Progr. Fract. Differ. Appl. 11, No. 1, 119-127 (2025) %N ===\ 119

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/110108

Novel Dynamic Inequalities of Ostrowski-Trapezoid-
Griss-type on g-Difference Operator

Ahmed A. El-Deeb"* and Barakah Almarri*

! Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt
2 General Studies Department, Jubail Industrial College, 8244 Rd Number 6, Al Huwaylat, Al Jubail 35718, Saudi Arabia

Received: 30 May 2024, Revised: 11 Jun. 2024, Accepted: 12 Jun. 2024
Published online: 1 Jan. 2025

Abstract: We prove some new extensions of the Ostrowski inequality and its companion inequalities on ¢- difference operator by
using two parameters for functions whose second g-derivatives are bounded. In addition to improving some results achieved by using
weak conditions, the inequalities proved here include some results proven in the literature that are inferred as limited cases. Our results
in the continuous and discrete instances lead to the derivation of several original integral and difference inequalities. So, furthermore
to these generalizations, some continuous inequalities are obtained as special cases of main work. Our results are proved by using the
integration by parts formula on g-difference operator.
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1 Introduction

For the sake to compute the absolute deviation of a differentiable function and its integral mean, Ostrowski [24] established
the following sharp integral inequality:

Theorem 1.Assume that the function ® : [0,{] — R is continuous on [0,{] and differentiable on (0,(), then for all
A €16,¢), we have
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Clearly, inequality (1) estimates an upper bound for the absolute deviation between the value of & at a point A in [0, (]
and its integral mean over [0, {].

Griiss [16] proved the following inequality to estimate the absolute deviation of the integral mean of the product of
two functions from the product of the integral means.

Theorem 2.Let @ and ¢ be continuous functions on [0, ] such that
m < @) <My and  m<§(E) <My,  forall §€l6,(].

Then the following inequality

9 9 ¢
ot ) @0IaE - e [ R [ 9(EaE| < o - )bt o) @

holds.
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Inequality (2) is known in the literature as the Griiss inequality.
One of the companion inequalities of the Ostrowski inequality is the following inequality which is known in the
literature as the trapezoid inequality [22].
Theorem 3.Assume that P is a twice differentiable function on [0, ], then
D(O)+P(E) ¢ £-0)
POPE) (o) [*aeie| < swp o) E2
2 ) 9<E<l 12
In [25], Pachpatte obtained the following trapezoid and Griiss type inequalities.

Theorem 4.Assume that @ : [0,{] — R is continuous and differentiable on (0,§), whose first derivative @' : (0,() — R
is bounded on (0,§), then

‘4’2(@)—4’2(9)_4’(?)—4’(9) dé‘ MZC 0)°
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where M = sup @'(§).
0<E<(¢

Theorem 5.Assume that @, ¢ : [0,{] — R are continuous and differentiable on (0,§), whose first derivatives @', ¢ :

(8,8) — R are bounded on (8 ,c[), then
L [ e ) (g o )|
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where M = sup ®'(§) and N= sup ¢'(&).

0<é<C 0<<¢

Ostrowski’s inequality has a significant importance in many fields, particularly in numerical analysis. One of its
applications is the estimation of the error in the approximation of integrals.

Many generalizations and refinements of the Ostrowski inequality and its companion inequalities were done during
the past several decades, we refer the reader to the articles [1,5,8,19,20,21,7,6,10,9,2], see also [14,28,11,12,13,12,
30], and the books [22,23] and the references cited therein.

The aim of the present paper is first to establish a new Ostrowski type inequality on g-difference operator for
functions whose second g-derivatives are bounded. Then, we prove new generalized Trapezoid and Griiss type
inequalities on g-difference operator. As special cases of our results, some continuous inequalities are obtained.

This paper is organized as follows: In Section 2, we briefly present the basic definitions and concepts related to the
calculus on g-difference operator. In Section 3, we state and prove our main results.

2 Preliminaries

In this section, we introduce some g-notations, we can found some of the following concepts in [15] Let 0 < g < 1 be
fixed. The g-shifted factorial, is defined for a € C and n € Ny by

n

[T(1—ag’ "), ifneN,
(a:q)n = j=1

1, if n=0.

Since 0 < g < 1, then the limit of (a;¢).. as n tends to infinity exists and will be denoted by (;¢)e. The multiple g-shifted
factorial for complex numbers ay,- - - ,a; is defined by

k
(alvaZa NN H aij, q
Jj=1

© 2025 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 11, No. 1, 119-127 (2025) / www.naturalspublishing.com/Journals.asp NS e 121

The g-binomial coefficients are [15]
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see also [27,26]. We say that A C R is a g-geometric set if for every r € A,gt € A. Let f be a real or complex valued
function defined on a g-geometric set A. The following g-difference operator is defined by Jackson in [18]

f(1) = flar)
t(1—q) °

and satisfy the property

Dyf(1) = t#0. ®)

If 0 € A, the g-derivative at zero is defined in [29, 3] by

Dyf(0) = lim f(tq") — f(0)

n—-ioo tq"

, TEA. (6)

Provided the limit exists and does not depend on 7. As in clearly seen, the definition of D, f(¢) on A C R does not require
A to be g-geometric. However, if 0 € A, and we need to define D, f(0), A has to be g-geometric. In most reference, see
e.g. [15], D,f(0) is defined to be f’(0), which is more restrictive. Also defining D, f(¢) does not need ¢ to lie in (0,1),
we may take g € R. Nevertheless, in this paper we will always assume that g € (0, 1). Exceptionally, we may consider
D1 f(-), which is defined by

Dyf(q'1), 1#0,
D1 f(t) = (7
D, f(0), t=0.
provided that D, f(0) exists and A is suitably chosen. It is worthwhile to mention that although the ¢-difference operator
(5) is attributed to Jackson, [18], it may go back to Heine, cf. [15]. The following rules concerning g-derivatives can be
easily checked or found in related monographs like [4,15]. If f and g are defined on a g-geometric set A such that the
g-derivatives of f and g exist for all 7 € A, then
Dy(f £g)(t) = Dgf (1) £Dyg(t),
Dq(fg) (t) = qu(t)g(t) +f(qt)Dqg(t),
and if f(r) # 0 # g(gt), then
S o qu(t)g(t) - f(t)Dqg(t)
Dy( = (1) = .
g f()g(qr)

Jackson in [17] introduced a g-integral which is denoted by

b
| s ®)
a
as aright inverse of the g-derivative. It is defined by
b b "a
/ ft)dyt = / ft)dgt — / ft)dyt, a,beA, )
Ja 0 JO
where . .
| 10d=11=) ¥ a'sa), 14, (10)
n=0

provided that the series at the right-hand side of (10) converges at t = a and b. The requirements for the derivation of
a fundamental theorem of the g-calculus is less restrictive than classical calculus, cf. [3,29]. A function f defined on a
g-geometric set A is said to be g-regular at zero if

lim f(tq") = f(0) forall te€A. (11

n—yoo
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It should be noted that continuity at zero implies g-regular at zero, but the converse is not necessarily true. A counter
example could be found in [3]. Let f,g be a g-regular at zero functions defined on a g-geometric set A containing zero.

Define
't
F(t):= / f(s)dys, te€A.
Jo
Then F is g-regular at zero. Furthermore, D, F (1) exists for every r € A and
DyF(t) = f(t), VreA.
Conversely, if a and b are two points in A, then
b
| #0dy = F(b) - F(a),
a

also the rule of g-integration by parts is

b

/abf(t)Dqg(t)dqt=f(b)g(b)—f(a)g(a)—/ Dy(f(1))g(qt)dgt, a,bcA.

Ja

Let f,g be g-integrable on A, k € R and a,b,c € A. Then:
a
(1) / f(t)dyt =0.

(ii) / kf()dgt —k / o
b a
(iii) /a f(t)dqt:—/b ft)dyt.
(iv) /abf(t)dqt:/acf(t)dthr/cbf(t)dqt.
b b b
® [ GO+ = [ e+ [ g00da.

Next, we state and proof our main results.

3 Main Results

3.1 An Ostrowski-type inequality on q- difference operator

12)

13)

(14)

Theorem 6.Let 0, §, A, & € A and 6 < § where 0 € A is g-geometric set. Further, assume that ® : [0,§] — R is a twice

g-differentiable function. Then, for all A € [0,{] and 11,y € R, we have

|¢Wﬁwae [} etaas+ 2 [ o]
[ ST D sk

+/9C ./; C%T(),,i)Dq@(qS)qudqé]

¢ ¢
<k ["[1r.erEldsdt. (s
h
where L(i;@) oot
T()L é): n+vy A—6/’ - ’
7 i(ﬂ) A<§<C
n+y\g—A2 T
and
K= sup |D$db(§)|<oo.
0<E<(¢
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Proof.Using integration by parts formula on g-difference operator (14), we have

*n (56 _n n &
/9n+y(7t G)D qb(i)dqé—mqb(l)—m/e D(g8)dyS, (16)
and
[ (S paee = o) - T [ ia)ag an)
Deon+y\g=2a/)71 = n+y M+nC—2)Jn 2%
Adding (16) and (17), we get
£ A
[ roeme@s - om- [ [ et + L [ et (13)

Similarly, we have
¢ 2
/9 T(€,5)D2D(s)d,s (19)

=D, P (&) — 77"’7[5 9/ Dy P(gs) qs+ 5/ D,®(gs)d ]

Substituting (19) into (18) leads to

/C /CT A, E)T(E,s) D2<P(s)dqsdqé

s ST m et

/ / T (X,&)DyP(gs) qsdqi} (20)

- @(Mn%y[m/e' e L]

Inequality (15) follows directly from (20) and the properties of modulus. This completes the proof.

Corollary 1.If we take g — 1~ in Theorem 6, then, inequality (15) becomes

’cpm nw[l 9/ di+%/j¢(§)d§]
an / £ T(0,6) P ()dsd
+/9 /é C%T(l,‘g’)di'(s)dﬂlé”

¢
<K/9 /9 Y(A,E)Y(E.5)|dsdE.

where
_n (s5-90
) n+yy(%_g), 6<8<A,
m(j), lSé‘SC
and

K= sup [&"(£)] <e.
0<E<(¢
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3.2 A Trapezoid-type inequality on q- difference operator

Theorem 7.Under the same assumptions as in Theorem 6, we have

20— (0 - [ [ o)+ o8

L [ )+ o)) g a2

§M(M—|—P)./6 /6 Y (A,8)|dgEdy, (21)

where

n_(6-0
i(03) Asgst
and

M= sup [D,@(&)| and  P= sup |DyP(qE)|.
0<E<C 0<E<¢

Proof.From (18) we have

o) = [ T80, 2 + [ [ ottiag + L [ olatia] @

and similarly

k):/éT(k,é)ch(qé) a+ [ [ et
Iy = “a() qé‘] (23)

Now, adding (22) and (23) produces
¢
D(A)+P(gA) :/ T (1,8)[D, CD(&HD P(q8)]d,E

1
nﬂf[?t 0

¢
vty [ o)+ aee]a|

Multiplying the last identity by D,®(A ), using (14) and integrating the resulting identity with respect to A from 6 to
yields

D(gE) + P(q°E)]dy&

/ / Dy @)Y (A, E)[Dy®(E) + Dy (gE )| dyEdyh

+n_1w/ o)1 [ 0lad) + o8]t

¢
el [ (@l @@

Equivalently

1
@)~ 0(0)- —— [" Do) s [ 000+ 0l

29
i [@(%)m(&&)}%&}m

,/ / Dy®(A)Y (4,E)[DyP(E) + Dy P(gE)]dyEdyA.
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Taking the absolute value on both sides, we get

1 ¢
@0 20)- [ Do) [ @)+ o)
¢
[¢<qé>+¢<q25>]dqé]dqx

+—
/‘ D i '/L ‘:)[D i(é) Dq¢(‘]‘:)}dq€dq’/t

g/ / D, @) [T (1.8)| |0, @(&)]| + |0, @(g2) | dy 2

<M(M+P) / / Y (A,8)|dyEdyA.
This shows the validity of (21).

Corollary 2.If we take ¢ — 17 in Theorem 7, then, inequality (21) becomes

<I>2(C)g<1>2(9) B niy/:q’/m[ﬂ—e./:@(é)dé +ﬁ/j¢(é‘)dé]dl‘

where
n -0
r(4,¢)= n—y(ﬁ)’ 6<E<,
n—ﬂ(j)’ r<é<¢
and

3.3 A Griiss-type inequality on g- difference operator

Theorem 8.Let 0, £, A, & € A and 0 < § where 0 € A is g-geometric set. Moreover, assume that @, ¢ : [0,{] — R are -

differentiable functions. Then, for all A € [0,] and 1,7y € R, we have

‘2/§¢(A)¢(A)dq nﬂ[l 9// 2)+(q8)P ())dqédql

L [ (20100 + 000 ())dqédql”

g/@ /6 ]T(A,é)][M\¢(l)|+N\d>(l)”dq§dql, (24)
where
L R
Y(h.E) = ’7”(2:2)’ o
i gm3) Asést
and
M= sup |[D;P(E)| <o and ~ N= sup |Dyp(§)| < oo.
0<E<C 0<E<(¢
Proof.From (18) we have
¢
o) = [T 00,0E e+ [ [ et + Ly [ elati] @5

© 2025 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

126 NS B A. A. El-Deeb, B. Almarri: Novel dynamic inequalities of...

and similarly

o) = [T D08 + [ [t + Ly [ otatiang] 2o

Multiplying (25) by ¢(A) and (26) by @(A), adding them and integrating the resulting identity with respect to A from 6
to ¢ yield

9 S
2./9 Cb(),)(l’(),)dql = / / T(l,é) D d)({:)q’,)()’)+Dq¢(€)¢(l)]dq(:dqﬂ,
nﬂ/[l il / 1)+ 9(a§)P(A) ) dy

/ / 2)+0(ql)® <>)dquqa}

By using modulus properties, we obtain

‘Z/C(D(Md)(l)d" n+y{l 9/ / A)+9(g8)P(4 ))dqédqx
L [ (a0 +otaere <>)dq§dqu
o /9 Y (2,8)[Dy®(E)9(A)+Dy$(§)D(A)]dyEdy A

¢

< [ [ iras[Ipe@llot)i+ |p,0@)l| @0 |4, dn
.C .C

?/9 /9 \TUL@)\[M!¢(/1)|+Nyd>(1)\}dquqz.

This concludes the proof.

Corollary 3.If we take ¢ — 17 in Theorem 8, then, inequality (24) becomes

]2/C¢<x>¢< *‘n—w[x o [ [ (2@00)+ @100 azar
s [ [ (@@0m) +oe)e <>)dédxH

?/9 /9 \m,é)\[M!¢(x>|+zvy¢mﬂd5da,

Where
YA€)= %’(ﬁ) 6<E<A
n+yy<%)’ A<E<¢

and

M= sup [P'(§)|<e0 and N= sup [¢(§)]<eo.
0<E<C 0<&<C

4 Conclusion

In this manuscript we discussed some new investigations of the Ostrowski inequality and its companion inequalities on g-
difference operator by using two parameters. These inequalities have certain conditions that have not been studied before.
For example, in Theorem 6, we are dealing with a function @ whose second g-derivative is bounded, while all the existing
literature deals with functions whose first derivatives are bounded. Besides that, in order to obtain some new inequalities
as special cases, we also extended our inequalities to continuous calculus.
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