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Abstract: This study defines a time-frequency transform (TFT) covering Gabor transform (GT) and 
wavelet transform (WT) and presents two inversion formulas for the TFT. By one of the inversion 
formulas, we find a new inversion formula for the WT, which suggests a new more general wavelet 
definition free from the conventional admissibility (e.g. zero integration). This study also develops a 
concept of normal TFT for precise time-frequency analysis, as we show that the normal TFT is 
unique in unbiased explication of the immediate frequency, amplitude and phase of a time harmonic. 
The GT should be updated (i.e. normalized) in phase to become a normal TFT, because it does not 
explicate the immediate but initial phase of a time harmonic. The WT should be written in L1-norm 
to become a normal TFT, as the non-L1-norm WT of a time harmonic yields a frequency-biased 
spectrum. Finally, we show how to measure the frequency resolution of a normal TFT. 
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1  Introduction 

For time function f(t)∈C on R, its time-
frequency transform (TFT) can be expressed as  

                                      

Rd t,tΨtff
R

∈−=Ψ ∫ ϖτϖτϖτ ,     ),()(),(          (1.1) 

                       

where τ is the time index and ϖ the frequency 

index, Ψ(t,ϖ) is the transform kernel, line “−” 
denotes the conjugate operator, C is the complex 

field and R the real filed. By one to one relation ϖ 
=1/a where a denotes the scale index, the TFT (1.1) 
turns into the time-scale transform. Thus the TFT 
and the time-scale transform are equivalent to each 
other. However, the TFT differs from the time-
scale-frequency transform appearing in the atomic 
decomposition theory [1][9], because the latter 
employs simultaneously both scale and frequency                                                         
indexes independent of each other. 

                                                   
 Gabor transform (GT) [3][11] and Wavelet 

transform (WT)[4][5][10] are two typical TFTs. 

Letting Ψ(t,ϖ)=w(t)exp(iϖt), where w(t)∈L
1(R) is a 

window, the TFT (1.1) becomes a phase-updated 
GT: 
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where G* denotes the conventional GT. Transforms 
G and G* differ in phase because the former 

translates the harmonic kernel exp(iϖt) and updates 
the harmonic phase while the latter does not. Letting 

Ψ(t,ϖ)=|ϖ|ψ(ϖt) where ψ(t) is the fundamental 

wavelet and |⋅| denotes the modulus operator, the 
TFT (1.1) becomes a L1-norm WT:       

                                             

  d))(()(||),(W ∫ −=
R

tttff τϖψϖϖτψ         (1.3) 

The natural difference between the GT and the WT 
is that the time resolution of the former is fixed 
while the time resolution of the later varies with the 
frequency index. 

There are two open questions regarding to the 
TFT: i) how to invert the TFT ? ii) what kind of 
TFT is precise for time-frequency analysis? The 
first question is significant to harmonic analysis 
theory. Although the GT and the WT, two special 
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TFTs, hold their respective inversion formulas 
[11][3], there has been no inversion formulas for the 
general TFT (1.1). The second question is 
significant to harmonic analysis application. 
Consider the fact that there can be numerous TFTs 

as the transform kernel Ψ(t,ϖ) can be of numerous 
forms. There has been no theoretical criterion or 
normality for time-frequency analyzers to construct 
a TFT precise for time-frequency analysis. 

This study (section 2) tries to answer the first 
question by presenting the inversion formulas for 
the general TFT (1.1). We give two inversion 
formulas, the first being general and the second 
being specific. By the specific inversion formula, 
we find a new inversion formula for the WT. A 
surprising fact is that the new WT inversion formula 
is free from the wavelet admissibility constraining 
the well-known WT inversion formula. Note the 
fact that the admissibility defines the conventional 
wavelet concept. For example, a conventional 
wavelet requires to be evenly undulant (i.e. be of 
zero integration) to meet the admissibility. Our 
finding suggests a new more general wavelet 
definition free from such admissibility: any local 
time signal undulant with a significant frequency 1 
can be regarded as a wavelet, no matter its 
undulation is even or not. 

This study (section 3) tries to answer the second 
question by developing the concept of normal TFT. 
For a time-frequency analyzer, his task is to 
construct a proper TFT and apply it to a time signal 
to identify the component harmonics and quasi-
harmonics of the signal. A harmonic evolves only in 
phase but not in frequency or amplitude while a 
quasi-harmonic evolves not only in phase but also in 
frequency or amplitude. To identify a component 
harmonic or quasi-harmonic is to identify the 
immediate frequency, amplitude and phase of the 
harmonic or quasi-harmonic. So, a TFT proper for 
precise time-frequency analysis should be unbiased 
in identifying i.e. explicating the immediate 
frequency, amplitude and phase of a harmonic. We 
will show that the normal TFT is unique in unbiased 
explication of the immediate frequency, amplitude 
and phase of a harmonic, and should be precise in 
explicating the immediate frequency, amplitude and 
phase of a quasi-harmonic. The normal TFT concept 
suggests that the GT and the WT should be 
normalized when applied to time-frequency 
analysis. At first, the conventional GT needs to 
update in phase to become a normal TFT, as we 
show that the conventional GT of a harmonic does 
not explicate the immediate but initial phase of the 
harmonic. Consider the fact that, for a quasi-

harmonic evolving in frequency, its immediate 
phase is much more significant than initial phase. 
Secondly, the WT should be written in L1-norm to 
become a normal TFT, as we prove that the non-L1-
norm WT of a time harmonic yields a frequency-
biased spectrum. This means that, among all the 
WTs, only the L1-norm WT is precise for time-
frequency analysis. However, many authors pay 
little attention to the WT normalization because the 
normalization factor enters in a simple 
multiplicative way in the WT. This study shows that 
the WT normalization is significant and necessary to 
precise time-frequency analysis. 

Although the two open questions seem 
independent of each other, this study shows their 
inner relation. By the specific TFT inversion 
formula, the normal TFT finds a simple inversion 
formula unrelated to the TFT kernel. This means 
that, given the normal TFT of a time signal, one can 
reconstruct the time signal without knowing the 
TFT kernel. To say straightly, the specific TFT 
inversion formula introduces and justifies in theory 
the concept of normal TFT. 

 

2 Inversion of TFT 

Inversion Theorem 1 For time function f(t)∈C on 

R, its TFT Ψf(τ,ϖ) is invertible by 
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if the inversion kernel I(t,ϖ) satisfies 
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where “^” denotes the Fourier transform and “∀” 
means “for any”.                             
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If relation (2.2) holds, one can have that  
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Here the proof ends. 
The TFT inversion formula (2.1) is very general, 

because it does not provide a specific inversion 

kernel I(t,ϖ) but a sufficient condition (2.2) of the 

inversion. Here, the inversion kernel I(t,ϖ) 
satisfying (2.2) are regarded as admissible. Given a 
TFT, there may be many admissible inversion 

kernels I(t,ϖ). 

It is well known that, for f(t)∈C on R, its phase-
updated GT (1.2) can be inverted by 

ϖττϖτϖτ dd))(exp()(),(G)( 1

∫ ∫ −−= −

R R
w titwfctf   

(2.7) 
if 

     ∞<= ∫ ωω d|)(ˆ| 2

R
w wc               (2.8) 

In fact, the GT inversion formula (2.7) is just a 
simple application of the Inversion Theorem 1 in the 

case that Ψ(t,ϖ)=I(t,ϖ)=w(t)exp(iϖt). 

It is also well known that, for f(t)∈C on R, its 
WT (1.3) can be inverted by 

Rttfctf
R R

∈−= ∫ ∫
−     , d  d  ))((  ),( W)( 1 ϖττϖψϖτψψ    

(2.9) 
if there is a wavelet admissibility constant, 

+∞<= ∫
− ωωωψψ d|||)(ˆ| 12

R
c        (2.10) 

In fact, the WT inversion formula (2.9) is just a 
simple application of the Inversion Theorem 1 in the 

case that Ψ(t,ϖ)=|ϖ|ψ(ϖt) and I(t,ϖ)=ψ(ϖt). A 

fundamental wavelet ψ(t) satisfying (2.10) is 
conventionally called an admissible wavelet. A 

necessary condition of the admissible wavelet ψ(t) 

is that 0)0(ˆ =ψ , i.e. ψ(t) should be evenly 

undulant. 

Inversion Theorem 2 For f(t)∈L1(R) satisfying )()(ˆ 1
RLf ∈ω , its TFT Ψf(τ,ϖ) is invertible by 
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Here the proof ends.          

In fact ， Inversion Theorem 2 is a specific 

application of Inversion Theorem 1. The Inversion 
formula (2.11) has a specific inversion kernel 

)exp()],(ˆ[),( 1 tiΨwtI ϖϖϖ −= . Such inversion    

kernel is global in time because it is of no time 
modulation. However, the Inversion formula (2.11) 

converges as long as f(t)∈L
1(R) and  

)()(ˆ 1
RLf ∈ω . In other words, it converges if f(t)’s 

Fourier transform exists and is invertible. 

By Inversion Theorem 2, for f(t)∈L
1(R) 

satisfying )()(ˆ 1
RLf ∈ω , its phase-updated GT 

(1.2) can be inverted by 

ϖττϖϖτ
π
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which is an application of Inversion Theorem 2 

with Ψ(t,ϖ)=w(t)exp(iϖt). 
By Inversion Theorem 2, we find that, for 

f(t)∈L
1(R) satisfying )()(ˆ 1

RLf ∈ω , its WT (1.3) 

can be inverted by  

Rt

tiftf
R R

∈
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   , d d ))((    exp ),(W
)1(ˆ 2

1
)( ϖττϖϖτ

ψπ
ψ

 

(2.15) 
To verify the formula (2.15), one just needs to 
notice the fact that the WT (1.3) is a special TFT 

with Ψ(t,ϖ)=|ϖ |ψ(ϖt). 
The WT inversion formula (2.15) is new, which 

has not been found in the wavelet literature. It 
indicates two facts as follows. At first, the 
conventional wavelet admissibility (2.10) is not a 
necessary condition for WT inversion. For example, 
it is not necessary for a fundamental wavelet to be 
evenly undulant to make the WT invertible. 
Secondly, a WT with its fundamental wavelet 
having significant frequency 1 should be always 
invertible. This suggests a new wavelet definition 
free of the admissibility (2.10): a local time 

function undulant with frequency 1 is called a 
wavelet. According to such definition, a wavelet 

ψ(t) can be simply expressed as 

)exp()()( ittwt =ψ                          (2.16) 

where w(t)∈L
1(R) is a window. Such defined 

wavelet is not required to be evenly undulant. 

3 Normal TFT 

3.1 Definition 

Definition 1 A TFT Ψ is regarded as normal, if its 

kernel Ψ(t,ϖ) satisfies  

ϖωϖωϖω =⇔==      1}|),(ˆ{| maximum),(ˆ ΨΨ  (3.1) 

here “⇔” means “if and only if”. 
There should be two typical normal TFTs: 

normal GT and normal WT. The normal GT is the 
phase-updated GT (1.2) satisfying 

0      1|})(ˆmaximum{| )(ˆ =⇔== ωωω ww  (3.2) 

Here, we called the window w(t) satisfying (3.2) 
a normal window. In other words, the normal GT is 
the phase-updated GT (1.2) using a normal window. 
The normal WT is the L1-norm WT (1.3) satisfying 

1  |})(ˆmaixmum{|1)(ˆ =⇔== ωωψωψ     (3.3) 

Here, we called a wavelet ψ(t) satisfying (3.3) a 

normal wavelet. A normal wavelet ψ(t) can be 
obtained by (2.16) with w(t) being a normal 

window. In other words, the normal WT is the L1-
norm WT (1.3) using a normal wavelet. 

In nature, the concept of normal TFT is born by 
the TFT inversion formula (2.11). Obviously, for 

f(t)∈L1(R), its normal TFT Ψf(τ,ϖ) can be inverted 
simply by 

Rttiftf
R R

∈−Ψ= ∫ ∫     ,dd))(exp(),(
2

1
)( ϖττϖϖτ

π   
(3.4) 

In such inversion formula, the inversion kernel 

I(t,ϖ)=exp(iϖt) is independent of the TFT kernel  

Ψ(t,ϖ). Thus, given the normal TFT of a time 
function, one can reconstruct the time function 
without knowing the TFT kernel. For example, 
Given the normal GT of a time function, one 
recover the time function without knowing the 
normal window w(t). For another example, given 
the normal WT of a time function, one can recover 
the time function without knowing the normal 

wavelet ψ(t). It is important to note that, the normal 
GT and the normal WT, though being different in 
time-frequency resolutions, share the same simple 
inversion formula (3.4). 

3.2 Precision for time-frequency analysis 

The normal TFT is not only simple in inversion 
formula but also precise for time-frequency 
analysis. A TFT precise for time-frequency analysis 
means that it can exactly identify i.e. explicate the 
immediate frequency, amplitude and phase of a time 
harmonic. A time harmonic h(t) can be written as 

))(exp(||)exp()( tiAtiAth βφβ +==       (3.5) 

where A is the complex amplitude, β is the angular 

frequency, φ is the initial phase and φ+βt is the 
immediate phase. In physics, h(t) describes a 
circular movement of a point on a complex plane. 

The angular frequency β allows being negative, 
which refers to a retrograde (i.e. clockwise) circular 

movement. Applying a normal TFT Ψ  to h(t) yields 
 

1) Rhh ∈∀=⇔==Ψ τβϖτϖτ     ,    |)(|maximum|),(|      (3.6) 

2) RiAhh ∈∀+==Ψ τβτφτβτ     )),(exp(||)(),(       (3.7) 

 
Relation (3.6) means that the amplitude spectrum of 
the normal TFT is unbiased in explicating the 
immediate frequency and amplitude of a harmonic. 
In other words, the spectral ridge of the normal TFT 
of a harmonic appears exactly along the harmonic 
frequency and the spectral ridge value is exactly the 
immediate amplitude of the harmonic. Relation 
(3.7) means that the normal TFT is unbiased in 
explicating the immediate (rather than initial) phase 
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of a harmonic. Relations (3.6) and (3.7) jointly show 
that the normal TFT enables unbiased explication of 
the immediate frequency, amplitude and phase of a 
time harmonic, and thus should enable precise 
explication of the immediate frequency, amplitude 
and phase of a quasi-harmonic. Among all the 
TFTs, only the normal TFT makes relations (3.6) 
and (3.7) simultaneously hold. Thus, the normal 
TFT is unique in unbiased explication of the 
immediate frequency, amplitude and phase of a time 
harmonic, and thus is unique for precise time-
frequency analysis. 

However, the conventional GT G*, which is not 
as updated in phase as (1.2), would not make 
relation (3.7) hold. It is easy to prove that, if G* 
uses a normal window, 

RiAhh ∈∀== τφβτ     ),exp(||)0(),(G*
 (3.8) 

This means that G* does not explicate the 
immediate but initial phase of a harmonic. In other 

words, G* does not show the phase evolution of a 
harmonic or quasi-harmonic. However, in the sense 
of time-frequency analysis, the immediate phase of 
a harmonic or quasi-harmonic is more significant 
than its initial phase. That is why we directly 
introduce in section 1 the phase-updated GT (1.2) 
rather than the conventional GT. 

However furthermore, the WT, if not as written 
in L1-norm as (1.3), would be difficult to make 
relation (3.6) hold. For a time function f(t), its L1/γ-
norm WT can be expressed by  

 ,    ,d))(()(||),(W ∫ ∈−=
R

Rtttff ϖττϖψϖϖτ γ
ψ
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Now assume that ψ(t) be the normal Morlet wavelet 
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where σ is the Gaussian window width 
parameter. It can be proved that 
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This means that the amplitude spectrum of the L1/γ-

norm Morlet WT of a β-frequency harmonic gets 

maximum at ϖ=β if and only if γ=1. In other words, 

the spectral ridge of the L1/γ-norm WT of a β-

frequency harmonic appears exactly at ϖ=β if and 

only if γ=1. Relation (3.11) proves the frequency 
bias phenomenon in the amplitude spectrum of non-
L1-norm Morlet WT [Fig. 1]. Such frequency bias is 
not ignorable in the sense of precise time-frequency 
analysis. For instance, the amplitude (or energy) 

spectrum of the L2-norm Morlet WT with σ=2π 
overstates an annual signal by about 4.6 days in 
period. Also for instance, the amplitude spectrum of 

the L∞-norm Morlet WT with σ=2π overstates an 
annual signal in period by as large as 9.0 days. In 
practice, Shyu and Sun [12] experimentally found 
the frequency bias phenomenon in the L2-norm 
Morlet WT spectrum. Liu et al [8] also 

experimentally found this phenomenon in the L∞-
norm Morlet WT spectrum. 

  

0 0.5 1 1.5 2

γ

5

10

15

δ

-3% -2% -1% 0% 1% 2% 3% 4%

Fig. 1 Relative frequency bias in the amplitude spectrum of the L1/γ-norm WT (3.9) using a normal Morlet 

wavelet (3.10) where σ is normal Gaussian window’s width parameter. 
 

Unfortunately, many authors pay little attention 
to the WT normalization because the normalization 

factor γ enters in a simple multiplicative way in the 
WT (3.9). Thus, they often applied either L2-norm 
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WT (e.g. [2]) or L∞-norm WT (e.g. [8]) to do time-
frequency analysis. Few of these applications have 
claimed or corrected the spectral frequency biases. 
The unfortunate is still shown throughout the 
internet and publications everyday! So, we strongly 
recommend that the L1-norm WT should be 
regarded as normal in the sense of precise time-
frequency analysis. Particularly, we have developed 
the concept of normal Morlet WT [7] to overcome 
the frequency bias phenomenon. 

3.3 Frequency resolution 

A normal TFT, when applied to analyze a time 
signal, requires enough fine frequency resolution to 
separate the component harmonics or quasi-
harmonics of the signal. Then, there is a question: 
how to measure the frequency resolution of a 
normal TFT? The answer to this question will help 
a signal analyzer to construct a normal TFT with 
desired frequency resolution. 

For a normal TFT Ψ, we call 

),(ˆ),( ϖωϖω ΨE =Ψ                  (3.12) 

the harmonic amplitude weight (HAW) function of 

Ψ. It is easy to know that 



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≠<

Ψ

Ψ

ϖωϖω

ϖωϖω

1

1

),(E

|),(E|       (3.13) 

The HAW function provides a measure for the 
frequency resolution of a normal TFT. In theory, a 

normal TFT Ψ with fine frequency resolution 
means that 

ϖωϖω ≠<<Ψ  if    ,1|),(| E              (3.14) 

This meaning can be well understood by observing 
the following two applications. 

At first, applying a normal TFT to a single 
harmonic h(t) (3.5) yields 

)(),(),( τϖβϖτ hEh Ψ=Ψ
            

(3.15) 

Thus, EΨ(ω,ϖ) normally weighs the amplitude of 

the normal TFT of a ω-frequency harmonic at 

frequency index ϖ. Here, the normality means the 

weight maximum is exactly 1 if and only if ω=ϖ, as 
shown by (3.13). 

Secondly, applying a normal TFT to the sum of 
two harmonics 

 

   ),exp()exp()()()( 21221121 ββββ ≠+=+= tiAtiAththtH

                          (3.16) 
yields 

)(),()(),(),( 2211 τϖβτϖβϖτ hEhEH ΨΨ +=Ψ

   (3.17) 
and particularly along the two harmonic 
frequencies 

)(),()(),( 21211 τββτβτ hEhH Ψ+=Ψ   

   (3.18) 

)(),()(),( 12122 τββτβτ hEhH Ψ+=Ψ   

  (3.19) 

Then, for a normal TFT Ψ to sufficiently separate 
the two component harmonics of H(t) from each 
other, its HAW values at the two harmonic 
frequencies require to be small enough, e.g. 
 

  %1|),(|    and    1%|),(| 1221 << ΨΨ ββββ EE                            

     (3.20) 

Upon a time signal containing two harmonics or 

quasi-harmonics with frequencies around about β1 

and β2, one can use the requirements (3.20) to 

construct a normal TFT Ψ to do good time-

frequency analysis with desired frequency 

resolution. 

-2 -1 0 1 2

-2

-1

0

1

2

ϖ

-2 -1 0 1 2
ω

-2 -1 0 1 2

-2

-1

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  

Fig. 2 HAW function of normal GT (left); HAW function of normal WT (middle) and HAW function of normal 

GMT (right). The three normal TFTs share a normal Gaussian window w(t)=exp(-t2/(2σ2))/((2π)1/2σ) with σ=2π.  
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There are two typical HAW functions. For a 
normal GT G, its HAW function [Fig. 2 (left)] is 

)(ˆ),(G ϖωϖω −= wE                  (3.21) 

To construct a normal GT with enough good 
frequency resolution to separate the two 
component harmonics of H(t) from each other 
means to evaluate a normal window w(t) such that 

EG(β1,β2) and   EG(β1,β2) are enough small. For a 
normal WT, its HAW function [Fig. 2 (middle)] is 

)1/(ˆ)/(ˆ),(W −== ϖωϖωψϖω wE     (3.22) 

To construct a normal WT with enough good 
frequency resolution to separate the two 
component harmonics of H(t) from each other 

means to evaluate a normal wavelet ψ(t) (i.e. a 

normal window w(t)) such that EW(β1,β2) and 

EW(β1,β2) are enough small. 
Fig. 2 (left and middle) shows that, for the 

normal GT and the normal WT sharing one normal 
window, the former is better in frequency 

resolution within high frequency band (i.e. ϖ >1) 
than the later, and is worse in frequency resolution 

within low frequency band (i.e. ϖ <1). Here we 

defines a normal TFT Ψ with favorable frequency 
resolution by letting 
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
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(3.23) 
where w(t) is a normal window. We call such 
normal TFT as normal Gabor-Morlet transform 
(GMT), because it is a combination of the normal 
GT (within high frequency band) and the normal 
WT (within low frequency band). By observing 
the HAW [Fig. 2 (right)] of the normal GMT, one 
can find that the normal GMT has the same good 
frequency resolution within high frequency band 
as the normal GT and has the same good frequency 
resolution within low frequency band as the 
normal WT. Thus, in the full-band sense, the 
normal GMT works better for the time-frequency 
analysis than an individual normal GT or normal 
WT. The normal GMT is invertible by (3.4). 

In fact, a time-frequency analyzer can construct 
a normal TFT by designing a HAW function in 
advance. The HAW can be designed according to 
analyzer’s particular frequency resolution 
requirements. Such constructed normal TFT may 
not be of an analytical kernel but of a numeric 
kernel. How to construct a normal TFT by 
designing a HAW with required frequency 
resolution is beyond the range of this study. 

4 Conclusions 

Two inversion formulas for the TFT are 
proved, one being general and the other being 
specific. A new inversion formula for the WT is 
found, and a new wavelet definition free of the 
conventional admissibility is made. The concept of 
normal TFT is developed for precise time-
frequency analysis, as the normal TFT is unique in 
unbiased explication of the immediate frequency, 
amplitude and phase of a harmonic. The 
conventional GT should be updated in phase to 
become a normal TFT. The WT should be written 
strictly in L1-norm to become a normal TFT. 
Finally, we provide a HAW function to measure 
the frequency resolution of the normal TFT. 

 

Appendix:  We here present a conjecture: 
Except for GT (1.2) and WT (1.3), TFT (1.1) 
can not find the inversion way other than (2.11). 
It comes from the following considerations: GT 
(1.2) can be inverted by (2.7) beside by (2.14), WT 
(1.3) can be inverted by (2.9) besides by (2.15), 
but normal GMT (3.13) seems difficult to find the 
inversion formula other than (3.4). This conjecture 
concerns to the roles of the GT and the WT in the 
TFTs. By now, however, we cannot prove whether 
this conjecture is right. 
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