J. Stat. Appl. Pro. Vol. 14, No. 5, 705-721 (2025) LS w05
Journal of Statistics Applications & Probability

An International Journal

http://dx.doi.org/10.18576/jsap/140503

Application of Markov-Switching-Dynamic-Regression Model
for COVID-19 Reproduction Rate: A Case study of Zimbabwe

C. Shoko*, K. Makatjane and G. Madisa-Maseko
Department of Statistics, Faculty of Social Sciences, University of Botswana, Gaborone, Botswana

Received: 12 May 2025, Revised: 22 Jul. 2025, Accepted: 16 Aug. 2025.
Published online: 1 Sep. 2025.

Abstract: In this study, we develop a Markov Switching Dynamic Regression (MS(k)-DR(p)) model for the regime switches
based on the reproduction rate in real-time. The effects of the stringency index, daily COVID-19 deaths and total vaccinated
individuals on the regimes are also analysed. Before the fitting of the MS(k)-DR(p) model, this study analysed the
cointegration of the response variable and the explanatory variable using the Johansen procedure. Results from analysis show
that the peaks and reproduction rate can best be described by shifts between two regimes, MS(2)-DR(1). The first regime is
defined by high reproduction number and the second regime is identified by a low reproduction rate. The MS(2)-DR(1) model
for the reproduction rate could only be explained by the stringency index and the daily COVID-19 deaths. An increase in
stringency index results in a decrease in the reproduction rate for regime 2 and the opposite is true for regime 1. The developed
model closely tracks regime changes caused by changes in the stringency index that include lock-down, mandatory mask-
wearing, social distancing, etc. Thus, the MS-DR model is a useful policy tool for monitoring interventions by the public
health sector in controlling epidemics that have the same behaviour as COVID-19.
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1 Introduction

The epidemiologist, Klaus Dietz (Dietz, 1975), was the first to give an explicit definition of R. He defined it as “the expected
number of infections or secondary cases generated by a typical infected individual.” However, R can be defined in two different
ways depending on the stage of the infection. In a scenario where the whole population is susceptible, this number is called the

basic reproduction number, or R 0, and it shows how many secondary infections resulted from a single case at the start of the
epidemic. However, at later stages of the pandemic, R is referred to as the effective reproductive number and is denoted as

R (t) The reproduction number R (t) , can be a cohort R also known the instantaneous R, as it is computed for each time t

since the start of the epidemic (Gostic et al., 2020). (Z) represents a disease's capacity to spread and as such it is a key
diagnostic tool for monitoring the dynamics of COVID-19 (Luis Rosero-Bixby and Tim Miller, 2022) and also to assess the
effects of intervention strategies that include a stringent index, vaccines, quarantine, among others.

. . R(? I e
The COVID-19 virus's reproduction number, ( ( )) , which is the average number of new infections produced from a
population made up of exposed/immune and naive/susceptible individuals, is a measure of a virus's transmissibility. The

reproduction number is the ratio of new infections at the current time t , over the number of new infections in the interval At
and it represents the instantaneous proliferation rate of an infection. A reproduction number greater than 1 (Rinaldo et al., 2020),
implies that the number of infected subjects is increasing leading to an epidemic. Whereas a reproduction number below 1, is an
indication that the transmission is likely to reach extinction, and when the reproduction number is 1, the disease is said to be
endemic. The basic reproduction number, which indicates an infectious agent's likelihood of causing an epidemic, is a

fundamental concept in infectious disease epidemiology (Liu et al., 2020). Thus, R (t) , together with other indicators, form the
basis for characterizing unfolding outbreaks (Pasetto et al., 2020).

To control the spread of COVID-19, stringency measures were put in place. This was measured based on the stringency index
(SI) ranging from 0 to 100. The SI suggests that lockdown procedures are rigorous, primarily to limit human conduct. Schools,
public spaces, and workplaces were all be closed as part of this SI. Public events were also be canceled, gatherings and
international travel were restricted, and stay-at-home rules were enforced. A SI of 0 means no restrictions or lockdowns and a
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ST of 100 means harsh restrictions and lockdown policies (Shah et al., 2021). According to Makki (2020), the assumption is that
increasing the SI implies limited contact between the infected and susceptible populations and this results in the reduction of the
reproduction rate. In addition to the stringency measures were the development of the vaccines that help in strengthening the
immune system to fight COVID-19 infections. The assumption is that as the population of the vaccinated increases, the
reproduction rate is likely to decrease. On the other hand, the death of individuals from the infected population reduces the size
of the infected population leading to a reduction in the reproduction rate (Mezencev and Klement 2021).

Based on the ups and downs nature of the COVID-19 pandemic, Haimerl and Tobias (2023) developed a regime-switching
approach to model the trend in COVID-19. For each day of the observation period, their suggested model divided the trend into
two regimes: an infection that was either rising or falling. However, Oliveira et al (2021) discovered that the occurrence of a
new more contagious wave of COVID-19 for the year 2021 spread faster than the first outbreak in spring 2020 resulting in
populations in member states around the WHO European Region beginning to exhibit signs of pandemic weariness. Given the
protracted nature of this catastrophe and the resulting annoyance and misery, pandemic weariness is a normal and expected
response. It presents a significant risk to attempts to stop the virus's spread; for a policy framework for reviving the populace to
stop the pandemic, see WHO (2020).

In a similar vein, evidence presented by Maragakis (2020) indicates that after the initial wave of illness, people's commitment
to the non-pharmacological COVID-19 prevention methods of mask wearing, hand washing, and social distancing decreased.
Additionally, Shafer et al. (2021) confirmed that easing social distancing to contact levels that are 50% of what they were before
COVID-19 may result in over 35% of the population being infected at the same time, while McGrail et al. (2020) showed that
social distancing can lead to an estimated 65% reduction in new COVID-19 cases. As an example, they cited the circumstances
in Manitoba, Canada. These findings corroborate the claim by WHO (2020) on the beginning of the spread of pandemic fatigue.

The dynamics in the daily case numbers of COVID-19 have been studied using a range of econometric techniques; however,
unobserved components (UC) models have been particularly effective in predicting the previously described features of COVID-
19- related data. The UC models were applied early in the pandemic to detect structural breakdowns and fit linear deterministic
rends to COVID-19 case data (Hartl et al. 2020; Lee et al. 2021; Liu et al. 2021). While Navas Thorakkattle et al. (2022) and
Xie (2022), among others, have included (stationary) seasonal components, Moosa (2020) and Doornik et al. (2022) have studied
UC models with stochastic trends as the number of available data grows. It is still difficult to correctly account for the COVID-
19 case numbers trend's alternating peaks and troughs.

By specifically modeling the up and down pattern of the COVID-19 reproduction numbers—which has become one of the
defining characteristics of the COVID-19 pandemic—we add to the UC literature with these data. Hence, we introduce a
Markov-switching dynamic regression (MS-DR) that is adept at handling situations where the underlying data-generating
process changes over time. This is particularly relevant for COVID-19, where the pandemic has led to significant shifts in
people’s behaviour, policy responses, and public health outcomes. By allowing for different regimes (or states) in the data, our
approach can accurately reflect periods of high and low transmission rates or varying levels of public compliance with health
measures.

The ability to switch between different states according to Rossouw et al (2021), enables better predictions of future trends based
on historical data. For instance, MS-DR can capture the volatility and abrupt changes in infection rates or economic indicators
associated with COVID-19 waves, leading to more reliable forecasts than traditional static models (Bouteska et al 2023). This
is crucial for policymakers who need to make informed decisions based on expected future scenarios. Markov switching dynamic
regression models provide a powerful tool for analyzing COVID-19 data by accommodating regime shifts, improving
forecasting accuracy, offering insights into transition dynamics, capturing volatility, and being applicable across diverse fields
of study. In the past, regime-switching and mixture models have been thoroughly investigated. For a summary, see Frithwirth-
Schnatter (2006); Kim and Nelson (2017). According to Kim (1994); Kim and Nelson (2017), the Kim filter is an extension of
the Kalman filter to regime-switching models, and we use it to estimate the trend, seasonal, and cyclical components. By using
Hamilton's (1989) recursions to estimate the regime probabilities between the Kalman filter's prediction and updating steps, this
enables regime switching in a state-space context.

Our second contribution is the application of Johansen Cointegration and Granger causality test. In this way, we can identify
whether influential variables and total number of COVID-19 cases share a long-term equilibrium relationship. This is crucial,
as many variables tend to move together over time despite short-term fluctuations. Recognizing these long-term relationships
allows researchers to model and forecast more accurately, avoiding spurious correlations that can arise from non-stationary data
where we can establish if the number of COVID-19 cases and the reproduction rate are both non-stationary but cointegrated.
This suggests that there is a long-term equilibrium relationship between these two variables and implies that as public health
measures change over time, the infection rates will adjust to maintain this relationship.

While Granger causality, helps us to determine whether different policy interventions can predict the daily reproduction rates.
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In the context of this study, if we find that past values of vaccination rates cause future infection rates, this suggests that changes
in vaccination strategies directly impact on controlling the spread of COVID-19. Finally, causality tests require establishing that
the cause precedes the effect. In health data analysis, this is crucial for identifying effective interventions. For instance, if
increased testing leads to reduced infection rates after some time, it supports the hypothesis that testing is an effective public
health intervention. By incorporating cointegration and causality tests into the analysis of COVID-19 health data enables a
deeper understanding of the complex interactions among various determinants. This approach not only enhance theoretical
insights but also provides practical guidance for effective public health strategies.

2 Materials and Methods

In this study, we use a Markov-Switching Dynamic Regressive (MS-DR) model to assume the behavior of stochastic parameters.
This section of the study discusses the techniques and methodologies. The findings in this part will be used as a guide to
determine the kind of model to estimate and the sort of data to use.

2.1 Markov Switching Dynamic Regression Model

Decomposing nonlinear time series into a limited sequence of discrete stochastic processes, states, or regimes is the basic concept
of Markov Switching Models (MSM). This allows the parameters to take on different values based on the state or regime that is
in effect at a given time t. The transitions between the states or regimes are caused by an unobservable regime variable denoted

Y, :t=1,2,3,..

by S, , which is believed to evolve according to a Markov Chain. Given the time series say, »1j , the dynamic

regression is therefore represented as follows

K:ﬂ+Xz+gz (1.1)

£~N[0,0% | X, eR

where, and is vector of explanatory (exogenous or lagged endogenous) variables. The

numbering of the regime is arbitrary; hence, the mean of Model (1.1) can be written as a function of S is expressed as the
output of the identity link function n () which is now given as His, =11 () If it is assumed that the Markov process operates

,2,---,k ..
over the set of X states [ e ], then, it is expressed as

,Uij:ﬂ('):ﬂzy’Sz:i’j’izo’jZI. (12)

In this case, the transition probabilities between the k states is given by

Dy, :P[St+1 Zi‘St :j],i,j=0,---k—1

(1.3)

and as a result, the likelihood of transitioning from stage ! in one period to stage J " in the next is solely determined by the prior

condition. Because the system must be in one of the L>J states we now show that

k-1 _1
i=0 Py = (1.4)
where the full matrix of transition probabilities P s
_[Pn P
Py Pn

such that Pyt Py = 1 and PotPn= 1 (Xaba et al 2019), and if the value of P is small, the system will stay longer in

|
state ! than in state / . The duration of this state is expected to be %) i . Nonetheless, Geraldi et al. (2021) emphasised that

the number of regimes can be 7 22 and for our case, we utilise the simple and effective MS approach, which eliminates a great
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deal of empirical estimation issues. Our proposed MS-DR specification follows the dynamic regression model in the
specification of the dynamics that

Y :V(St)+aX;+X;,B+g[,St =i,/,i=0,j=1

t (L.5)
We finally present a Markov-switching dynamic regression as follows:
P
¥ ao"'Z»:l?/o,iXt—z"'gl .5, =0
p =
P
al+2i:17/1,iXtt+8lz’St:1 (1.6)

where, & is independently and identically distributed (i.i.d) with mean 0 and variance O¢ . The state variable is governed by a
first-order Markov chain.

2.2 Unit root test

Moroke (2014) confirmed the non-stationarity of several macroeconomic data. Therefore, to make these series stationary, they
must be rendered stationary and this is one of the prerequisites for cointegration analysis. It is necessary to prove that the variables

have the same integration order. Kennedy (1996) states that if a variable need to be differenced d times in order to become
stable, it is integrated of order This study uses the Augmented Dickey-Fuller (ADF), Kwiatkowski-Phillips-Schmidt-Shin
(KPSS), and Box Ljung tests to first examine the series stationarity properties.

Augmented-Dick-Fuller (ADF) test: This test is used to check for stationarity of variables and is based on the null hypothesis
that assumes non-stationarity. As suggested by Dickey and Fuller (1981), the following regressions are estimated

AY: = pYH + Z; 5AY;4 +¢,

(1.7)
where the model with intercept is estimated as follows
)
AY: :ﬂo +:0)/;—1 +Zi:15AYt—i +é, (1.8)
and finally, the model with intercept together with trend is given by
P
AYt:ﬂ0+ﬂlt+th—l+zl:1§AYt—l+gz‘ (1 9)

In Model (1.7) to Model (1.9), Aisa differencing operator,t is time drift; P denotes the selected maximum lag based on the
minimum criteria such as Akaike’s information criteria (AIC), Schwatz Bayesian criteria (SBC) or Hannan-Quin criteria (HQC)
values and & is the error term. Makatjane and Moroke (2016) disclosed that B ’s and o ’s are model bounds. Depending on
the findings, the intercept, and intercept plus trend may be included in the model. Finally, the ADF test is then defined as

A 7;_7/0
T=—— ~ta’n_
se(7) ’ (1.10)

where, 7 is the process root coefficient. If the observed probability value is less than the calculated probability value, we fail
to reject the null hypothesis of non-stationary time series.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: The test is based on the null hypothesis that assumes a stationary series. The
KPSS test statistic is given as

e S,
KPSS:nZZt:l? (1 11)

t
S = Z e
where / i=1 " and 62 is an estimate of the residuals' long-run variance. If the KPSS is greater than the critical value,
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indicating that the series deviates from its mean, the research rejects the null hypothesis. In order to make the variables stationary,
first order differencing is used. Since the data are gathered daily, a lag of up to 7 is incorporated to account for autocorrelation.
The stationarity requirement is met if the variables are both stationary and integrated of I(1).

Box Ljung test: This test statistic looks at the presence of auto-correlation. Correlation analysis assesses the strength and
direction of a relationship between two indices. Risk analysts try to find if absolute or squared returns are highly autocorrelated.
This objective can be achieved by using partial autocorrelation functions (PACF) and autocorrelation functions (ACF)
(Montgomery et al, 2015). Jonathan and Kung-Sik (2008) describe the ACF as

pe V(X X)L

p =
S (X)) (1.12)

Where p, is the autocovariance computed as Cov(Xi,Xi)=Var(X:). Normally, a correlogram is used and it is a graph of p,
against k. A PACEF is further defined as follows

Pk =1
k-1
Pr— z]-:1 Ay, iPr-j
Ay = k_l 7k:27'“;p
-2 a1 %P
0,k>1

(1.13)

For a given sample of a time series is {r,}1_;, let 7 be a sample mean, then a lag-1 sample autocorrelation of ry is

A Z;('”, -7)(1,.—7)

P = T —\2
2 (n=7) , (1.14)

Under some general conditions, Model (1.14) is a consistent estimator for p,. However, if r, ~Li.d sequence, and E(r?) < oo,
then Tsay (2014) suggested that p, is asymptotically normal with mean zero and variance % This result in practice tests the
following hypothesis

HO: pl =0

Hi:ps #0°

A test statistic is the usual t ratio, which is 4/ TP;, and it is asymptotically a standard normal distribution. In general, the lag — ¢
sample autocorrelation of 7; is

2 (=) (T

D, = 0</<T-1

f4 T —\2
2 =7) , (1.15)

In finite samples, P, is a biased estimator of p,. For a small sample size, that is T < 30, % causes this bias and this can be

overcome by making sure that T > 30. Therefore, in practice, p; is plotted against time, and Shumway and Stoffer (2017)
revealed that if the spikes of the plotted ACF and PACEF fall beyond the control bands of the plots, this indicates highly correlated
returns at different lags, and Tsay (2014) exhibited that there is no correlation if P = 0,£> O.

Therefore, Ljung and Box (1978) propose the following Portmanteau statistic

E3 _ m A 2
0 (m)—TZHP/: (1.16)
as a test statistic for the following hypothesis

Ho:py, - pm =0
Hy:py, oo pm # 0
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Under the assumption that the series is i.i.d sequence, with certain moment conditions. Tsay (2010) showed that model (1.17) is
asymptotically a chi-squared random variable with m degrees of freedom that increase the power of a test statistic in Model
(3.17). Because of finite samples, Ljung and Box (1978) modified model (1.17) to

A2
O(m)=T(T+2)37 L
—T—1 (1.17)
The null hypothesis is rejected if the observed probability value is lower than the conventional probability value and conclude
that the returns series are highly correlated.

2.3 Cointegration Test

The cointegration test is used to confirm whether the variables move together or not in the long run. The test requires all variables
to be integrated in the same order. In this study, we used the Johansen procedure. Four variables are considered, the cointegration
of the explanatory variables: stringency index (SI), total vaccinated (TV), and number of deaths (ND) on the response variable
reproduction rate (RR).

The maximum Eigenvalue and the Trace test are used to determine these vectors. These test statistics test the null hypothesis of
r cointegrating relationships

Hy: 4, =0, i=r+l-k  H 14#0

for r=0,1L---,n-1

analysis:

. According to Fountis and Dickey (1989), the four steps below are suggested to cater for multivariate

Step 1: Fit linear multivariate time series as

Xt:®1X,_l+---+CDPX,_p

(1.18)
Step 2: Compute the largest eigenvalue, /?’max , based on the following characteristic equation
A1-® 47—~ | =0
p (1.19)
where, 1= pxp matrix.
Step 3: Test of the null hypothesis of unit root is based on the following test statistic
Tt = N[ A —1] (1.20)

where ;tmax is computed using model (1.20).

Step 4: At the given significance level, particularly 5% significance level, obtain the critical value from the table. Reject the null
hypothesis if the calculated test statistic is greater than the tabulated value or alternatively, if the calculated probability is less
than the level of significance. With respect to Moroke (2014), the following are the Johansen trace and maximum eigenvalues
formulae also calculated through these four steps

e =N ln( Amax) (1.21)

J . =-Nln (1 - /{max) (1.22)

The critical values are listed in the Johansen and Juselius (1990) tables. The null hypothesis for these statistics are rejected when
the observed values exceed the critical thresholds. This will imply that the variables are cointegrated and that there is a long-run
link, as proposed by Sjo (2008). Osterwald-Lenum (1992) provides detailed tables containing these crucial values. It is crucial
to note that Alexander (2001) said that these two tests might provide different outcomes. However, after the cointegration link
has been validated, the study proceeds to construct a VECM, which is described below.
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3 Results and Discussion

This section presents empirical data analyses using daily-confirmed reported cases of corona virus in Zimbabwe for the period
of 28 May 2020 to 31 December 2022. We cast—off a Markov-Switching Dynamic Regressive (MS-DR) to capture regime
shifts of COVID-19 reproduction rate in Zimbabwe.

3.1 Exploratory data analysis

Based on Figure 1, a time series plot in the top-left panel shows both upward and downward trends in conjunction with
seasonality; with the highest peak around June 2021. This is a clear indication that the series is not stationary. The quantile-
quantile (Q-Q) plot on the bottom-left panel of Figure 1 also confirms these results. The Q-Q plot indicates that the distribution
of the daily reproduction rate is deviating from normal distribution indicating that the series follows a fat-tailed distribution. The
fat-tail conclusion is further confirmed by the density plot (top-right plot) which clearly shows a non-normal distribution. In
addition, the Box and Whiskers plot shows that the distribution of the reproduction rate is positively skewed with some outliers
which shows existence of extremely high values. The same results of leptokurtic coronavirus spread are also found by Wong
and Collins (2020) and Shoko and Sigauke (2023) where the authors were therefore interested in determining whether the

empirically observed distribution of Z for coronavirus spread exhibited an exponential tail. Rather, Wong and Collins (2020)
used three complementing techniques: 1) a Zipf plot; 2) a meplot; and 3) statistical estimators of the tail index to find that the
tail is consistent with fat-tail behavior. In their investigation on the extreme quantiles method to COVID-19 dissemination in
South Africa, Shoko and Sigauke (2024) also discovered fat-tail behavior utilising the Box and Whiskers plot, normal Q-Q plot,
and density plot.

(a) Daily reproduction rate (RR) for SA (b) Density plot
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Fig. 1: Time series and Quantile—quantile plot for Confirmed Daily corona virus Cases

In Figure 2 the time series plots for the new COVID-19 cases and the reproduction rate are presented. The reproduction rate also
follows an up-and-down trend. During the period of study, the reproduction rate was mostly above 1 with the highest
reproduction rate of more than 2.5. Relating the two graphs shows that the peaks in daily COVID-19 cases follow after an
increase in the reproduction rate and vice-versa. This implies that when the reproduction rate (R) rises above 1, it signals that
each infected person is, on average, transmitting the virus to more than one other person, leading to a potential surge in cases.
This rise in cases strained healthcare systems, especially when protective measures were relaxed too quickly. High case counts
may lead to resource shortages, impacting patient care for both COVID-19 and non-COVID conditions.
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Furthermore, the cyclic nature of COVID-19 can prompt authorities to implement adaptive strategies, such as reintroducing
mask mandates, social distancing, or travel restrictions during peak periods. This "ebb and flow" approach helps to prevent
overwhelming the healthcare system but may also cause public fatigue or resistance, complicating long-term compliance.
Finally, these fluctuations also affect mental health and economic stability. Repeated cycles of rising cases can lead to prolonged
psychological stress and anxiety within the community, especially among high-risk groups. Economically, ongoing waves of
infection can disrupt business continuity, employment, and global supply chains. Cutler (2023) further emphasised that Health
systems may need to scale up contact tracing, testing, and isolation measures during periods when the reproduction rate and case
numbers rise. This is resource-intensive and can be challenging to maintain, particularly in lower-resourced areas, leading to
potential lapses in containment efforts
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Fig. 2: Time series plots for the new COVID-19 cases and the reproduction rate.

We present plots of two time series, reproduction rate, and each one of the explanatory variables, stringency index (SI), new
deaths (ND), and total vaccines (TV), in one. The correlation plot between each of the two variables is also presented.

a. RR vs each of the explanatory variables b. Correlation: RR & covariates
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Fig. 3: a. Time series plots for the reproduction number and each of the variables of interest (SI, TV, ND, respectively), b.
Correlation between RR and each of the covariates.

Results from Figure 3 show a long-term relationship between the reproduction number and the stringency index. High
reproduction number is characterised by the low stringency index. The corresponding correlation plot show a positive correlation
between the two variables. In the middle we have the time series plot for the total vaccines and the reproduction number. The
plots show that in the initial stages, which has fewer number of the vaccinated population, the reproduction rate was relatively
although it shows fluctuations due the tightening and loosening of the stringency index. As the size of the vaccinated population
increased a reduction in the reproduction rate was noted from over 2.5 towards the end of year 2022 to 0 in the year 2023. The
correlation plot show a negative correlation between the size of the vaccinated population and the reproduction rate. On the other
hand, daily COVID-19 deaths follow after a peak in the infectious rate and this trend is consistent throughout the observation
period.

Before we proceed with the main analysis, the unit root tests are applied. This is to ensure that the assumptions of the Johansen
test are met. This is done using the ADF test, Elliot-Rothenberg-Stock test, KPSS test, and the Box Ljung test. The targeted
variables are reproduction rate (RR) and the explanatory variables are SI, ND, and TV and the results are reported in Table 1.
The p-values of the ADF test are less than 5% for RR and ND rejecting the null hypothesis of the existence of unit root and
concluding that both variables are stationary at zero differencing. However, for ND and SI, the p-values are greater than 5% we
therefore, fail to reject the null hypothesis of unit root and conclude that the series are non-stationary hence differencing is
recommended. It is worth noting that with the KPSS all the variables are stationary at 5% level of significance. For RR, TV,
ND, and SI, the Box-Ljung statistics are all extremely high with very low p-values (< 2.2e-16), suggesting that all series exhibit
strong serial correlation.
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Table 1: Unit root test for the RR, TV, and ND time series

ADF-test at lag 10 KPSS-test at lag 7 Box-Ljung-test
RR -4.9814(0.01) 0.1164(0.1) 2146.9(<2.2e-16)
TV -0.5507 (0.9795) 1.7356(0.01) 2132.3 (<2.2e-16)
ND -3.9024 (0.01387) 0.5428 (0.01) 1549.9 (<2.2¢-16)
SI -2.4529 (0.1028) 1.7992 (0.01) 2077.1 (<2.2e-16)

Note: Values in () are the Probability values for all the tests

In the next step, this study applies the Johansen procedure to test for cointegration. The Johansen test can detect multiple
cointegration vectors and is more appropriate for multivariate analysis than other approaches (Zikidou and Hadjidema, 2020).
Wassell and Saunders, (2008) further argued that the Johansen procedure is a desirable property in that it treats every test variable
as endogenous variable. The outcome from the Johansen test cointegration test is reported in Table 2. The findings reveal that
the null hypothesis of no cointegration HO = can be rejected, implying a long-run relationship between reproduction rate
(RRts) and daily reported deaths (NDts), stringency index (SIts), and total vaccines (TVts) in Zimbabwe.

The test statistics and critical values in Table 2 indicate the results of the trace test for different ranks (r), which helps identify
the number of cointegrating vectors. For r<3 , the test statistic is 3.44, which is below the 10%, 5%, and 1% critical values.

This suggests that we do not reject the null hypothesis of at most three cointegrating relationships. But with ¥ <2 the test
statistic is 20, which exceeds the critical values at all significance levels, meaning that we reject the null hypothesis and conclude

that there are more than two cointegrating relationships at the 1% level. But when 7" <1 , the test statistic is 48.94, which exceeds
the critical values, so we reject the null hypothesis of at most one cointegrating relationship, suggesting more than one. Finally,

when 7' S 0 the test statistic is 114.4, which far exceeds the critical values, indicating we reject the null hypothesis of no
cointegrating relationships. Based on the test statistics, there are likely two cointegrating relationships (since we reject the null

for ¥ <2 but fail to reject for I’ <3 ). The model suggests that there are at least two long-run equilibrium relationships among
the RRts, NDts, Slts, and TVts series. The loading matrix (also called the adjustment matrix) shows how each variable adjusts
toward the long-run equilibrium after a short-term shock. In this case, RR adjusts with coefficients (-0.00193, -0.00039, -
0.00785, 0.00001), meaning RR will adjust to deviations from the long-run equilibrium; while ND adjusts with larger
coefficients, especially in response to SI and TV.

Table 2: Cointegration Test using the Johansen Procedure

Eigenvalues (lambda): 0.0584 0.0262 0.015 0.0032
Values of test statistic and critical values of test:

test 10% 5% 1%
r<3 3.44%* 6.5 8.18 11.65
r<?2 (% * 15.66 17.95 23.52
r<l 48.94 28.71 31.52 37.22
r<0 114.4 45.23 48.28 55.43
Note: *, ** and *** denote statistically significant at the 10%, 5%, and 1% significance levels,
respectively.
(These are the cointegration relations)

RRts.12 NDts.I2 Slts.I2 TVits.12
RRts.I12 1.0000 1.0000 1.0000 1.0000
NDts.12 0.1906 -0.1599 -0.0009 -0.2985
Slts.12 0.1097 0.5016 0.0024 -0.3156
TVts.I2 0.0000004 0.0000009 0.0000 0.00001
(This is the loading matrix)

RRts.12 NDts.I2 Slts.I2 TVits.12
RRts.d -0.0019 -0.0004 -0.0079 0.00001
NDts.d -0.4717 0.0896 0.9226 0.0006
Slts.d -0.0063 -0.0530 0.2185 0.0014
TVts.d -11470.2100 -9430.0890 60800.3300 -478.7100

In Figure 4, we present the plots from the Johansen cointegration test.

Based on the results from Figure 4, we can draw some
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preliminary conclusions about the dynamics of reproduction rate and new deaths, total vaccines and the stringency index over
our time period: There appears to be some foundation for the co-movement of the reproduction number and each one of the
variables, new deaths stringency index, and total vaccines.
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Fig. 4: Cointegration plots for the reproduction number with number of deaths (2. Variable), stringency index (3. Variable)
and total vaccinated (4. Variable).

3.2 Empirical Analysis

Since our study captured a long-run linkage among the time series variables, we move to the next step where we explore the
possible effect of the new deaths, total vaccines and stringency index on the COVID-19 reproduction rate in Zimbabwe. To
address this issue, a Markov-switching dynamic regression is utilised to mitigate the autocorrelation problem because the MS-
DR captures the possibility that the time series behaves differently in distinct regimes (e.g., high-volatility vs. low-volatility
states), which helps explain the autocorrelation observed in a given data. By allowing the parameters of the regression model to
change between regimes, it can adjust to shifts in trends or cycles that might not be captured in a standard linear regression
model. Finally, the regime-switching feature can capture patterns of serial correlation by modelling transitions between different
states where autocorrelation properties differ.

The first step in determining if the two-regime switching model may be employed is to perform a likelihood ratio (LR) test and
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the results of this test confirm that the null hypothesis of no regime switching is rejected in support of the presence of two-
regimes because the chi-square statistic's reported p-value is less than 5% significant level. A similar set of findings was
published by Wasin and Bandi (2011), Yarmohammadi et al. (2012), Saji (2017), and Psaradakis et al. (2009). This was done
by first fitting a linear regression model for the relationship between the reproduction rate and each of the covariates, stringency
index, total vaccines, and total vaccines. The covariates had a significant linear relationship with the reproduction number (p-
value<0.05) except for the daily new vaccines. The results are presented in Table 3 below.

Table 3: Estimated parameters from the fitted linear regression model

Estimate Std. Error t value Pr(>t)
(Intercept) 1.6920 0.0946 17.8950 <0.0001 ***
Slts -0.0078 0.0013 -5.9190 <0.000] **x*
TVts -0.000000044 0.000000003 -13.1130 <0.0001 ***
NDts -0.0022 0.0009 -2.3300 0.0200 *

Note: ***significant at 1%, * significant at 5%

Since the null hypothesis of no regime shift is rejected in favor of at least 2 regimes available, we then fit our proposed a Markov
Switching-Dynamic regression (MS-DR) to the data using various orders of the autoregressive part, starting with p=1 for
different regimes from k=1. The selection of the best MS-DR model was based on convergence, the log-likelihood, residual
standard error, and the multiple R-squared (R"2). A forward selection of the variables is used, a procedure that starts with
regressing the reproduction rate variable with each of the covariates and eliminating the variables from which the MS-DR model
does not converge. In Table 4 we present the fitted MS-DR models.

Table 4: Selection of the best MS-DR model

MS(k)-DR(p) Loglik Regime 1 Regime 2 Regime 3

RSE MR72 | t-val | RSE MR*2 | t-val | RSE MR*2 | t-val
M1:SI(k=2,p=1) 2251.8 0.0196 | 0.9985 | Yes 0.0215 ] 0.9964 | Yes - - -
M2:S1(k=2,p=2) 2671 0.0105 | 0.9993 | NaN 0.0290 | 0.9959 | Yes - - -
M3:SI(k=3,p=3) 2742.305 | 0.0204 | 0.9983 | Yes 0.0088 | 0.9996 | NaN | 0.0084 | 0.9996 | Yes
M4:SI(k=3,p=1) 2252.323 1 0.0192 | 0.9979 | Yes 0.0186 | 0.9973 | Yes | 0.0110 | 0.9994 | Yes
MS5:NV(k=2,p=1) 2247.763 | 0.0204 | 0.9983 | NaN 0.0209 | 0.9964 | NaN
M6:ND(k=2,p=1) 2251.64 | 0.0221 | 0.998 Yes 0.0180 | 0.9973 | Yes
M7:SI ND(k=2,p=1) | 2253.104 | 0.0187 | 0.997 Yes 0.0215 ] 0.9982 | Yes

Results from Table 4 show that MS(3)-DR(3) from the regression of the reproduction rate on the stringency index has the highest
log-likelihood. However, the model fails to estimate the t-value for the stringency index variable. Therefore, the model cannot
be considered for further analysis. Based on this argument, model M7 which can best be described as MS(2)-DR(1) is the best
model for describing regime-switching of the reproduction rate dynamics. Another study by Paul, and Hartl (2023), although it
did not consider the effects of other variables, also proposes a two-state MSM of either an infection up- or down-turning regime
for the daily observational period. The estimated model considers the effects of the stringency index and new deaths and allows
the variance to oscillate between regime 1 and regime 2. Table 5 shows the estimated parameters from the fitted model.
Table 5: Estimated parameters for the fitted MS-DR

| Estimate | Std. Error | tvalue | Pr(>lt])
Regime 1 (RSE=0.0782; Multiple R*2=0.9650)
(Intercept)(S) 0.0811 0.0292 27774 0.0055 ***
Slts(S) -0.0007 0.0004 -1.7500 0.08012 *
NDts(S) -0.0020 0.0009 -2.2222 0.0263 **
RRts 1(S) 0.9805 0.0119 82.3950 <0.0001 ***
Regime 2 (RSE=0.0215; Multiple R*2=0.9982)
(Intercept)(S) -0.0086 0.0038 -2.2632 0.0236 **
Slts(S) 0.0002 0.0001 2 0.0455 **
NDts(S) -0.0005 0.0070 -1 <0.0001***
RRts 1(S) 0.9957 0.0020 497.85 <0.0001 ***
Transition Probabilities

Regime 1 Regime 2

Regime 1 09116 0.0287
Regime 2 0.0884 0.9713

Note: ***significant at 1%, * significant at 5%

From Table 5 we find that the estimated regime switching trends estimates are all negative for both the stringency index and
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new deaths. This means that a high stringency index results in a low reproduction rate. Miladinov (2021) argued that the
reproduction rate is a function of COVID-19 cases and deaths such that an increase in the number of deaths results in a reduction
in the reproduction rate. This is because deaths result in the reduction of the number of infected subjects in the population.
Another study by Sha et al. (2021) on the Markov switching regression modelling of renewable electricity production shows a
negative relationship between the stringency index and renewable energy production. The p values are highly significant
suggesting a significant effect, indicating that as the stringency index increases, the reproduction rate of COVID-19 by 0.0007
units in regime 1 and by 0.0002 in regime 2. The transition probability represented as

p(S =1|S,, =1)=0.911624
P(S,=2|S,,=2)=0971261

suggesting that regime 1 is less persistent. When the process is in regime 1 (Low COVID-19), there is a high probability that it

switches to regime 2 (High COVID-19) and the probability of switching to high COVID-19 P(S, =28, =1)=0.0883 .
The average duration supports this conclusion because when the system is in regime 1, it takes approximately 11 days. This
means that, on average, once the daily cases enter a period of lower infection rates, this period tends to last for about 11 days.
While relatively short, it might indicate a temporary stability or decline in cases, possibly due to recent health measures,
improved immunity, or changes in public behaviour. Regime 2 on the other hand has an average duration of 34.84 days. This
suggests that, on average, when cases surge and enter a period of higher daily infections, it tends to persist for approximately 35
days. This prolonged high-case period could reflect the time it takes for public health interventions (e.g., lockdowns, vaccination
drives) to slow down the rate of infections, or it could represent the duration of a typical wave of infections. The system tends
to stay longer in the high-case phase (Regime 2), which could indicate that once a wave of infections begins, it takes more time
for cases to decline. Periods of low cases (Regime 1), though beneficial, tend to last for shorter periods, suggesting that even
when infections drop, vigilance is needed to prevent rapid rebounds. See for instance Abimbola et al (2022) for more readings
on regime persistence.

To have a visual appeal of how the three variables, reproduction rate, stringency index, and new deaths, locate the two regimes,
we present Figure 5. Figure 5 shows the classification of the regimes based on the reproduction rate and how the two variables,
stringency index and new deaths relate to these regimes. Whereas the reproduction rate captures regime 1(the grey region) as
states associated with a high reproduction rate, the stringency index variable associates regime 1 with the general reduction in
the stringency index and vice versa. These stringent measures include lockdowns, mask-wearing, social distancing, etc.
Lowering (relaxing) these measures increases the spread of COVID-19, thus, the reproduction rate is expected to increase. A
rise in deaths due to the COVID-19 pandemic follows immediately after a rise in the reproduction number. The proposed model
closely tracks regime shifts as a result of viral mutations, policy interventions, and public behaviour.
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Fig. 5: Relationship between the stringency index, new deaths, and the reproduction rate in locating the two regimes

We further diagnose the residuals of the fitted model and the results are presented in Figure 6. The residuals look like white
noise and they fit into the Normal Distribution. Moreover, the autocorrelation has disappeared.
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Fig. 6: Normal Probability plot and Autocorrelation Function of the residuals from the fitted Markov switching model.

Granger Causality test

This study used the Granger causality test to examine the causal relationship between the daily confirmed deaths (ND) and the
strict index (SI) and the daily reproduction rate (RR) in Zimbabwe at various lags. The test indicates the causality's direction.
Table 6 shows the results of the Granger causality test. At lag order 2 and lag order 5, we find evidence of causation between SI
and RR, suggesting that the stringency index is a significant predictor of Zimbabwe's daily reproduction rate. Furthermore, daily
COVID-19 fatalities, particularly at lag 2, can also forecast a sizable fluctuation in the reproduction rate. At lag 5, we are unable
to identify any meaningful causal relationship between the daily COVID-19 deaths and the reproduction rate.

Table 6: The Wald test statistic from the Granger causality test and corresponding p-values

Direction of Causality Order 2 Order 5

SI2RR 19.5360 (<0.0001 ***) 7.4866 (<0.0001**%)
ND-2>RR 6.1466 (0.0022**) No causality

RR->ND No causality 3.3819 (0.004893 **)
TV->RR 17.0920 (<0.0001***) 13.7320 (<0.0001 **%*)

by *** &*** correspondingly

Note: The path of causality is represented by—-. 10%, 5%, and 1% levels of significance are illustrated
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4 Conclusion and Recommendations

This study proposes a Markov-Switching dynamic regression (MS-DR) model to model the dynamics of the COVID-19
reproduction number using data from Zimbabwe. The MS-DR model is adept at handling the spread of COVID-19 which is
characterised by significant shifts in behaviours. Our results show that the MS-DR model is capable of capturing the
characteristics of the COVID-19 infection rate. The two regimes are classified as high reproduction rate (regime 1) and a low
reproduction rate (regime 2) and both states are persistent. Using the model, we also investigated the association between the
regimes and other factors: the stringency index, the total number of the vaccinated population, and the daily number of reported
deaths. This study is unique in that before fitting and coming up with the best MS-DR model, it assesses the cointegration of the
COVID-19 infectious rate with the factors and further assesses the direction of causality. Throughout the pandemic, deaths due
to COVID-19 were significantly high after an increase in the reproduction rate. As more infected individuals die the reproduction
rate makes a transition to regime 2. This makes mathematical sense since the deaths reduce the number of infected individuals
and consequently lower the transmission rates. High reproduction rates follow after the lowering of the stringency index and as
the stringency index is increased, the reproduction rate decreases to regime 2. This shows the significance of policy responses
as an intervention to the COVID-19 pandemic. Thus, the MS-DR model is the best model for assessing structural changes such
as the loosening and tightening of the stringency index. Hence, the MS-DR is an appropriate policy tool for monitoring the state
of the pandemic. The proposed model can be used to examine effectiveness of interventions for future epidemics with similar
characteristics as COVID-19. However, more research on MS-DR modelling of COVID-19 and application in other countries
need to be conducted inorder to generalise the findings from this study.
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