr= @R(A’)*l.

The algorithm for the transformed-retransformed GR (TR@&)mator is the same as that of the TRR estimator, except
the R-estimation step is replaced by the GR-estimation siedescribed in Secti¢h3.

We briefly describe the transformation and R-estimatiopsstMore details are given in Section 4. The LS estimator
of % is of course

PBrs= (X'X)"IX'Y.

The LS estimator is a quick computation. Furthermofegsg is affine equivariant.

2.1 Transformation Step

The transformation matrii is a data-driven nonsingular matrix that was proposed bgriyl987). Given the LS residuals
€1,€5,..., &y, Ais the unique upper triangular positive definite matrix véitbne in the upper left hand element that solves

L A/8\i A?i ! 1
n z =) =3’ 2.3
”iZ\<|A5i|> (||A8i||) d (2.3)

Equation 2.3) shows that the transformation matexis chosen so that the sample variance-covariance matrieof t
unit-transformed vectors is/il times the identity. In other words, the unit vectors of trensformed residuals have
the variance covariance structure of a random variableishatiformly distributed on the unid-sphere. Besides being
nonsingularA satisfies the affine equivariance property

D'ALARD = coA'A, (2.4)

for a fixed nonsingulad x d matrix D, WhereAD is the matrixA calculated on the transformed observatibes, Ais the
computed matrix on the residuas andcy is a positive scalar that may dependDmnd theg;’s.

For the location problem, Tyler (1987) showed thds unique if the sample is drawn from a continuous distrimuti
andn > d(d — 1). He also proved thak is consistent. In SectioA.2, we show thalA = A(€1,&,,...,&p) is a consistent
estimator. Discussion of an iterative procedure which islgand easy for computing, (Randles (2000)), is given in
Appendix A.1.

2.2 R-Estimation Step.

Davis and McKean (1993) developed a rank-based theory ®onthltivariate linear model in a manner similar to its
development for the univariate linear model; see also Ghidpof Hettmansperger and McKean (2011). The estimate of
2 was obtained by first estimating the regression coefficieattimn.Z, by minimizing for j = 1,...,d the dispersion

functions
n

D(#}) = zia<R<YE” X2 (Y —x8), (2.5)

1=
wherea(i) are scores such thatl) < a(2) < --- <a(n) andy a(i) = 0. The scores are generated by a score generating
function ¢ asa(i) = ¢(i/(n+1)). The most widely used scores are the Wilcoxon scores whiohbeagenerated by
¢ (u) =122(u—(1/2)). The ranks are component-wise rankingé{éH fxi’%(l”, j=1,...,d. TheinterceptvectdB, is
then computed as a location estimate of the residuals for@aoponent. Thus the problem of estimati#gs reduced to

. — ~ /
estimating')) for each column separately. Under certain conditions, Hantl McKean showed thafr = ([30 %’10

is a highly efficient asymptotically normal estimator; seet®n4.2for details. In the case of Wilcoxon scor@w has
an asymptotic relative efficiency (ARE) of 95% relative te itS estimate.
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2.3 GR-Estimation Step.

Model 2.2) can be written as

wherea)y = By +X %;. The model in 2.6) is the concatenation of tieunivariate linear modelg ) = 1naék) +Xc<@(lk) +
€X k=1,....d. Consider the function
luller= Y bij|ui —ujl, (2.7)

i<]

where the weightb;; are functions of thej;’'s and are assumed to be positive and symmetricfijess bji. Note that this
function is the Wilcoxon pseudonorm if the weighis= 1. The componentwise GR-estimates®{ is a matrix%, cr =

((@%R @;déR), Where@(llf)GR minimizesDGR(%(lk)) =|Y® — XC%‘gk) |lcr which is a continuous, nonnegative and
convex function o%‘lk). Fork=1,...,d the negative of the gradient D‘GR(%(lk)) is given by
k k k k k
SR = 3 by 06 —x))sgr((Y( Y| = (x %)),
i<]
Define the statistiSgr(#1) = (%13?(%(11)) ngg{(%'(ld)))- Then the componentwise GR-estimate%f solves the

estimating equationSgr(#41) = 0 by solving the equatioréskg{(%(lk)) =0, fork=1,...,d.
We have chosen to use high breakdown weights of the tpym bibj, whereb; is defined by

b = min{L,c/\/(x —v)'V-1(x —v)}“, 2.8)

and(v,V) are the minimum covariance determinant (MCD) estimate®adtion and scatter; see Rousseeuw and Van
Driessen (1999). In our work we setat 1 and the parametest the 95th percentile of the? distribution withp degrees
of freedom.

The univariate GR-estimates were proposed by Sievers JE3fBfurther developed by Naranjo and Hettmansperger
(1994). In Sectior.3, we establish the asymptotic normality of these compomése-GR estimators under Modé.().
Using the fast MCD algorithm of Rousseeuw and Van Driess@&99) for the weights and a simple Gauss-Netwon
algorithm to obtain the estimates, these GR estimates éklgaomputed.

2.4 Equivariance Properties of the TRR and TRGR Estimators

The next theorem establishes the equivariance propefttbe @RR estimator. A similar theorem is true for the TRGR
estimator. Simply replac&trrby B1rcrin the theorem.

Lemma 2.1The estimate#trr= @TRQX, y) satisfy the properties

1.y-scale equivariance. If k is a non zero scalar dnisfa dx 1 constant vector, then

Free(xky+b) = ("B:JJ a ”)
K%11RR
2.regression equivariance. For any G axg matrix
~ f;’
') —
3.x- affine equivariance. For any fixedxpp nonsingular matrix W and a p 1 constant vectocc

BrrRWX+CY) = <BO,TRRNCL§% )%1,TRR> _
LTRR
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3 Example

The data of this example was collected by the Biological i&ms Division of Indian Statistical Institute, Calcuttadan
consists of systolic and diastolic blood pressures of 40Wdarfemales resting at Burrabazar area of Calcutta and thei
ages; see Chakraborty and Chaudhuri (1997). There is a liakionship between blood pressure and age. Also, there
is a positive correlation between systolic and diastolaollpressures. Let denote the systolic blood pressure aad
denote the diastolic blood pressure. ketenote age. Then upon fitting this data set to m@deivithd =2 andp=1
we get the estimates

7 10264(8.08,5.62) 73.35(4.13,3.23)

TRR= | 0.86(0.18,0.21) 0.35(0.10,0.11) )’

and
e (10267(6.18,6.10) 73.35(3.52,3.23)
TRGR= | 0.86(0.17,0.23) 0.35(0.10,0.11) /-

The first number in parenthesis is the estimated standaodseshile the second number is the bootstrap standard error
(based on 10,000 bootstrap replications). The estimagtatd errors based on asymptotic theory and based on the
bootstrap are very similar. Note that tReandGRfits are almost the same.

As a comparison, the estimate obtained by Chakraborty aaddturi (1997) is

Sy, — (10064 744
Chk= 1\ 08 032)°

Also, Chakraborty and Chaudhuri computed the standardsnbtheir estimate using a bootstrap technique. They
obtained as standard errors of the coefficients of aggfandy, the values @0 and 011 respectively. Their results are
quite similar to those of the TRR estimate.

4 Theory

In this section, we obtain the asymptotic distributionshef of the TRR estimato®trrand the TRGR estimata¥rrar
They both depend on the consistency of the transformatidrixxawhich we show first.
The assumptions for the theory are:

Al.The rows of€ are iid with an absolutely continuous joint distributiomfition F and a continuous joint density
function.

A2.The marginal distribution functiof; has a unique median at 0 and a differentiable denfitwith finite Fisher
information.

A3.X andX. are of full column rank.

A4 Huber’s condition holds foX¢(X.X¢)~1XL.

A5.Cov(¢ (Fj(&ij), ¢ (Fy (&) =sjjr <o, forj,j"=1,...,d. Also, S= (sjj) is positive definite.

AB.limp e X" =V, whereX’ = n~11/ X.

A7 Jimp e~ Y2(XIX)Y2 = V12, whereV'/2 is finite positive definite.

A8.Ford>1,E (ﬁ) < .

The major assumption on the design matrix is Huber’'s comdlifiA4), which is the assumption required for LS
asymptotic theory. This assumption and the others in Al-#7tlae same as required for the multivariate R regression
estimators of Davis and McKean (1993). Kby 1 assumption A.8 is needed for the consistency of the tramsftion
matrix A. This holds for many elliptical multivariate distributispincluding the multivariate normal.

4.1 Consistency ok

Consider Model2.1). Recall that our transformation matrikis a function of the LS residua, ..., &, and that it is
the unique solution of equatio.Q). For the true errors of ModeR(1), €1, ..., &n, Tyler (1987) showed that there exists

uniqueA such that
Age'AN 1
E( s | ==,
IAg( ) d
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whereg is then x d matrix of true errors. LeA* solve the equation,

%i(nx:n) (|22|>I:%' -

Then Tyler (1987) showed th§A* — A||[r = 0p(1), where]|.||r denotes the Frobenius norm on matrices. Then, as proved
in Appendix A.2, the same result holds for our estimatee.,

Theorem 4.1Under conditions A4 and A7-ABA — A||r = op(1).

4.2 Asymptotic Normality Q@T RR

Consider Model 2.1). Let A be the transformation matrix based on the LS residuals fodéW1@®.1). As in Section
2, denote the transformed responsegby Ay: fori = 1,...,n. Suppose that a score functigriu) has been specified.
Assume thap (u) is a square integrable, nondecreasing function defind¢@,dn and is standardized so th& (u)du=0
and [ ¢2(u)du= 1. Denote the R scores layi) = ¢(i/(n+ 1)). Define then x d matrix of scored ranks by

As(z—x#1) = [a(R(4V-xB7))]. 4.2)

whereR (zi“) fx;B(”) denotes the rank of!) — X B() among then residuals!’ —x,80), ..., ) —x.B0), i.e.,
component-wise rankings. Then the R-estimator of the toamed variables is

P14 = ArgminD(%1) = Argmintr (Z — X%1) As(Z — X 51). (4.3)

The negative of the gradient Bf(#1) is
L(%1) = X'As(Z — X %1). (4.4)

Then equivalently,%’l,(p solves the equatioh (#1) = 0. Once%’w is obtained, we estimate the vector of intercept

parameterg , i by component-wise location estimations based on the raksidin this paper, we will only consider the
median of the residuals. Hence, fo= 1,2,...,d

B = medicnfy) - X2}, (4.5)

and let Bo,s = (ﬁéli fgédS)) Stacking the intercept estimators and the regressiomatiis together and then

transforming back, we get the TRR estimator Stacking therdefpt estimators and the regression estimators togettier a
then transforming back, we get the TRR estimator

. _ Bg,s A1
BTRR <'@1,¢> (A)~ (4.6)

As theoremt.2shows%1rghas an asymptotic normal distribution. To state the asytigptovariance structure, we need
some additional notation.

If D is anmx n matrix then by ve(D) we mean thennx 1 vector formed by stacking the columnsf Let A be
anm, x np matrix and letB be anmy x ng; thenA® B denote the left direct product @& andB, see Graybill (1983).

=ns"
Define the scale parametgrby Tj’l = _fol¢(u)¢(u, f;)du, where¢ (u, fj) = — i W) Also, lett] = Tl(oy LetT, T*

fi(F (W)
be ad x d diagonal matrices whos&|jdiagonal element i8j, 7] respectively. The assumption dnto have finite Fisher
information ensures thay is finite. LetS= (s;j:) wheres;j;; = Cov(¢ (F;(&j), ¢ (Fj(&j)) and letS" = (sj;,) where
Sjj = Pr(&j < 0,&; <0)+Pr(&j > 0,&; > 0) — Pr(&jj <0,&j: > 0) —Pr(&; >0, <0).

Theorem 4.2Under assumptions A1-A8

Jnved Zrra— B) 5 Nip.1)a (07 (Sll,TRR SlZ,TRR)) 4.7)

S1TRRS22TRR
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where

/

SiiTrRrR=AYT*ST + (VV IV)TST)(A ™)
SitrRR=ATST(A Y @vVv !
SiTRrR=ATST(A Y @Vv-ly
S TRR= AflTST(Afl)/ AV

wherev andV are defined by Assumptions A6 and A7, respectively.

The proof of this theorem is given in the appendix, SecAd® Using the results from Peters and Randles(1990), a
basic contiguity result was established by Davis and McK@&&93). This was used to obtain the asymptotic properties
of the gradient of the dispersion function for the true ar@alalistributions of the errors. This lead to asymptotiedrity
and quadraticity results from which the proof of Theorérmfollows. Also it induces the following influence function of

ABTRRAS:
Corollary 4.1.The influence function c@l’TRRis given by

Q(%0,Yo, B17rRR) = VX0 ($ (FL(AYp)1) -+ ¢ (Fa(AYp)a)) T (ALY (4.8)

Note that, giverd, the influence function of the TRR estimate is bounded inytepace but not in the-space.

4.3 Asymptotic Normality O@TRGR

Define the weight matriV = (Wij )nxn as

Issibi i=].
ThenW is symmetric and its rows sum to zero. In addition to condg&i®d1-A4 and A6—A7 needed for the asymptotic
theory of theR-estimate we need to assume the following
BLlimp e iX'WX =C,C > 0.

B2limp e tX'W2X =E, E > 0.
B3.WX satisfies Huber’s condition.

W”{%bu ]

Asymptotic properties Q@TRGRfoIIOW from the corresponding properties of the componésm/estimate@GR. Let

S= (sjjr) wheres;j;; = Cov(2F; (Y(l”), 2Fj/(Y(1j/))). Also, letS", T andT* be as defined in Sectioh2 For the TRGR
estimate, we first establish the asymptotic distributiothefcomponent-wise GR estimate.

Theorem 4.3.

~ ~/
\/ﬁveC(BO,GR —Bo #16r— «%7/1)

7N 0 T*ST*+3(XCECX)TST -TST®3¥CEC! (4.9)
(p+1)d | = —TST®3CEC X TST®3C EC! ' ‘
The asymptotic distribution of the TRGR estimator is giverthie next theorem.
Theorem 4.4,
JAved Zrron— B) 7N af0 S11.TRGRS12TRGR (4.10)
(P+1d{ =\ S51 TRGR S22 TRGR
where

Siitrer=A"YT*ST* +3(XCIECIX)TST) (A1)
Si2trRer= —~A'TST(A Y @3¥C1EC™?
S1TrRerR= —AITST(A 1) ®@3C'EC X
SotrRer=AITST(A™ 'Y ®3C'EC™?
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The proof of this theorem proceeds similar to that of the gaptic distribution of the TRR estimator. The proof is
given in Appendix??. Part of the proof results in an asymptoic representatich@TRGR estimator which leads to its
influence function.

Corollary 4.2.
Vved Z1 trer— #1) 5 Npa(0,3C ' EC 1@ A ITST(AL)). (4.11)

The next corollary shows th@l,TRGRhas a bounded influence in botrspace ang-space.

Corollary 4.3.The influence function tﬁ’u RGRIS

IF (Xo0.Yo,#17RGR) = V12C / (X— Xo) M(X)

d d d
< (RS — ol —x2Y) ~ 1 - Ry - al) —xp#?) - 1)
x T(ALY.

Given the matrixA, with a proper choice of weights, the influence function & THRGR estimator is bounded in both
they- and thex-spaces.

5 Simulations

In our simulation study a comparison is made between th@padnce O@TRR and%’TRGRand the other proceduresin
the literature. In this study we used mod2l1) with d = 2 andp = 1. That is we used the multivariate linear model

Yi1 Bo1 Bi1 &i1
= 1 . .1
(Yiz) (Boz) R ([512) * (&2) ®-1)
The parameter matri®g was set to zero. The regressgrsvere generated as a random sample i@, 1) and the
independent errors from elliptically symmetric distrilouis, i.e. distributions having a density proportional to

(detz)~Y2h(e'z7e). (5.2)

From this class of distributions we included in the study bihariate normal, bivariate contaminated normal, bivaria
t with 3 degrees of freedom and bivariate Cauchy. The study @sered the case where the errors have the elliptical
bivariate Laplace distribution. This distribution has #pderical density

h(e'e) = %T exp—VEE). (5.3)

s- (; ‘;) (5.4)

where we chose values fprbetween 00 and 095.

We considered the LS, LAD, R (Wilcoxon scores), TRR (Wilcoxecores), and TRGR estimates. The TRR and
TRGR estimates were computed as described in the algorittfBeaion 2. The Wicoxon estimates were computed by
the RGLM algorithm (see Hettmansperger and McKean, (2CGdrid,the LAD estimate was computed by the algorithm
of Armstrong and Kung (1978).

In this study%trrandZBrrcrWere compared to the LS, LAD and the corresponding compansmestimate. The
finite sample efficiencies were computed as the fourth rotiefatios of the generalized variances of the estimates. Se
Bickel 1964. The study was run for 3000 Monte Carlo replmagi and for a sample size= 30. A similar simulation
study was conducted by Chakraborty (1997) and Oja (2002).

From our results, tables 1-8, we observe that the perforenahthe componentwise estimators decreases as the
correlation among the response variables increases. Fiigd regardless of the distribution of the errors. In castir
relatively, the TRR and the TRGR estimators are increagingire efficient than the component-wise estimatorp as
increases across all distributions. Note that the TRR estimis more efficient than the LAD estimator for all the
bivariate laplace distributions. HoweverZtrr performance is better thanZtrgr because the matrix

Further, we used the covariance matrix
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(X'WX)~IX'W2X (X'WX)~1 — (X'X)~1 is positive semi-definite; see Hettmansperger and McKe@a1(R The LS
estimator performs best for multivariate normal errorswieeer, for every other distribution the TRR estimator was
more efficient than the LS estimator over all situations. 3&me is true for the TRGR estimator.

Compared to Chakraborty’s result our estimate has a higfieieacy for heavy tailed distributions and has almost
similar efficiency as Oja’s estimate for these distribusion

In order to study the effect of the initial estimate on thepgmeed estimators we ran the same simulation study but
using robust initial estimates like MCD and WTLMCD. The riksshowed that the TRR and the TRGR were not affected
by the LS initial estimation step except when the errors t@aechy distribution.

Table 1: 1 rrestimated relative efficiencies under bivariate normairsrr

P | ARE(ZTRrRALS) | ARE(ZTRR%ALAD) | ARE(DTRRZR)
0.00 0.809 1.215 0.986
0.20 0.798 1.240 1.000
0.50 0.791 1.330 1.031
0.75 0.799 1.577 1.132
0.80 0.804 1.684 1.176
0.85 0.799 1.758 1.227
0.90 0.791 1.985 1.290
0.95 0.805 2.377 1.431

Table 2: Ztrgrestimated relative efficiencies under bivariate normairsrr

P | ARE(#TrerR%Ls) | ARE(ZTRGR%LAD) | ARE(#TRGRZGR)
0.00 0.787 1.181 0.984
0.20 0.770 1.197 0.999
0.50 0.769 1.293 1.040
0.75 0.770 1.520 1.140
0.80 0.776 1.625 1.188
0.85 0.781 1.719 1.251
0.90 0.773 1.940 1.310
0.95 0.782 2.310 1.452

Table 3: g@TRRestimated relative efficiencies under bivariate laplacersr

p | ARE(ZTRrRZLs) | ARE(#TRRALAD) | ARE(ZTRRZR)
0.00 1.119 1.104 1.001
0.20 1.117 1.104 1.005
0.50 1.114 1.178 1.050
0.75 1.127 1.413 1.180
0.80 1.105 1.459 1.167
0.85 1.109 1.584 1.235
0.90 1.103 1.750 1.300
0.95 1.105 2.084 1.455

Table 4: #1Rrcrestimated relative efficiencies under bivariate laplacersr

p | ARE(#TrGRALS) | ARE(#TRGRZALAD) | ARE(ZTRGRZGR)
0.00 1.090 1.075 1.000
0.20 1.088 1.075 1.010
0.50 1.071 1.132 1.054
0.75 1.095 1.373 1.185
0.80 1.073 1.417 1.178
0.85 1.075 1.536 1.247
0.90 1.071 1.699 1.320
0.95 1.079 2.035 1.479
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Table 5: @T rrestimated relative efficiencies under bivarigt®) errors

p | ARE(#BTRRALs) | ARE(BTRRALAD) | ARE(ATRRZR)
0.00 1.676 1.082 0.993
0.20 1.677 1.089 0.992
0.50 1.700 1.133 1.007
0.75 1.757 1.367 1.147
0.80 1.766 1.441 1.178
0.85 1.631 1.592 1.242
0.90 1.798 1.792 1.332
0.95 1.899 2.117 1.481

Table 6: g@TRGRestimated relative efficiencies under bivarig®) errors

P | ARE(#TRGRALS) | ARE(#TRGRZLAD) | ARE(BTRGRHGR)
0.00 1.627 1.050 0.991
0.20 1.628 1.058 0.989
0.50 1.661 1.108 1.013
0.75 1.701 1.323 1.151
0.80 1.697 1.384 1.176
0.85 1.573 1.535 1.257
0.90 1.741 1.735 1.337
0.95 1.842 2.055 1.494

Table 7: #1rrestimated relative efficiencies under bivariate cauchgrsrr

p | ARE(#TRRALs) | ARE(BTRRHALAD) | ARE(ATRRZR)
0.00 1941.31 0.741 0.842
0.20 1450.32 0.659 0.752
0.50 940.462 0.606 0.668
0.75 2233.78 0.939 1.019
0.80 1935.99 0.917 0.946
0.85 1136.22 1.092 1.115
0.90 1266.34 1.208 1.207
0.95 2378.34 1.435 1.272

Table 8: Ztrcrestimated relative efficiencies under bivariate cauchgrsrr

P | ARE(#TRGRALS) | ARE(#TRGRZLAD) | ARE(BTRGRHGR)
0.00 1903.08 0.726 0.840
0.20 1451.27 0.659 0.779
0.50 1065.54 0.686 0.773
0.75 2221.51 0.934 1.026
0.80 1937.74 0.918 0.959
0.85 1132.01 1.088 1.112
0.90 1239.29 1.182 1.206
0.95 2339.96 1.412 1.300
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Table 9: Finite Sample Efficiencies of TRR Relative to LAD
Initial Estimator
Distribution | rho LS MCD | WTLMCD
Normal 0.75| 1.564 | 1.538 1.556
0.80 | 1.620| 1.601 1.604
0.85| 1.764 | 1.763 1.748
0.90 | 1.962| 1.923 1.932
0.95| 2.306 | 2.283 2.2890
Laplace | 0.75| 1.521| 1.485 1.509
0.80 | 1.572| 1.556 1.560
0.85| 1.725| 1.708 1.708
0.90 | 1.905| 1.865 1.870
0.95| 2.253| 2.234 2.230
t3 0.75 | 1.364 | 1.369 1.380
0.80 | 1.485| 1.482 1.486
0.85| 1.571| 1.570 1.578
0.90 | 1.798 | 1.824 1.821
0.95| 2.110| 2.140 2.122
Cauchy 0.75| 0.972| 1.172 1.183
0.80| 1.00 | 1.223 1.228
0.85| 1.157| 1.332 1.340
0.90 | 1.249| 1.470 1.472
0.95| 1.516| 1.898 1.905

Table 10: Finite Sample Efficiencies of TRGR Relative to LAD
Initial Estimator
Distribution | rho LS MCD | WTLMCD
Normal 0.75| 1.521| 1.485 1.509
0.80 | 1.572| 1.556 1.560
0.85| 1.725| 1.708 1.708
0.90 | 1.905| 1.865 1.870
0.95| 2.253| 2.234 2.230
Laplace | 0.75| 1.336| 1.335 1.328
0.80 | 1.461| 1.442 1.438
0.85| 1.524| 1.511 1.498
0.90 | 1.706 | 1.702 1.693
0.95 | 2.043| 2.027 2.034
t3 0.75] 1.314| 1.311 1.325
0.80 | 1.438| 1.430 1.436
0.85| 1.532| 1.526 1.531
0.90 | 1.731| 1.754 1.756
0.95 | 2.038| 2.059 2.053
Cauchy 0.75| 0.938| 1.138 1.141
0.80| 0.986| 1.178 1.185
0.85| 1.120| 1.328 1.342
0.90 | 1.246| 1.458 1.465
0.95| 1.522| 1.875 1.882

6 Conclusion

In this article, we have proposed estimators for multivarlmear models based on ranks and generalized ranks. They
are transformation and retransformation type estimatdre.matrix of responses is first transformed using Tyler@8{)
multivariate scatter matrix, based on residuals. Thendh&-based estimates of Davis and McKean (1993) are obtained
on the transformed data. These are then retransformed aindbe final estimates. Chakraborty and Chauduri’'s (1997)
transformed-retransformed estimates depend on a presgdset of the data. Our estimates, however, use all the da
in the transformation step, no preselection is necessaynae introduced both a highly efficient estimator (TRR)akhi
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bounds influence in the response space and a bounded inflestimator (TRGR) which bounds influence in both the
response and factor spaces.

We developed the asymptotic distribution theory for both TRR and the TRGR estimators. The theory results in
asymptotic variances and covariances for which consisténist estimators are available. The asymptotic theorgidgp
on the consistency of Tyler's (1987) scatter matrix basetesitduals which we also proved.

We presented the results of a Monte Carlo study over a vasfetyror distributions and correlation structures. These
studies confirmed previous results of the slippage of effjeof componentwise robust estimators as correlation
increases. The TRR estimator showed high efficiency ovehalkituations. It was more efficient than the LS estimates
over all situations other than the multivariate normal. &#&swmuch more efficient for the heavy tailed error distribusgio
including an elliptical multivariate Cauchy. It was mordi@ént than the LAD estimator over all situations includiag
multivariate Laplace except for the multivariate Cauchywiver, even here it was more efficient at the high corretatio
situations. The TRGR estimator although less efficient thanTRR estimator still displayed good empirical efficiersci
in the study.

We presented the results of several examples showing tle&qality of our estimators. We confirmed the consistent
estimates of the asymptotic standard errors of the estimatith bootstrap (using 3000 replications) estimates ef th
variance-covariance matrices. The study also showedthbat$ initial estimation step has a little effect on the effiegy
of the estimators.

In summary, we recommend the use of the TRR and TRGR estim&domultivariate linear models. The TRR
estimator is a highly efficient estimator while the TRGRmstior is a bonded influence estimator. They are quickly and
efficiently computed using R/SPLUS routines or standarttdarroutines. There is only one concern about the proposed
estimates which is they are not fully affine equivariant &ytlack rotation equivariance.

Appendix

A.1 ComputingA

The following steps gives the computational algorithmAaon the LS residualg; s.

18 5iLS)<§iLs >/
== — — Al.l
=23 (o) (725 (A1)
and formAg = Chol(%l) , where CholM) denotes the upper triangular Cholesky factorization opibetive definite
matrix M, divided by the upper-left element of that upper triangutatrix.

Step Il.At the t" iteration, form o A
Adgt =A1A2 Ao, (A1.2)

n A B A !
g1 Z( AdtfiLs ) ( AariLs ) . (A.1.3)
NS \[Adg€isl/ \ [|Adgi&iLs||
StepllLIf [|§ — él | is sufficiently small, then stop and s&t= Ag. If not, then computé, = Chol(§ ) and go back to
step l.

Stepl.Compute

and

A.2 Consistency dk

In this section of the appendix we obtain the proof of Theofehwhich shows that the matri& based on LS residuals
is a consistent estimator of the matAxdefined in expressiom(1).
Before we establish the consistency/fve need to introduce the following notation. M} = X’X where in the

following contextX = Xc. Also, letx, = erl/zxi, PB1in= Wnl/z%’l, Yy, =V; anden; = &;. Now, recall model2.1)
Y, =Bo+#Xi+e&, i=1..,n
For simplicity we may assume wlog th@ = 0. Then in terms of the new notation we can write this model as

Yni = B p¥ni+Eni, i=1,...,n
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Let %In,LS be the LS estimate o#1 and@LLs be the estimate of41. Assuming the true parametef; = 0, we can
write the residualﬁni’Ls fori=1,...,nas

EniLs=Yni— YniLs
= PB4 pXni + Eni — (B1n1s) Xni
= &ni — (BinLs) Xni-

Further letd); = max<j<n||Xnil|, then by A4

. . . ~1
lim dj = lim maxx,Xni = lim maxx(X'X) "% = 0.
n—o0 n—oo 1<i<n n—oo 1<i<n

Lemma A.2.1.Under A7,
PB1nrs=Op(1).

We need the following definitions on the norm of matrices;Ge&b et al (1983).

Definition A.2.1. For anm x n matrix C define

mon 1/2
ICllF = cf
220

[[Cu]]
Jull

1.The Frobenius norm &

2.The 2-norm ofZ

|C[| = [|Cll2 = sup
u£0

where|ju|| = (U2 + -+ u3)Y/2.

The 2-norm and Frobenius norms are related through the a&iéguiC|| < ||C||e. Further, recall the inequality
IICD||r < |IC||r||D||e. Using these results and some linear algebra, the folloleimgna can be proved.

Lemma A.2.2.Foranya,bc 09, b+#0,a# banda L (b—a)

H(b—a)(b—a)’_ bb’ 4@
|Ib—al|2 [bl|2{|z = "[|b]l"
Proof of Theorem4.1Let ) A i
1 AgniLs ) ( AEniLs )'
A)=1 - - A2.4
S ”iZ\(|A5ni,le| (| A&niLs| ( )
and ) /
1 AE; > ( AE; )
A) =~ A.2.5
s =13 (ae) (ne (A25)

be as defined by2(3 when the average is taken over the LS residuals and the frois erespectively. Tyler proved the
consistency oA when it is computed on a random sample. For the argument girbisf to be applied to our case in
which we computé\ on the LS residuals we only need to show that

[1Sh(Adt) — S(Adt)[[F = 0p(1).

In his paper, Tyler mentioned that application of his Thems .1 and 2.2 to a continuous population insures the existan
of a unique matriXA such thaty, of the algorithm converges thandS(A) = 11. Thus,vn > 0 andi = 1,...,nwe have
for large t

[ AdtEnill > [[Agnil| —n-

Sinced;; — 0, we can choose a sequence of positive constaptsuch that

lim vy =oco, lim vad; =0. (A.2.6)
n—oo n—oo
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Recall thati s = &ni— (%’in,Ls)'Xni and note that the fitted value@’{,n,LS)’xm are orthogonal to the residuas. Now
using the result of the last lemma we have

12 AdtniLsEni L < AdtEnigniAy
ni; | Adt&ni,Ls|? i; [| Adt&nil|?
PR AdiEnisEniisPa  Adini€nAly
- ni; | Adt&ni,Lsl|? (| Adt&nil|?

4 2 ||Agt(#1nLs) il
SR [Aasal

[[Sn(Adt) — S(Aat)[|[F =

F

F

N *l n 1
< 4||Adt|||: ”‘%)LH,LSHFdnH Z[ HAdteniH
i=
< a( A+ vt S —
< AIAle +mdavng > Taew =1

12 1
* 75 > —_ -
A+ (1B sl =05 S e

wherel (.) denotes the indicator function. Now lgt— 0, sinceE(||Ag||~!) < « andd;v, — 0, from Strong Law of
Large Numbers the first term converges to 0 in probabilitg $ame is true for the second term beca#gg | s = Op(1),
d; — 0 andE(||Ag|| 1) < oo.

A.3 Asymptotic Normality oBrRR
Recall that by 2.1), the multivariate linear model can be written as
Y = 1,85+ X%, + E. (A.3.7)

For convenience, we introduce the following transformaid Model (A.3.7). Let P; be the projection matrix for the
space spanned iy, 1l et |, be then x nidentity matrix. Consider the following notation

N1.Xc = (In—P1)X.

N2.C = X¢(XEXe) Y2,

N3.A = (XLXc)Y2%;.

N4.a) = Bo+n 11 X(XLXc) YA,

Under this notation we can express mode3(7) as
Y =1,ay,+CA+ & (A.3.8)

To obtain the asymptotic distribution oFrrr We can assume without loss of generality that the true regmes
parameters are zero; i.§8, = 0 and that#; = 0. The following theorem due to Davis and McKean (1993) gives t

asymptotic distribution ofZr.

Theorem A.3.1.Under assumption81-A7

=~ =~/ g T*ST*+VvV - Iy TSToVvV1
\/ﬁveC[BO,sv <%1,(])] — N(p+1)d (05 ( TSI- ®V71V TSI- ®V,l . (A39)

Proof of Theorem 4.2 Since the transformed-retransformed estim%ﬁem: @R(Afl)’ we have

ved Zrrr) = (AyL @ 1p1) ved Zg).

Let
N —X (NXLX¢)~1/2 .
Op (NXLXc) /2
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It follows from Theorem A.3.1 that

cov(\/ﬁvecgz/TRR)
= (ATt @ 1pya)cov(vvecZg) (Agt) @ 1py1)
T*S'T*
) TST A
— (A @ 1pin) (g M) (la@ M) (A2 @ 1psa)
TST
T*S'T*
N TST -
— (@M (A @ 1p1) ) (A @ 1ps1)(la®M™)
TST
Ang*S*T*(AEl)/
AflTST AV
= (la@M") & N i (la@M™)
AITST (ALY

As A, -5 Awe obtain the asymptotic distribution ehrrrunder the assumptio® = 0 as stated in the theorem.

A.4 Asymptotic Normality Q@T RGR

Lemma A.4.1.Let Sgr(0) = n~%/2SgR(0). Further, let

SR (0= (s 0) - 89 (0) (A4.10)

n 2Ry (YY) - 2Rg(Y()

o /
= EX'W

2Fy(YR) - 2Rg(YR)

ThenSgr(0) — Ser(0) > 0.
Proof. See Hettmansperger and McKean (2011).

Theorem A.4.1.Under assumptions Al, B1-B3 and assuming tiat= 0,
Ser(0) % Npg(0,E.S)

ProofBy lemma A.4.1 we only need to show th8r"(0) EA Npd(0,E,S). Let M be anyp x d matrix. Then by

Theorem 19.15 of Arnold (1981) we need to show thatV18sr"(0) EA N1 (0,tr M'EMS). Now, let
Frn=(F(Y1) ... F(Yn)) where, fori =1,...,n,

F(Y) = (2R(Y™) -1, .., 2Rg(Y[¥) ~ 1)

Then we hav&[F(Y;)] = 0 and CoyF(Y;)) = S Finally, letB, = (1//N)WnXyM. Then

= 1
tl’ M ,%R* (0) = tl’ ﬁ M ,X,WnFn

=trBFn,
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and
/ 1 Ing !
tr Bn$n = tr ﬁWanM S\/| Xan
1
:tr(MSM’)(ﬁx’nWﬁxn)
—tr (MSM')E < o.

Also, we have

by conditions B2 and B3. Thus by theorem 19.16 of Arnold (984 have tB/,F EA N1(0,tr MSM’E). Therefore, again
by theorem 19.15 of ArnoldSgr"(0) = Bj,Fn A Npd(0,E,S).

The approximating quadratics for=1,...,d are given by
: n ) . - .
Q) = 5 fo A xowix 7)) - ' S0)+ D)
The vector# that minimizesQ(#\) is @%R: Jir" (X'WX)~181L(0). Let 1 gr = (@(ll)GR @%R). Then
B1er=(V3/N)(X'WX)1Sr(0)T.

Theorem A.4.2
V%1 6r 5 Npg(0,3CTECL, TST).

Proof. The result follows from the fact that
- 1 -
VNAB1r= \/§(ﬁ X'WX) *Scr(0)T
2 Npg(0,3C1ECL,TST)
and the resultﬁ(@l,GR— «ggl,GR) L 0, proved in Hettmansperger and McKean (2011).

To estimate the intercept vectap, @y/gg for j = 1,...,d, is taken to be the median of the residuals of {Aeplumn,
i. e.

(i)
(] - ~ ()
a(()J,gaR = ggﬂ(Yi(” — XciB1GR)-
Forj=1,...,dlet
- - ~ (i) d - - ~ (i)
Si(YD — a1y~ Xc B gr) = _ngrw?” —ay) — % BreR)-

Then&(%R solves
s(YD - a1, - x. 250 = 0.
Lemma A.4.2.If assumptions A1, A2 and A3 hold add = (sgn(&jj)) then for alle > 0,

Aiﬂmer(||nl/266,GRT* —n Y2 07| > ¢)=0.
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Prooflt is enough to show foralj = 1,...,d that
lim Pr(nt2a et —n Y2070 > g) =0,
Note that
1/n¢.*(i) — Sl(y(i))
- (i)
= 3 sartvi’)
1=

Now
Pr(InY/2@y 5t —n 25, (YD) > ¢)
(i)

< Pr(InY2G ety - n V28 (Y D) — a1, — X% 6R)

28 (Y0) X By el > £/3)
+ P28,V D) - Xo ) —n Y281 (Y D) > £/3)
P 28y (Y D) a1, Xe By 4| > £/3)
The first and second terms go to 0 by theorem 3.5.9 and lemn . blettmansperger and McKean (2011).
It follows from theorem 18 of Lehman (1975) tr(% 1,0°) 4 Ng(0,S"). Thus,\/ﬁag,GRg Ng(0, T*S'T*).

Theorem A.4.3

JR 9 T*ST* 0
\/ﬁvec(aoyGR Q@’LGR) A Nips1d <o,< p— ®3clEcl)> . (A.4.11)

Proof of Theorem 4.3 The result is obtained by noting that
g\ 1-X\ (ynaq '
Vhvee| [ Pocr vec<<0_| > < AO’GR>)
B1or p ) \VNAicRr
I 1-x\
:vec(\/ﬁ (Clo,GR %’ll,GR) (0 Ip ) )
1-X ~ >

= (|d® (0 o )) Vec(\/ﬁaO,GR \/ﬁ%/l,GR) :

Now the result follows from theorem A.4.3.

Proof of Theorem4.4 Similar to the proof of Theorem.2 The affine invariance of the weights, the consisteno§( of
and Theorerd.3gives the above asymptotic distribution@f rgr
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