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Abstract: The integration of Machine Learning (ML) into heating, ventilation, and air conditioning (HVAC) systems significantly
enhances fault detection and diagnosis (FDD), crucial for improving energy efficiency, as buildings account for around 40% of global
energy consumption. However, the presence of inaccurate and noisy data can complicate FDD efforts, as traditional methods often
struggle in real-world conditions. This study explores FDD through an experiment conducted in two distinct environments: residential
and non-residential buildings. Using a Node MCU microcontroller and over 16 sensors, data on microclimate parameters such as
temperature, humidity, and CO2 levels were collected and analyzed in real time. The findings highlighted the variability of microclimate
conditions and identified challenges associated with existing FDD methods, including the limitations of Principal Component Analysis
(PCA) in noisy environments. Recent literature categorizes ML-based FDD methods into three groups: traditional machine learning,
deep learning, and hybrid models, demonstrating their superiority over conventional approaches. However, challenges such as data
variability and the need for real-time processing still exist. To develop intelligent fault diagnosis systems, the CRISP-DM methodology
is proposed, encompassing phases from business understanding to deployment, while addressing potential noise and inaccuracies. The
system architecture includes sensors for monitoring climate and air quality, a microcontroller for data processing, a user interface
for real-time notifications, and analysis algorithms for anomaly detection. Overall, this research underscores the potential of ML in
optimizing Heating, Ventilation, and Air Conditioning performance and emphasizes the need for adaptive models and IoT integration
to enhance data collection efficiency, marking an important step toward sustainable energy practices in building microclimate control.

Keywords: Heating, Ventilation, and Air Conditioning (HVAC), Cross-Industry Standard Process for Data Mining(CRISP-DM),
Machine Learning (ML) in HVAC Systems, Fault Detection and Diagnosis (FDD), Energy Efficiency in Buildings, Microclimate
Parameters, Data Variability and Noise in FDD, Principal Component Analysis (PCA).

1 Introduction microclimate, including temperature, humidity, and air

movement, plays a crucial role in energy efficiency and
Microclimate control in buildings has become a major comfort within buildings. Modern automated systems
global concern due to rising energy consumption and primarily regulate temperature, but optimal health
carbon dioxide emissions. Buildings contribute to over a  conditions require consideration of other factors as well.
third of global energy use, with commercial buildings For example, in winter, it is important to maintain indoor
accounting for about 41% of this total. In Kazakhstan, air temperature within 23 — 24°C. to prevent fatigue, and
90% of the energy in the housing and utilities sector is the floor temperature should be slightly lower than the air
used for building operations, with residential buildings temperature  to  avoid colds and  improve

consuming the largest portion — 50-55% [1]. The
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thermoregulation[4]. Microclimate systems consume
significant energy resources, which necessitates the
development of technologies to improve their energy
efficiency. Enhancing these systems not only boosts
comfort but also reduces overall energy consumption,
which is especially important in the context of climate
change and limited resources[5], [6]. The integration of
ML into HVAC systems represents a significant
advancement in improving FDD. With buildings
accounting for approximately 40% of global energy
consumption and HVAC systems responsible for over half
of that figure, optimizing their performance is crucial for
energy efficiency and sustainability. However, the
development of effective FDD methods is complicated by
several challenges, including the complexity of HVAC
operations, the dynamic nature of buildings, and the
variability of faults.

2 Related works

FDD in HVAC systems is essential for improving energy
efficiency and system reliability. Traditional methods
often struggle with noisy or incomplete data,
high-lighting the need for more adaptive solutions. Recent
advancements in machine learning (ML) offer promising
alternatives, with techniques like Support Vector
Machines (SVM), Random Forest, Deep Learning, and
Hybrid Models Enhancing fault detection accuracy.
Additionally, statistical methods such as PCA,
Independent Component Analysis (ICA) and Partial Least
Squares (PLS) are commonly used to process complex,
high-dimensional data, improving fault detection even in
noisy environments. This section explores various fault
detection methods, emphasizing the role of ML and
statistical analysis in overcoming challenges posed by
noisy data and improving system performance. According
to research conducted in the field of predictive
maintenance[14], the use of time series models and
machine learning methods for predicting equipment
failures has proven to be highly effective in industry. The
integration of Machine Learning into heating, ventilation,
and air conditioning systems significantly enhances fault
detection and diagnosis, which is crucial for improving
energy efficiency in buildings, as buildings account for
around 40% of global energy consumption. Effective
energy management systems rely on accurate data, which
can be influenced by various factors, such as the
positioning and sensitivity of temperature regulators. In
this regard, the insights from recent studies on smart
temperature regulators and Building Energy Management
Systems (BEMS) highlight the critical role of sensor
placement and sensitivity levels for precise
decision-making and control over building systems.
These factors are similarly important for Machine
Learning-based fault detection methods, where accurate
and real-time data collection is essential for successful
anomaly detection and system optimization. The study

also acknowledges challenges like noise and variability in
sensor data, which can complicate real-time
decision-making processes, as seen in both traditional and
advanced FDD methods[7]. In recent years, various
methodologies have been used to diagnose faults in heat
pumps (HPs), especially with the development of
machine learning methods. A study in the field of
Microclimate Systems conducted by Barandier et al.
(2024)[18] showed that machine learning methods such
as algorithms with a teacher can significantly improve
fault diagnosis in HVAC systems by analyzing real-time
data obtained from multiple sensors. In particular, the
study highlights the importance of accurate and reliable
data collection to improve troubleshooting algorithms and
overcome problems arising from data noise. The present
study continues this concept by applying a link weighting
method to assess the importance of each component in
heat pumps, with the aim of reducing the number of signs
by 50% while maintaining the effectiveness of the system
for fault diagnosis. The results show that the K-nearest
neighbor (K-NN) algorithm demonstrated the best results,
with an accuracy of more than 99%, which corresponds to
the high performance indicators found in the
above-mentioned study of HVAC systems[14]. Recent
advancements in FDD for HVAC systems have shown
that Artificial Intelligence (Al), particularly ML and Deep
Learning (DL) methods, offer significant advantages in
improving system performance and energy efficiency. A
comprehensive review of Al-based FDD methods
conducted by Jian Bi et al. (2024)[19] highlights the
evolution of these techniques, categorizing them into
three main types: traditional machine learning, deep
learning, and hybrid models. The study emphasizes that,
compared to traditional physics-based methods, Al
approaches have garnered substantial research interest
due to their higher accuracy and reduced dependency on
expert knowledge in dynamic environments. However, the
review also points out that challenges persist, particularly
in addressing issues related to noisy and dynamic data, as
well as achieving resolution in complex systems.
Integrating Machine Learning into systems like HVAC
has shown great promise in improving fault detection and
diagnosis, especially in real-world scenarios with noisy
and inaccurate data. Since buildings contribute
significantly to global energy consumption, using ML to
optimize HVAC systems is crucial for boosting energy
efficiency. Similarly, ML-driven Facial Expression
Recognition (FER) systems, utilizing deep learning
models like Convolutional Neural Networks (CNNs),
excel at interpreting non-verbal cues in Computer Vision.
Both applications involve complex data analysis in
imperfect conditions, whether for microclimate data in
HVAC systems or images for facial expression
recognition. While both domains deal with different types
of data (environmental parameters vs. visual data), they
share common challenges such as data noise, real-time
processing needs, and the necessity of adaptive, efficient
models for high accuracy. These studies highlight the
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growing importance of ML across diverse fields, and how
advanced ML models can significantly improve
performance in both operational efficiency (HVAC) and
Deep Learning for FER[21], [22] In the study by Sam et
al. (2011), a fault modeling approach is presented that
utilizes statistical machine learning and information
theory, along with sensor information flow analysis for
fault diagnosis in HVAC systems. In contrast, our
research focuses on real-time data collection from over 16
sensors in residential and commercial buildings, with the
data being transmitted to Google Sheets for analysis,
without the use of fault modeling or sensor information
flow analysis. Challenges with Noisy Data The data
generated by HVAC systems can often be inaccurate or
noisy due to sensor malfunctions, extreme environmental
conditions, or external interferences. Traditional FDD
approaches, which often rely on expert analysis and
predefined rules, may be inadequate when faced with
these variations, highlighting the need for more adaptable
and robust solutions.

ML-Based FDD Methods Recent studies classify
ML-based FDD methods into three categories: traditional
machine learning methods, deep learning, and hybrid
models. Traditional methods, such as Support Vector
Machines (SVM) and Random Forest, have shown
promising results in fault detection. For example,
Hamayat et al. (2023)[11] demonstrated that Extra Tree,
Random Forest, and CatBoost classifiers outperformed
others in terms of accuracy and fault detection metrics.
Deep learning methods utilize neural networks to analyze
complex patterns, enhancing HVAC optimization,
although widespread adoption is hindered by issues such
as data quality and model interpretability. Hybrid models
combine both approaches and effectively address changes
in operating conditions. Statistical analysis methods,
including Principal Component Analysis (PCA),
In-dependent Component Analysis (ICA), and Partial
Least Squares (PLS), are commonly used for fault
detection. PCA identifies the most significant features of
multivariate data by focusing on uncorrelated directions
with the largest variance. When applied to Multivariate
Time Series (MTS), it enhances fault detection efficiency.
For example, Li et al.[16] combined PCA, ICA, PLS, and
the Kalman filter to improve fault detection accuracy by
projecting data into a subspace along the fault area. In
ICA, data is treated as linear combinations of independent
components, while PLS, which combines PCA and
canonical correlation analysis, has limitations in handling
nonlinear MTS and imbalanced data. Various fault
detection techniques exist, such as those used by
Xiangjun et al. [17], who applied methods like
information fusion, Al, neural networks, fuzzy logic, and
genetic algorithms. They highlight that different types of
fault data require different processing methods.
Combining multiple data sources helps reduce noise,
overcome the limitations of individual protection systems,
and improve fault detection accuracy and reliability. In
addition to prefiltering and principal component analysis,

other methods combine different data types to enhance
anomaly detection. For instance, [2] proposes algorithms
that jointly process geoelectric and seismoacoustic
signals, enabling real-time monitoring of geotechnical
changes despite external noise.

3 Materials and Methods

The CRISP-DM methodology offers a systematic
framework for developing intelligent fault diagnosis
systems in building climate control. The process begins
with the stage of defining business objectives, which sets
the goals and limitations of the project, as well as the key
problems of microclimatic control, taking into account
the interests of stakeholders. Further, in the data
understanding stage, information from various sources
such as sensor data and maintenance logs is collected and
analyzed, with particular attention to data quality,
especially in noisy environments. Data preparation
involves cleaning, filtering, and normalization to
eliminate errors before building models. At the modeling
stage, machine learning algorithms are selected and tested
to create predictive models of fault diagnosis taking into
account noise to increase reliability. The effectiveness of
the model is evaluated by metrics such as accuracy and
completeness, which allows you to check its performance
in real-world use, taking into account the variability of
data and the presence of noise. Finally, during the
deployment phase, the system is integrated into the work
environment with the provided monitoring and
maintenance to ensure stable operation. The use of
CRISP-DM allows organizations to effectively implement
systems that can cope with data variability and noise,
ensuring reliable diagnostics[14], [16].

Description of the experiment The experiment aimed
to identify and analyze faults or anomalies in
microclimate parameters both inside and outside of two
distinct locations: residential and non-residential
buildings. Using a hardware setup with over 16 sensors,
the study continuously collected data on various
microclimate characteristics such as temperature,
humidity, and carbon dioxide levels. This real-time data
was then transmitted to Google Sheets for analysis[13].
System architecture

1. Sensors Temperature and humidity: Measure
climatic conditions. CO2 and TVOC (Total Volatile
Organic Compounds): Evaluate the air quality. Pressure:
Measures atmospheric pressure. Electrical parameters:
Monitor the status of power supply and consumption. 2.
Microcontroller Processes data from sensors and sends it
for analysis. 3. Data processing Server or cloud storage:
Stores the collected data. Analysis algorithms: Use
machine learning to identify anomalies and faults. 4. User
Interface Display: Displays the current system parameters
and status. Application or web interface: Allows the user
to receive notifications and manage the system. 5.
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Fig. 1: Architecture of an ML-based microclimate system.

Notification system Notifies users of faults found and
recommendations for elimination.

Management of Noise

In the experimental setup, preliminary data filtering
techniques were applied to reduce the impact of noise
before analysis. Employing methods such as moving
aver-ages and Kalman filtering allowed for enhanced data
quality, which in turn aids the re-liability of subsequent
analyses, including PCA. In the experimental setup, a
moving average and a Kalman filter were used to reduce
the effect of noise, which improved the quality of the
data. This contributes to the reliability of subsequent
algorithms, including the principal component Method.
Alternative approaches to noise reduction include wavelet
transforms and adaptive filters, which also effectively
suppress noise while preserving meaningful signals. In
addition, alternatives to PCA, such as t-SNE and Uniform
Manifold Approximation and Projection (UMAP)
methods, are possible for dimensionality reduction tasks,
especially when the data is highly noisy and it is
necessary to preserve nonlinear dependencies. However,
in the conditions of our experiment — with a moderate
noise level and the need for real—time data processing -
the use of moving averages and the Kalman filter turned
out to be the optimal solution. These methods were
chosen for their computational efficiency and the ability
to preserve key data characteristics, which ensures the
reliability of subsequent analysis, including the use of the
PCA method.

4 Data analysis and results

The data analysis focused on detecting anomalous values
or discrepancies that might indicate issues with the
microclimate control system or other abnormal
conditions. By employing a scientific approach, the
analysis not only identified specific faults but also
revealed trends and patterns, helping to develop effective
management strategies for microclimate control in
buildings.

The analysis showed that the presence of noise in the
data significantly reduces the accuracy of the PCA
method at high noise intensity, which emphasizes the
need for additional filtering measures. As shown in the
study on the modification of PCA to work with noisy data
and omissions, where a weighted version of the EM-PCA
algorithm is wused to reduce the influence of
heteroscedastic noise, more complex methods can
significantly improve the accuracy of the results and
reduce the influence of interference. Future research may
consider multi-channel filtering or combined approaches
with hybrid machine learning models to improve
diagnostic accuracy[13]. Variability of Microclimate
Parameters The wunique characteristics of the two
locations highlighted the variability of microclimate
parameters.

Data distribution

Second Compoment
L)

-2

-4 =2 0 2 4
First Component

Daits destrabutsan afler PCA

-, L:m-.

LECSRd MvEipdl Cafnptdiafi

=305 =25 d o 2.5 5 -] r3
Fest Pringipal o rd

Fig. 2: Figure 2. Data distribution before and after PCA.
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In the country house, factors like heating and
ventilation systems, geographical location, and room size
influenced conditions. In contrast, the kindergarten’s
microclimate was particularly critical due to children’s
sensitivity to temperature and humidity, with factors like
occupancy and activity levels playing a significant role.
Conducting the experiment in these diverse settings
provided a more comprehensive understanding of HVAC
systems. FDD Approaches Knowledge-Based Methods
These methods utilize expert knowledge and predefined
rules derived from historical performance data. They
often employ if-then rules or heuristics to identify faults
based on established operating conditions. While
effective in complex scenarios, they require substantial
input from domain experts and may struggle with
variability. Data-Driven Methods In recent research on
fault detection and diagnosis in microclimate control
systems, a study by Daurenbayeva et.al (2023) provides a
broader view on the topic, emphasizing the importance of
controlling  environmental parameters such as
temperature, humidity, and air speed for both human
comfort and energy efficiency. The study dis-cusses
various microclimate control systems, including those
used in greenhouses, where maintaining an optimal
microclimate is crucial for plant growth. This subcategory
analyzes historical data using statistical techniques and
machine learning algorithms to identify patterns and
anomalies. These methods do not rely on explicit rules but
instead learn from past data, making them adaptable to
changing conditions. However, they require high-quality
datasets and can face challenges in interpretability.
Comparison of Methods Comparison of traditional
statistical methods against Al-driven methods reveals
significant advantages of Al in adaptability and accuracy.
Traditional methods often rely on fixed thresholds that
may fail to account for the dynamic nature of HVAC
systems, while Al methods can learn from trends and
patterns in data, providing more reliable diagnostics. 3./
Understanding Variance in Principal Component
Analysis (PCA) In Principal Component Analysis,
understanding variance plays a crucial role in grasping the
essence of the technique and its outcomes. Variance
serves as a fundamental concept in PCA, delineating how
much information each principal component retains from
the original dataset. PCA, while a powerful tool for
dimensionality reduction and data representation, has its
limitations, particularly when derived from noisy data.
The main limitation of using FDD methods in HVAC
systems is their sensitivity to data noise caused by sensor
inaccuracy or external influences. For example, methods
such as PCA may not adequately represent the variability
of data in conditions of high noise, which can lead to false
anomalies. This limitation makes it difficult to interpret
the results and reduces the overall accuracy of the
diagnosis. Preprocessing Before PCA Application It may
be  beneficial to conduct preliminary data
processing—such as filtering and noise reduction—before
applying PCA. This approach enhances the algorithm’s

effectiveness by ensuring cleaner data input. Although
PCA is advantageous, the presence of noise can
significantly skew results, indicating that other techniques
like t-SNE or UMAP might be considered for
dimensionality reduction in particularly noisy datasets.
Explained Variance Ratios for the residential building:
PC1: 34.06%

PC2: 25.77%

PC3:20.77%

PC4: 19.40%

Explained Variance Ratios for the non-residential
building:

PC1: 40.08%

PC2:21.21%

PC3:20.94%

PC4: 17.76% Though PCA is effective for reducing
dimensions, the explained variance ratios may not
accurately reflect the true variability, especially in the
presence of noise. The cumulative explained variance for
the first two principal components indicates substantial
variability capture, further emphasizing the need for
cautious interpretation given PCA’s susceptibility to noise
in data. Orthogonal Transformation To preserve the total
variance, the transformation applied must be orthogonal,
ensuring the trace remains invariant. The traditional use
of PCA is to retain only the first kjp principal components
to maximize the variance explained by these components
while minimizing the variance of the remaining
components. PCA Limitations It is important to note that
a single parameter does not solely define the variance
captured by PCA. The actual proportion of total variance
captured can vary due to noise and other influencing
factors [23].

5 Discussion

The Principal Component Method is a powerful tool for
dimensionality reduction and data structure analysis, but
its application in noisy data conditions can be fraught
with certain difficulties. In particular, the coefficients of
explained variance obtained through PCA do not always
accurately reflect the actual variability of the data, since
they may include noise-related components. For example,
the statement that one component explains 40.08% of the
variation may be incorrect if a significant part of the
variability is due to random fluctuations or noise in the
data. This highlights the need to take into account the
limitations of the method and sensitivity to noise. During
the analysis of the cumulative explained variance for the
first four components, it was found that in the first data set
they explain 61.29% of the total variance, and in the
second — 59.83%. These values indicate that, despite
minor differences between the sets, the first four
components in both cases explain most of the variability
in the data. However, as shown in the practice of using
PCA, for the purposes of further analysis and modeling, it
is usually sufficient to use only the first few components,
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especially if their cumulative explained variance is more
than 60%. In our case, despite the fact that the first four
components together give high values of the explained
variance, it was decided to use the first three components
to simplify interpretation and effective modeling. The
reasons for this choice are as follows: Cumulative
explained variance for the first three components: In the
first dataset, the first three components explain 80.6% of
the variance (34,06% + 25,77% + 20,77%), which is a
fairly high indicator. In the second set, this indicator is
82,23%:(40,08%  +21,21%+20,94%), which also
indicates a significant degree of information retention.
Reducing the complexity of the analysis: Using the first
three components allows you to significantly reduce the
dimensionality of the data, while preserving most of the
important information. It also simplifies data
interpretation and visualization, since working with four
components can lead to unnecessary complexity and
difficulties in analysis. Noise reduction: The inclusion of
the fourth component may result in accounting for
variations that are not essential to the data structure,
especially if these variations may be due to random noise.
Using the first three components allows you to focus on
the most relevant information and reduce the impact of
noise. As a result of the analysis, it was decided to limit
ourselves to the first three main components, which made
it possible to explain more than 80% of the variance in the
data. This approach provides a balance between
preserving information and simplifying analysis,
minimizing the impact of noise and increasing the
interpretability of results. Future directions may include
more sophisticated adaptive models for processing data
from various sources, as shown in a study using
collaborative processing of heterogeneous data to
improve monitoring accuracy[8]. A similar approach can
be applied in HVAC systems, allowing you to take into
account a variety of parameters and effectively identify
faults at an early stage.

6 Conclusion

The integration of Machine Learning methods into
microclimate management systems for Fault Detection
and Diagnosis offers significant opportunities to enhance
the efficiency and reliability of these systems. However,
implementing ML in this area presents challenges, such
as working with noisy data and accounting for varying
operational conditions. The conducted research
demonstrates  that combining  data-driven  and
knowledge-based approaches can significantly improve
fault detection processes, contributing to the development
of more adaptive and resilient microclimate management
systems. The practical significance of the proposed
methods lies in improving diagnostic accuracy and
enhancing the robustness of algorithms in the presence of
sensor malfunctions or failures. These approaches are not
only beneficial for managing HVAC systems but also

have applications in related fields such as intelligent
building systems, industrial facility management,
predictive maintenance, and energy optimization in the
energy sector. Promising future research directions
include developing adaptive models that can effectively
handle fluctuating noise levels and automatically adjust
diagnostic thresholds to improve accuracy under
real-world conditions. The use of advanced architectures,
such as deep neural networks and hybrid models, will
further enhance diagnostic system stability under high
noise conditions. Additionally, research into improving
model interpretability remains an important focus. A
promising direction for future work is the development of
adaptive hybrid models that can account for interactions
among various microclimate parameters and variability in
operating conditions, thereby increasing the stability and
efficiency of FDD systems. For example, hybrid
approaches combining physical models with ML
techniques, as discussed in[16], can significantly improve
FDD processes. Moreover, the use of Principal
Component Analysis (PCA) in conjunction with ML
techniques for FDD in microclimate systems is a
powerful tool for improving their reliability and
efficiency. PCA helps filter out noise, highlight significant
signals, and improve prediction accuracy. To achieve the
best results, it is essential to consider both the
characteristics of the data and the specific features of the
system. Therefore, PCA-based approaches for data
processing in microclimate systems represent a promising
and effective tool for system monitoring and early fault
detection.
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