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Abstract: The suggested 3D boundary element method (BEM) tackles the rotation effect on thermal stresses of anisotropic 
materials by employing the exact transformation technique, which entails analytically translating the extra domain integral 
to the boundary without using internal treatments.  To account for thermoelastic effects in anisotropic materials, the BEM 
analysis was implemented by re-expressing the fundamental solutions and their derivatives as double-Fourier-series. This 
analytical transformation approach has completely restored the BEM's distinctive notion that just the boundary must be 
discretized. The revised 3D boundary integral equation (BIE) is implemented and utilized to analyze such issues. 
Furthermore, the studies have shown that the BEM technique is highly effective in producing accurate results for thermal 
stress problems in anisotropic materials.  

Keywords: Three-dimensional, Boundary element method, Fundamental solutions, rotation; Thermal stresses; Anisotropic 
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1. Introduction  

Thermal stresses develop in the body due to non-uniform 
temperature distribution. Under a non-uniform temperature 
distribution, the body attempts to distort until the 
temperature distribution is uniform throughout the body. 
The distortion of the body causes forces known as thermal 
stresses. Thermal strains are typically avoided in the 
construction of building structures. However, in some 
constructions, thermal stresses must be induced to improve 
building performance. Thermal stresses are categorized as: 
1) Homogeneous thermal stresses - When a body's 
temperature distribution is independent of time, the body 
can reach an equilibrium condition, resulting in 
homogeneous thermal strains. This sort of thermal stress 
appears in a variety of fields. 2) Non-homogeneous thermal 
stresses - When the temperature distribution in a body 
varies with time, the body cannot achieve equilibrium, and 
the resulting thermal strains are referred to as non-
homogeneous thermal stresses. This sort of thermal stress 
occurs in numerous fields [1-4]. 

Thermal stresses in homogeneous isotropic solids were 
discovered around 1820 and have been studied since 1830, 
when study on the resistance of metal bars to unfired steam 
pipes began. Many treatises contain analytical and 
experimental evidence. Thermal stresses and related issues 
can arise in a variety of common circumstances, including 
solids' resistance to high temperatures, building structures, 
the mechanical behavior of machine parts, and civil 
engineering. The study of thermal stresses is interesting for 
both theoretical and practical reasons: it provides a basic 
example of a mechanical problem and demonstrates how 

stresses vary with temperature. Restrictions imposed on a 
solid body are known to cause thermal stresses that 
effectively limit the solid's motion. A remarkable number 
of recent investigations provide conclusions on this and 
other relevant topics, such as the performance and 
reliability of thermal barrier coatings against high-
temperature fatigue and corrosion. [5-8]. 

Thermal stresses in anisotropic bodies refer to strains 
caused by asymmetric temperature changes in distinct 
places. Initially, theoretical calculations were performed to 
solve distinct temperature and stress-strain concerns. At the 
body's boundary, the normal components of the stress 
tensor are entirely thermal in nature. It also revealed the 
stress nature of thermal stresses, which are completely 
independent of elastic material properties when determined 
by solving the thermal problem or applying Fourier's 
theorem if the temperature at the unknown points inside the 
body differs from the previously obtained temperature. 
Thermal stresses in an isotropic elastic body are hydrostatic 
when computing the temperature field inside the body, and 
the temperature factor somewhat affects the resulting stress 
phase for the body; nonetheless, this has no effect on their 
real levels and distribution in an isotropic body. [9-11]. 

Anisotropic thermal expansion is a common companion of 
anisotropy in elastic characteristics. Most substances are 
polyatomic, or made of many phases, and their properties 
vary along different axes and orientations. These features 
are often characterized using directionally dependent 
moduli and thermal expansion coefficients. In addition to 
being an example of anisotropy, applying temperature or 
thermal gradients to anisotropic substances causes thermal 
stress. Many researchers have calculated and visualized 
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how these thermal stresses arise, particularly in materials 
having anisotropic coefficient tensors. However, most of 
this research has previously been qualitative in character. 
Many of the quantitative evaluations were limited to 
uniaxial instances or highly constrained geometries. A few 
studies have investigated the behavior using only one or 
two of the many parameters that describe the problem. 
Furthermore, the few calculations for more generic 
instances were all presented as severely discontinuous and 
difficult-to-visualize maps [12-14]. The classical linear 
theory of thermoelasticity states that the equilibrium 
equations of motion are uncoupled, and the function of 
thermal expansion is modified solely by temperature 
changes in a body. However, this property of linear theory 
fails when the thermal deformation of the body is 
considerable. As a result, the linear theory is only 
applicable to a narrow temperature range. However, in 
many engineering issues, considerable and non-uniform 
temperature variations might be predicted due to the 
presence of heating sources, external temperature gradients, 
or other factors in diverse machine components. These heat 
loads create deformities and internal tensions in the 
organism. The formulation of thermal stresses is difficult, 
first for determining the stresses caused by temperature 
gradients across the body, and second for the possibility of 
substantial deformations [15-17]. 

The boundary element method (BEM), also known as the 
method of boundary integral equations (BIE), is a modern 
numerical technique for solving field problems governed by 
a second-order partial differential equation, such as 
Laplace's or Helmholtz's equations for electromagnetic, 
heat conduction, and acoustic fields, and the elastic or 
linearized dynamic equation for stress or elastic wave 
propagation fields. That is, BEM can accomplish some jobs 
that are currently carried out using finite element, finite 
difference, method of moments, and boundary grid 
generation techniques [18, 19]. The fundamental advantage 
of BEM is that all dependent variables of importance, such 
as potential, stress, velocity, and displacement, are 
expressed in terms of integral equations of the same order 
as the problem's dimensions. This means that potential 
problems in two dimensions produce first-kind integral 
equations, but stress/displacement problems in three 
dimensions produce second-kind and hyper-singular 
integral equations, respectively. This key characteristic of 
BEM allows for a significant reduction in the number of 
elements or grid points necessary to achieve pre-specified 
accuracy, resulting in high-order polynomial accuracy and 
orders of magnitude reductions in memory and 
computational time [20-22]. 

To describe BEM theory, essential notions from the theory 
of a boundary value problem regulated by a linear, second-
order partial differential equation are presented. Following 
that, the most critical phases in developing the BEM theory 
for a specific boundary value problem are discussed. 
Starting with the governing partial differential equation 

subject to the homogeneous boundary condition, the issue 
can be solved explicitly if the right-hand side of the 
equation, or source term, is already known. If the source 
term is unknown, the problem is simplified to a boundary 
integral equation [23, 24].  In the case of an unbounded 
domain, the Green's function of the infinite problem serves 
as the kernel of the integral. This means that Green’s 
function solves the problem at all field locations of interest 
because of its pointwise product with the unknown source 
term. BIE's well-posedness property allows the solution to 
the original homogeneous initial-boundary value problem 
to be easily discovered if it is evaluated and solved 
immediately on the boundary [25-27]. 

In this paper, we develop a 3D BEM model to deal with 
thermoelastic phenomena and examine the influence of 
rotation on thermal stresses of anisotropic materials. The 
proposed 3D BEM used a technique that re-expressed the 
fundamental solutions into the forms of double Fourier 
series. 

2 Formulation of the problem 

The governing equations for thermal stresses in anisotropic 
materials are: 
!"!"
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where 

𝜎$) = 𝐶$)*+(𝜀*+ − 𝛼*+∆𝑇)	, 				(𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3)		       (3) 

𝐹$ = 𝜌𝜔'𝐱$ − 𝜌           (4) 

Based on the following coordinate transformation [28] 

𝐱′, = 𝔽𝐱,		           (5) 

with the transformation matrix 

𝔽 = =
√Δ/𝕂%% 0 0
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The heat conduction equation (2) in the transformed 
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coordinate system can be expressed as 

𝑇,$5$5 = 0         (12) 

3 BEM implementation for anisotropic 
thermoelasticity 

The boundary integral equation for the considered problem 
is: 

𝐶$)(ℙ)𝕦$(ℙ) + ∫  6  𝕦$(ℚ)𝕋$)
∗ (ℙ,ℚ)𝑑𝐶 =

∫  6   𝕥$ 	(ℚ)𝕌$)
∗ (ℙ,ℚ)𝑑𝐶 + ∫  8  𝐹$(𝕢)𝕌$)

∗ (ℙ, 𝕢)𝑑R		       (13) 

In the governing equations thermal, rotation and inertia 
impacts are treated as body forces. Thus, Eq. (13) can be 
written as [2]: 

𝐶$)(ℙ)𝕦$(ℙ) + O 
6
 𝕦$(𝑄)𝕋$)∗ (ℙ, 𝑄)𝑑𝑆

= O 
6
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+O 
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−O 
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where 

𝜗$* = 𝐶$)*+𝛼)+ 																																																																											(15) 

Based on Ting and Lee [25], the displacement fundamental 
solution is 

𝕌∗(𝐱) =
1
4𝜋r

1
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𝑞>Γ(;)																																																	(16) 

where 
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ΓAB
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(;) , 	(𝑖, 𝑗

= 1,2,3)																																																			(19) 
𝜅$* = 𝐶$)*DA)AD																																																																						(20) 

𝐀 = (−sin	 𝜃′, cos	 𝜃′, 0)																																																						(21)  

𝜃′ = tan/% w
𝒙'
𝒙%
y , 𝜃′ ∈ [0,2𝜋]																																					(22) 

The Stroh's eigenvalues are 

𝑝E = 𝑎E + i𝐵E, 𝐵E > 0, (ℎ = 1,2,3)																																		(23) 

In Eq. (19), the 4th-order tensor 𝚪(>) is given by 

Γ𝕔𝕕𝕖𝕗
(:) = ℬ𝕔𝕕ℬ𝕖𝕗,																																																																							(24) 

Γ𝕔𝕕𝕖𝕗
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Γ𝕔𝕕𝕖𝕗
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Γ𝕔𝕕𝕖𝕗
(=) =ℳ𝕔𝕕ℳ𝕖𝕗.																																																																			(28) 

where 

ℬ$* = 𝐶$)*DA)AD,																																																																					(29) 

ℱ$* = g𝐶$)*DB)ADh + g𝐶$)*DB)ADh
& ,																																				(30) 

ℳ$* 	= 𝐶$)*DB)BD	.																																																																		(31) 

In Eqs. (30) and (31), B is defined by 

B = (cos𝜙′ cos 𝜃′ , cos𝜙′ sin 𝜃′ , − sin𝜙′)																						(32) 

where 

𝜙′ = cos/%	(𝑥(/𝑟′),  

�−
𝜋
2 ≤ 𝜙′ ≤

𝜋
2�																																																																						(33) 

Green's function in spherical coordinates is 

𝕌∗(𝑟′, 𝜃′, 𝜙′) =
G(𝜃′, 𝜙′)
4π𝑟′ 																																																						(34) 

which can be reexpressed as follows [3]: 

GJE(𝜃′, 𝜙′) = [  
K

L</K
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K

M</K
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where 
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1
4π'O  

P
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The first order derivatives of (34) are 

𝕌JE,Q∗ =
∂𝕌JE∗

∂𝑟′
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+
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+
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																					(37) 

Therefore, from (32) and (33), we obtain the following 
forms [28]: 

𝕌JE,Q∗ =
1

4π𝑟5'
[  
K

L</K
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(L,M)eASLN'@MO'T 

�
− cos 𝜃5(sin𝜙5 − i	B cos𝜙5) − i	A sin 𝜃5

sin𝜙5 � 	for	𝑚

= 1,																																																											(38) 
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𝕌JE,Q∗ =
1

4π𝑟5'
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L</K
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1
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Consequentially, the kernel 𝕋AB∗  is computed by 

𝕋$)∗ = (σ$*∗ 𝑛̂*)B =
C$*LM𝑛′Vg𝕌L),M∗ +𝕌M),L∗ h

2 																				(41) 

Our task now is to treat the following domain integral in 
Eq. (14) [3] 

𝐷) = −O 
9
𝜗$*𝑇,*𝕌AB∗𝑑R																																																											(42) 

The domain integral must be redefined in the transferred 
domain as 

𝐷) = −O  
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∗ 𝑑R′																																																	(43) 

where 
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Now, the domain integral can be transformed to the 
boundary 𝑆′  as 

𝐷) = O  
W5
𝛤$5*5�g𝑇𝕎$5)5*5,>5

∗ −𝕎$5)5*5,>5
∗ 𝑇,>5h𝕓′>5

− 𝑇𝑈$5)5∗ 𝕓*5¡𝑑𝑆′																																						(45) 

where 𝕎$5)5*5
∗  is a new kernel function, satisfying 

𝑊$5)5*5,>5>5
∗ = 𝑈$5)5,*5∗ 																																																															(46) 

in which 

𝑈J5E5∗ =
𝐺′(𝜃, 𝜙)
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where 
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Similarly, the coefficients 𝜆̂J5E5
(L,M) are determined by [3] 
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After determining the coefficients 𝜆′J5E5
(𝕒,𝕓) using Eq. (49), our 

next goal is to determine 𝑊$5)5*5
∗ . 𝑈J5E5∗  can be computed by 
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1
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Now, Eq. (46) in the spherical coordinates can be expressed 
as 

∂'𝕎$5)5*5
∗ (𝜃, 𝜙)
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+ cot𝜙
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where 
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Also, 𝐾$5)5*5(θ, 𝜙) and 𝑈J5E5,Q5∗  are given in [3] 

By using (52), the unknown coefficients 𝑆′$5)5*5
(𝕒,𝕓)  can be 

calculated using the same manner as [3]. Then 𝕎$5)5*5,>5
∗ , 

can be derived as follows 
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K
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4 Numerical Results and Discussion 
BEM has been built using quadratic isoparametric 
elements, where the 8-point Gauss quadrature rule was used 
with double precision for the numerical integrations. 
Alumina (Al'O() was considered in the calculations with 
the elastic stiffness coefficients as given in [29] 

 
Fig. 1: Distribution of thermal stress 𝛔𝟏𝟏 for different 
materials with impact of rotation. 
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Figure 1 shows how the thermal stress σ%% changes for 
anisotropic, orthotropic, transversely isotropic, and 
isotropic materials with 𝑥% − axis in the absence (𝜔 = 0) 
and presence (𝜔 = 0.5) of rotation. The distribution of 
thermal stress σ%% for four materials in the identical 
scenario along the 𝑥% − axis. The curves for orthotropic, 
transversely isotropic, and isotropic materials show that the 
distribution of thermal stress σ%% grows with rotation, while 
it decreases with rotation for anisotropic materials. 

 
Fig. 2: Distribution of thermal stress 𝛔𝟏𝟐 for different 
materials with impact of rotation. 

Figure 2 shows how the thermal stress σ%' changes for 
anisotropic, orthotropic, transversely isotropic, and 
isotropic materials with 𝑥% − axis in the absence (𝜔 = 0) 
and presence (𝜔 = 0.5) of rotation. The distribution of 
thermal stress σ%' for four materials in the identical 
scenario along the 𝑥% − axis except for anisotropic 
materials and non-rotating isotropic materials. The curves 
for orthotropic, transversely isotropic, and isotropic 
materials show that the distribution of thermal stress σ%' 
grows with rotation, while it decreases with rotation for 
anisotropic materials. 

 
Fig. 3: Distribution of thermal stress 𝛔𝟐𝟐 for different 
materials with impact of rotation. 

Figure 3 shows how the thermal stress σ'' changes for 
anisotropic, orthotropic, transversely isotropic, and 
isotropic materials with 𝑥% − axis in the absence (𝜔 = 0) 
and presence (𝜔 = 0.5) of rotation. The distribution of 
thermal stress σ'' for four materials in the identical 
scenario along the 𝑥% − axis except for anisotropic 
materials. The curves for orthotropic, transversely isotropic, 
and isotropic materials show that the distribution of thermal 
stress σ'' grows with rotation, while it decreases with 
rotation for anisotropic materials. 

 
Fig. 4: Distribution of thermal stress 𝛔𝟏𝟑 for different 
materials with impact of rotation. 

Figure 4 shows how the thermal stress σ%( changes for 
anisotropic, orthotropic, transversely isotropic, and 
isotropic materials with 𝑥% − axis in the absence (𝜔 = 0) 
and presence (𝜔 = 0.5) of rotation. The distribution of 
thermal stress σ%( for four materials in the identical 
scenario along the 𝑥% − axis except for anisotropic and 
rotating isotropic materials. The curves for orthotropic, 
transversely isotropic, and isotropic materials show that the 
distribution of thermal stress σ%( grows with rotation, while 
it decreases with rotation for anisotropic materials. 

 
Fig. 5: Distribution of thermal stress 𝛔𝟐𝟑 for different 
materials with impact of rotation. 
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isotropic materials with 𝑥% − axis in the absence (𝜔 = 0) 
and presence (𝜔 = 0.5) of rotation. The distribution of 
thermal stress σ'( for four materials in the identical 
scenario along the 𝑥% − axis except for anisotropic and 
non-rotating isotropic materials. The curves for orthotropic, 
transversely isotropic, and isotropic materials show that the 
distribution of thermal stress σ'( grows with rotation, while 
it decreases with rotation for anisotropic materials. 

 
Fig. 6: Distribution of thermal stress 𝛔𝟐𝟑 for different 
materials with impact of rotation. 

Figure 6 shows how the thermal stress σ(( changes for 
anisotropic, orthotropic, transversely isotropic, and 
isotropic materials with 𝑥% − axis in the absence (𝜔 = 0) 
and presence (𝜔 = 0.5) of rotation. The distribution of 
thermal stress σ(( for four materials in the identical 
scenario along the 𝑥% − axis except for transversely 
isotropic and non-rotating orthotropic materials. Rotation 
has no influence on thermal stress σ(( in isotropic 
materials. The curves for orthotropic and transversely 
isotropic materials show that the distribution of thermal 
stress σ(( grows with rotation, while it decreases with 
rotation for anisotropic materials. 

 
Fig. 7: Thermal stress 𝛔𝟏𝟏 distribution along 𝐱𝟏-𝐚𝐱𝐢𝐬  for 
Analytical, FEM, and BEM methods. 

Figure 7 compares a special case of the present BEM 
thermal stress σ%% distribution along the 𝑥%-axis to the 
analytical results of Ramady et al. [30] and the finite 
element method (FEM) results of Ferguson and Mikkelsen 
[31]. The present BEM, Analytical, and FEM all agree 
extremely well. Thus, the proposed method's validity was 
proven. 

5 Conclusions 
The boundary element approach was utilized in this study 
to investigate the effect of rotation on thermal stresses in 
anisotropic materials. As is well known in the BEM 
formulation, the heat effect introduces an additional volume 
integral, forcing domain discretization, causing the 
boundary element technique to lose its advantages. The 
present 3D BEM employs the exact transformation 
technique, which entails analytically translating the extra 
domain integral to the border while performing no internal 
treatments.  To account for thermoelastic effects in 
anisotropic materials, BEM analysis was used to re-express 
the fundamental solutions and their derivatives as double-
Fourier series. This analytical transformation approach has 
fully restored the BEM's distinctive requirement that just 
the boundary be discretized. Furthermore, the evaluations 
revealed that the 3D BEM approach is not only efficient for 
modeling, but also effective in producing accurate solutions 
for thermal stress problems in anisotropic materials. 
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