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Abstract: Approximation methods are quite important in finding solutions of various differential equations. Adapting these methods

to the context of Λ -fractional calculus requires specific adjustments, which are discussed in the present study. In particular, this study

introduces relevant modifications to the Rayleigh-Rich approximation method. The implementation is performed on the bending

deformation of an elastic beam, elucidating the necessary modifications made to the Rayleigh-Ritz method in order to accomodate it

within the framework of the Λ -fractional analysis. These modifications, along with the Λ -fractional Rayleigh-Ritz method itself, are

instrumental for establishing the Λ -fractional Finite Element method.
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1 Introduction

Since fractional integrals and derivatives are considered advanced mathematical tools [1,2,3,4,5,6], they have found
application in the formulation of realistic responses of various phenomena in Physics and Engineering [7,8,9]. In
mechanics, for example, where major factors determining material deformation include microcracks, voids and material
phases, researchers in disordered (non-homogeneous) materials with microstructure, have used fractional analysis to
provide elaborate descriptions of the mechanics of porous materials, colloidal aggregates, ceramics, etc. [10,11].
Additionally, viscoelasticity problems have recently also been formulated by employing fractional analysis.

In general, addressing such problems requires non-local theories. To meet this requirement, strain gradient theories
were developed, in the context of which, intrinsic material lengths were introduced alongside higher order derivatives of
the strain [12,13,14,15]. Many phenomena have been successfully described employing these theories, including
problems concerning size effects and the lifting of various singularities, while these theories have also been used in the
study of porous materials [14,16,17,18]. Another non-local approach was advanced by Kunin [19,20].

Lazopoulos introduced fractional derivatives of the strain into the strain energy density function in an effort to
incorporate non-locality in the elastic response of materials [21]. Fractional calculus has been used by many researchers,
not only in mechanics but also in Physics, particularly in quantum mechanics, in order to explore the concept of
non-locality. In fact, the history of fractional calculus dates back to the 17th century, and some of the fields where
fractional calculus has been applied include particle physics, electromagnetics, mechanics of materials, hydrodynamics,
fluid flow, rheology, viscoelasticity, optics, electrochemistry and corrosion, and chemical physics.

Nevertheless, the mathematical formulation of various physical problems within the context of fractional analysis
follows a procedure that may raise questions. Specifically, although the various laws of Physics have been derived by
means of differentials, this is not the case for the well-known fractional derivatives, which are not directly related to
differentials. Simple substitution of conventional differentials by fractional ones is not capable of expressing realistically
the behaviour of various physical systems. Recently, Lazopoulos proposed the Λ -fractional derivative, along with the
conjugate fractional Λ -space, wherein the Λ -fractional derivative follows conventional derivative rules [22]. Subsequently,
Lazopoulos also presented the theory of Λ -fractional elastic solid mechanics [23].

The present study focuses on the formulation of the Λ -fractional Rayleigh-Ritz method, a mathematical approximation
technique for solving various differential equations. The method has been used to develop solutions for both static and
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dynamic problems. In fact, applications of this approximation method in vibration analysis can be found in Meirovich [24],
and in solutions of differential equations in Norrie and Devries [25], within the framework of Finite Element Analysis.

This work establishes the Λ -fractional Rayleigh-Ritz method, essential for the solution of static and dynamic problems
within the context of Λ -fractional analysis. This work may also be considered as a step towards establishing the Λ -
fractional Finite Element Analysis.

2 The Λ -Fractional Derivative

A brief outline of Λ fractional calculus is presented in the current section. For more information, the interested reader is
referred to the literature [6,7,8,9,10].

The left and right fractional integrals are defined by

aIγ
x f (x) =

1

Γ (γ)

∫ x

a

f (s)

(x− s)1−γ
ds, (1)

xI
γ
b f (x) =

1

Γ (γ)

∫ b

x

f (s)

(s− x)1−γ
ds, (2)

respectively, where 0 < γ ≤ 1 is the fractional order, and Γ (γ) is Euler’s Gamma function. Further, the left and right
Riemann-Liouville (RL) fractional derivatives are defined by

RL
a Dγ

x f (x) =

(

d

dx

)m+1
(

aIm−γ
x f (x)

)

, (3)

RL
x D

γ
b f (x) =

(

−
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b f (x)

)

. (4)

It is pointed out that for the left fractional integrals and derivatives, the following relation holds:

RL
a Dγ

x (aIγ
x f (x)) = f (x). (5)

A similar relation is valid for the right RL-fractional integral and derivative.
Considering only the left space, the Λ -fractional derivative (Λ -FD) is defined as

Λ
a Dγ

x f (x) =
RL
a D

γ
x f (x)

RL
a D

γ
x xγ

. (6)

Recalling the definition of the RL fractional derivative, Eq. (3), Λ -FD is expressed as

Λ
a Dγ

x f (x) =

d
dx

(

aI
1−γ
x f (x)

)

d
dx

(

aI
1−γ
x x

) =
d aI

1−γ
x f (x)

d aI
1−γ
x x

. (7)

Further, considering

X = aI1−γ
x x,

F(X) = aI1−γ
x f (x),

(8)

Λ -FD appears to behave as a conventional derivative with local properties in the (X ,F(X)) Λ -fractional space (hereafter,
termed simply Λ -space for brevity). In fact, a fractional differential geometry can be developed as a conventional
differential geometry in Λ -space. Indeed, Eq. (8a) yields

X =
x2−γ

Γ (3− γ)
, (9)

In addition, Eqs. (8b), (9) suggest that

F(X) = aIx
1−γ =

1

Γ (1− γ)

∫ x

a

f (s)

(x− s)γ
ds. (10)
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Solving Eq. (9) for x yields

x = (Γ (3− γ)X)
1

2−γ = x(X). (11)

Proceeding further to the definition of Λ -space, substituting x(X) in Eq. (10), results in the function F(x) being expressed
as a function of X .

F(X) = F (x(X)) . (12)

In the above presentation, only left fractional integrals and left RL fractional derivatives were employed. In similar fashion,
involving the right fractional integrals and right RL derivatives, the right Λ -FD is defined by

Λ
x D

γ
b f (x) =

dxI
1−γ
b f (x)

dxI
1−γ
b x

=
dF(X)

dX
,

F(x) =
1

2

(

aI1−γ
x f (x)+ xI
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b f (x)

)

=
1

Γ (1− γ)

(

∫ x

a

f (s)

(x− s)γ
ds+

∫ x

b

f (s)

(s− x)γ
ds

)

.

(13)

In the following, it will be demonstrated how Λ -space (X ,F(X)) is defined from the initial space (x, f (x)). Furthermore,
the pull back of the results in the initial space will also be established.

3 The Λ -Fractional Rayleigh-Rich Approximation Method

As mentioned previously, derivatives in Λ -space behave like conventional ones, satisfying the prerequisites of the
Differential Topology and corresponding to differentials creating a Differential Geometry. Therefore, the Rayleigh-Ritz
method is applied in Λ -space exactly as in the conventional case. Subsequently, the results are transferred into the initial
space.

The potential energy in Λ -space is defined by

Π(X) =

∫

Ω
UdX−

∫

Ω
QdX. (14)

Let Y (X) be the one-dimensional approximate displacement in Λ -space, which can be expanded according to

Y (X) =
k

∑
i=0

Ai X i, (15)

resulting in the potential energy being expressed as

Π(X) =
k

∑
i=0

µi Ai +
i=k, j=k

∑
i=0, j=0

µi Ai A j. (16)

Then, the minimization of Π is defined through the (k+ 1)× (k+ 1) system of equations:

∂Π

∂Ai

= 0, i = 0, . . . ,k. (17)

The solution of the equilibrium system, defined by Eq. (17) above, is valid only in Λ -space. The final solution is
obtained by transferring the Λ -space solution into the initial space, by means of Eq. (13b).

The presented Λ -fractional Rayleigh-Ritz method is implemented to the bending deformation of an elastic beam
under constant, continuous loading. In the case of the cantilever beam of Fig. 1, the following parameters were
considered: beam length of l = 2m, continuous loading q =−125kp/m, and stiffness EI = 60,000 kp ·m2. Furthermore,
it was assumed that γ = 0.5. In Λ -space, the bending deformation of the beam has both left and right contributions. In the
following, we elaborate these contributions individually, and subsequently determine the total deformation of the elastic
beam.

3.1 The left Λ -fractional beam bending

In the case of the left Λ -fractional beam bending, the pole of fractional integration was at x = 0, and the beam’s edges
were located at x = 0.25m and x = 2.25m, respectively.
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Fig. 1: The elastic cantilever beam in the (x,y) initial space.

The left Λ -space is defined with (X ,Y ) coordinates given by

X =
1

Γ (1− 0.5)

∫ x

0.25

s

(x− s)0.5
ds = 0.75

√
x− 0.25(x+ 0.125), (18)

Y (X) =
1

Γ (1− 0.5)

∫ x

0.25

y(s)

(x− s)0.5
ds. (19)

Transferring the problem from the initial space (x,y) to Λ -space (X ,Y ), the cantilever beam is defined in 0 < X < 2.53.
Therefore, the length of the beam in Λ -space is equal to L = 2.53m (Fig. 2).

Fig. 2: The elastic cantilever beam in the left Λ -space.

The constant load q in the initial space corresponds to a variable, continuous load Q(X) in the left Λ -space, shown in
Fig. 3. The functional expression of Q with respect to the initial space variable x is given by

Fig. 3: The variable continuous load Q versus the axial coordinate X in Λ -space.

Q(x) =
1

Γ (1− 0.5)

∫ x

0.25

q

(x− s)0.5
ds =

0.56419(62.5− 250x)

(x− 0.25)0.5
. (20)
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Following the same procedure, the constant stiffness EI of the beam in the initial space becomes the variable stiffness
EIΛ (x) in Λ -space, expressed as

EIΛ (x) =
1

Γ (1− 0.5)

∫ x

0.25

EI

(x− s)0.5
ds =

16925.7(4x− 1)

(x− 0.25)0.5
. (21)

Combining EIΛ (x) with Λ -space variable X , Eq. (18), results in the fractional stiffness being expressed with respect to X ,
that is, EIΛ (X) (Fig. 4).

Fig. 4: The variable stiffness EIΛ versus the axial coordinate X in Λ -space.

The total energy of the beam is defined by

Ω =

∫ 2.53

0.25

(

EIΛ

2

(

d2Y (X)

dX2

)2

−Q(X)Y(X)

)

dX . (22)

The approximate solution is expressed as

Y app(X) = a0 + a1 X + a2 X2 + a3 X3 + o(X3). (23)

The boundary conditions at X = 0 are:

X =
dY (X)

dX
= 0 with a0 = a1 = 0. (24)

Further, performing the calculus in Eq. (22) results in

Ω = 951a2 + 342629a2
2+ 1856a3+ 3.07 ·106a2a3 + 8.22 ·106 a2

3. (25)

The minimization of the total energy Ω is defined by the conditions:

∂Ω

∂a2

=
∂Ω

∂a3

= 0. (26)

Solving Eqs. (26) yields
a2 =−0.00541, a3 = 0.00090. (27)

Hence, Eq. (23) can be expressed in the form:

Y app(X) =−0.00541
(

0.75
√

x− 0.25(x+ 0.125)
)2

+ 0.00090X3. (28)

The deflection Y (X) of the bending beam in Λ -space is shown in Fig. 5. In turn, using Eq. (18), the deflection of the beam
in Λ -space with respect to the initial space variable x is expressed as

Yapp(x) =−0.00541
(

0.75
√

x− 0.25(x+ 0.125)
)2

+ 0.00090
(

0.75
√

x− 0.25(x+ 0.125)
)3

. (29)

The true deflection of the beam in the initial space is subsequently defined by

yl
app(x) =

1

Γ (0.5)

d

dx

∫ x

0.25

Yapp(s)

(x− s)0.5
ds. (30)
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Fig. 5: The deflection of the beam in Λ -space.

Fig. 6: The left Λ -fractional deflection in the initial space.

Fig. 7: The elastic cantilever beam in the (z,y) initial space.

The true deflection in the initial space is shown in Fig. 6.

3.2 The right Λ -fractional beam bending

In the case of the right Λ -fractional beam bending, the initial space is considered in the (z,y) coordinate system, as
illustrated in Fig. 7. Now, the right fractional pole is located at z = 0, and the beam’s edges at z = 0.25m and z = 2.25m,
respectively. In addition, at the clamped end of the beam the following boundary conditions are satisfied:

y(2.25) =
dy(z)

dz

∣

∣

∣

∣

z=2.25

= 0. (31)
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Fig. 8: The elastic cantilever beam in the right Λ -space.

Fig. 9: The variable continuous load Q versus the axial coordinate Z in Λ -space.

Fig. 10: The variable stiffness EIΛ versus the axial coordinate Z in Λ -space.

The left Λ -space is defined by the (Z,Y ) coordinates according to:

Z =
1

Γ (1− 0.5)

∫ z

0.25

s

(z− s)0.5
ds = 0.75

√
z− 0.25(z+ 0.125), (32)

Y (Z) =
1

Γ (1− 0.5)

∫ z

0.25

y(s)

(z− s)0.5
ds. (33)

Transferring the problem from the initial space to Λ -space (Z,Y ), the cantilever beam is defined in 0 < Z < 2.53, that is,
the length of the beam in Λ -space is equal to L = 2.53 m (Fig. 8).

The constant load q in the initial space corresponds to the Q(Z) variable continuous load in the right Λ -space, shown
in Fig. 9. The constant stiffness EI of the beam in the initial space becomes the variable stiffness EIΛ (Z), shown in Fig.
10.

The total energy of the beam is now defined by

Ω =

∫ 2.53

0.25

(

EIΛ

2

(

d2Y (Z)

dZ2

)2

−Q(Z)Y (Z)

)

dZ. (34)

The approximate solution is expressed as

Y app(Z) = b0 + b1 (Z − 2.53)+ b2(Z − 2.53)2+ b3 (Z − 2.53)3+ o(Z3). (35)
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Fig. 11: The right Λ -fractional elastic curve in Λ -space.

The boundary conditions at Z = L = 2.53 are

b0 = b1 = 0. (36)

Further, performing the calculus in Eq. (34) results in

Ω = 515.125 b2 + 342629b2
2− 856.613b3− 2.064 ·106 b2b3 + 4.45 ·106 b2

3. (37)

The minimization of the total energy Ω is defined by the conditions

∂Ω

∂b2

=
∂Ω

∂b3

= 0. (38)

The solution to Eqs. (38) yields

b2 =−0.00153, b3 =−0.00025. (39)

Hence, Eq. (35) yields the approximate solution

Y app(Z) =−0.00153(Z− 2.53)2− 0.00025(Z− 2.53)3. (40)

The deflection Y (Z) of the bending beam in Λ -space is shown in Fig. 11.

Combining Eqs. (32) and (40), we obtain the deflection Y (z) of the beam in Λ -space with respect to the initial space
variable z:

Yapp(z) =−0.00153
(

0.75
√

z− 0.25(z+ 0.125)− 2.53
)2

+ 0.00090
(

0.75
√

z− 0.25(z+ 0.125)− 2.53
)3

. (41)

The true deflection of the beam in the initial space is then defined by

yr
app(z) =

1

Γ (0.5)

d

dz

∫ z

0.25

Yapp(s)

(z− s)0.5
ds. (42)

The true deflection in the initial space is shown in Fig. 12.

3.3 The total Λ -fractional beam bending

The total bending deflection of the beam is the average of the left and right Λ -fractional beam deflections, that is, the
average of the quantities defined in Eqs. (30) and (42). Hence,

yapp(x) =
1

2

(

yl
app(x)+ yr

app(2.25− x)
)

. (43)

The total deflection of the beam is shown in Fig. 13, whereas the conventional elastic curve for the considered elastic
beam is presented in Fig. 14. Comparing the Λ -fractional and conventional elastic curves, it is evident that the former is
significantly larger than latter.
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Fig. 12: The right Λ -fractional deflection in the initial space.

Fig. 13: The Λ -fractional elastic curve of the beam.

Fig. 14: The elastic curve for the conventional beam.

4 Conclusion

This study presented a method for establishing approximation methods for solving various differential equations.
Specifically, the Rayleigh-Ritz approximation method, applied to a conservative system, was presented for solving
Λ -fractional differential equations. The presented procedure can be employed to provide approximate solutions in
Λ -space in the context of other approximation methods as well, like the virtual displacement method, the collocation
method, and the weighted residuals or Galerkin method. The final goal is the establishment of the Λ -fractional finite
element analysis for the solution of Λ -fractional differential equations.
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