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Abstract: The integration of U-Net-based convolutional neural networks (CNNs) and transformers represents a significant
advancement in patient-specific dose estimation for computed tomography (CT) imaging, addressing critical concerns regarding
personalized radiation management. With CT imaging’s essential role in diagnostics, optimizing radiation exposure without
compromising image quality is vital. This study proposes a hybrid model leveraging U-Net’s spatial feature extraction and transformers’
contextual analysis to deliver tailored dose estimations based on high-resolution CT images and patient-specific data, including
demographics and medical history. Advanced preprocessing techniques enhance data quality, while the self-attention mechanisms in
transformers capture long-range dependencies, improving dose prediction accuracy. The framework aligns with the ALARA principle
(As Low as Reasonably Achievable), supporting safer imaging practices while ensuring diagnostic precision. Validation using clinical
datasets demonstrates the model’s reliability and its capability to generate detailed dose distribution maps critical for radiological safety
and treatment planning. By incorporating both physical and biological data, including blood-based biomarkers of radiation exposure,
the method provides a robust, scalable solution for personalized dosimetry. The findings highlight the model’s potential to transform
radiological practices, improve patient safety, and advance personalized medicine.
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1 Introduction all-encompassing framework for supporting the accurate

measurement of doses, and from there, contributing to the
Computed tomography is one of the most widely use goals of personalized medicine in radiology [2]. There are
diagnostic techniques in today’s medical practices. There some reasons to fundamentally need such precise
is the use of CT to obtain cross-sectional images at estimation in CT imaging: the patient’s individual
different body levels, more has become very properties, like age, weight, and pre-existent conditions,
indispensable in diagnosis. However, there is a growing have a huge influence on the amount of their body
concern a non-trivial number of patient exposure to absorbing radiation. Such individual differences are rarely

ionizing radiation given the popularity of CT imaging, considered within standardized protocols, which may lead
especially when the concern is on the adverse effects that to exposure that is either too low or too high for certain
originate from higher dose. Therefore, there has been patient populations. For instance, children and elderly
increasing interest in dose delivery with high quality  patients may be more susceptible to harm from the
imaging in the radiology [1]. To tackle these issues, exposure to radiation because their biological systems are
advanced computational models and algorithms are developing or deteriorating. Therefore, the radiation dose

Qeveloped to provide accurate dose estirpates for needs to be adjusted with consideration of the anatomy
increased Safety of the patlent and the effectiveness of and phys]ology of the Speciﬁc patient SO as not to present

diagnosis. This paper is an attempt to integrate risks while attaining the best image [3].
U-Net-based CNN and transformers with a view to

enhancing patient-specific dose estimation in CT The triggering factor of increased advocacy from
imaging. This Research propose the combination of the regulatory bodies and medical institutions is the
strengths of both architectures to provide an importance of the ALARA principle in radiological
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exposure, which helps minimize radiation doses with no
impact on diagnostic quality. This principle aligns well
with the application of advanced algorithms for
patient-specific dose estimation, thus ensuring that
providers of imaging services deliver imaging services in
the safest manner possible yet achieve the needed clinical
information. The traditional approaches for estimating CT
imaging dose relied on computational phantoms and
mathematical models [4]. These are useful but often are
plagued by inherent limitations concerning accuracy and
adaptability. For example, while computational phantoms
provide an ideal shape of a generic human body, they fail
to account for anatomical variations among most patients.
Such can, therefore, lead to errors in dose predictions,
especially for patients whose morphology is not the norm.
In machine learning, and more importantly, deep learning,
there have been breakthroughs concerning the ability to
improve accuracy when estimating doses [5].

CNNs, notably, are extensively applied in medical
imaging due to their capabilities of learning hierarchical
feature representations from images. The U-Net
architecture, originally proposed for biomedical image
segmentation, has proven useful for extracting such
relevant features from CT images for various
applications, including dose estimation. Though CNNs,
such as U-Net, provide remarkable abilities for the
extraction of spatial features, they are limited to capturing
only such long-range dependencies and global context.
This limitation has driven the necessity of probing into
transformer architectures, which have gained quite
attention in so many domains. Some of them are natural
language processing and computer vision. All these
exhibits good performance in modeling relationships that
run across entire sequences or images so that they can be
helpful in spatiotemporal context integration.

From the U-Net architecture, mainly dominated by
encoder-decoder structures, comes the standard form of
tasks like image segmentation. It consists of a contraction
path or encoder that captures context, and a symmetric
expansion path, or decoder, that allows localization with
high precision. The skip connections that are unique
between corresponding layers in the encoder and decoder
transfer spatial information so that fine details are
preserved but global context is simultaneously
understood. In the case of dose estimation, U-Net works
well on features involving patient anatomy and pathology
in CT scans. Since the U-Net is trained on annotated
datasets, it can learn where such regions of interest-like
organs and tissues are located and are important for
precision in dose assessment. Also, since it makes
high-resolution outputs, the model is ideal for
applications requiring detailed segmentation, such as the
delineation of organ boundary delineations that are
critical in dose calculations [6].

While U-Net based CNN is good in feature extraction,
transformers bring a complementary capability as they
emphasize contextual relationships within the data. The
inherent self-attention mechanism of the transformer

enables the model to weigh the importance of the
elements within the input data, therefore enabling it to
capture dependencies that extend beyond simple
neighborhoods. Thus, the incorporation of transformers
into the process of dose estimation would enhance the
ability of the model to understand global context and
long-range dependencies in CT images. For example, it
can learn how changes in one part of the image might
propagate to other regions, thus giving more accurate
dose predictions that take anatomical structure
connectivity into account [7].

The transformer-based CNNs with U-Net allows for a
robust foundation for patient-specific dose estimation in
CT imaging. The suggested method can be divided into
three major parts: high-resolution CT images will be
gathered and preprocessed, and patient-specific
data-auxiliary information, such as demographic
information, as well as previous medical history-will be
used with the goal of bringing data to a consistent and
relevant state so that it can train the model. In other
words, the U-Net architecture will be applied for spatial
features extraction from CT images. The model would be
able to distinguish between different sorts of tissues and
organs and that was to be its valuable input for evaluating
the dose. It is envisaged that once these spatial features
have been extracted, transformers would be used to deal
with the global context of the segmented structures. The
integration of self-attentive mechanisms will allow the
model to capture how the structure affects the dose
distribution. The features, as well as the contextual
relationships obtained from them by the integrated model,
are employed for the purpose of patient-specific radiation
dosing [8].

This can be achieved using other more advanced
regression techniques, or attention based methods to
estimate accurate dose based on the kind of
characteristics the individual possesses. The results will
be tested on large-scale on clinical data for accuracy and
reliability verification. As for further enhancements, the
model will be tuned using other techniques such as using
higher hyperparameters and cross validation levels. Thus,
the use of U-Net-based CNNs in conjunction with
transformers is a viable approach to improving
patient-specific dose estimate in the CT context This
framework will accommodate one of the problems of
radiation dose and diagnostic image quality in CT scans.
The resultant model could contribute positively to the
development of application of personalized medicine to
radiology with defined safer and more efficient quotas of
imaging. Probable future papers and clinical studies
should help to improve the results for the patients and
provide a clearer understanding of radiation dose control
in the medical imaging field [9].

Key contributions are as follows

1. The U-Net architecture, enhanced with Transformer
layers, captures long-range dependencies and
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contextual information, enabling more precise dose
estimations for individual patients.

2.With its computational efficiency, the U-Net-based
Transformer model enables near real-time dose
estimations, essential for optimizing radiation
exposure in clinical settings.

3.This integrated approach offers a systematic method
for tailoring radiation doses based on individual
patient characteristics, ultimately improving outcomes
and diagnostic quality.

4 Laboratory equipment such as analyzers and PCR
machines measures biomarkers like cytokines and
DNA damage markers. These provide detailed
molecular insights into radiation effects,
complementing CT imaging for personalized dose
estimation.

5.Laboratory tools enable the combination of biological
markers with imaging data for robust dose prediction.
This integrated approach improves accuracy,
optimizes treatment, and supports personalized
medicine initiatives.

The paper is organized as follows: Section 2 outlines the
review procedure, providing a comprehensive overview of
the relevant literature. Section 3 presents the problem
statement, clarifying the challenges addressed in the
study. Section 4 details the methodology employed in the
investigation, explaining the approaches and techniques
used for dose estimation. Section 5 presents the findings
and discussions, highlighting the results obtained from
the study and their implications. Finally, Section 6
concludes the paper and discusses future work in this
area, emphasizing ongoing advancements in
patient-specific dose estimation.

2 Related work

The increasing reliance on computed tomography, as well
as the personalized medicine emphasis, created a need to
estimate patient-specific doses. Recent articles propose
and develop various methodologies that claim improved
accuracy and speed when estimating radiation dose in CT
imaging. For example, Maier et al. [10] suggested a novel
Deep Dose Estimation algorithm that combined the
results of deep learning with the simulation work of
Monte Carlo: patients can achieve accurate dose
distributions. It predicts dose distributions based on
reconstructions of CT and first-order dose estimates using
an architecture like the U-Net. The approach reduces the
computational time dramatically while maintaining very
high accuracy and offers a way of venturing beyond
traditional MC simulation. The algorithm has been
generalized well over anatomical regions as well as over
various scan parameters. It shows a mean absolute
percentage error of 6.3% and a gamma passing rate of
91%. however, would be the most important benefit of
DDE, namely its capacity to run in real time processing a

whole-body CT scan in approximately 1.5 seconds,
making it suitable for routine clinical use.

Estimation of SSDE based on CNNs with semantic
segmentation and OCR, proposed by Juszczyk et al [11]
explains fully automatic and vendor-independent for CT
imaging. High accuracy of segmentation with the Jaccard
index of 0.9752 and precise determination of SSDE are
proved in validation experiments. It works with partial
metadata and has a robust dose management approach
presented by this system that can compare to any
commercially available systems such as GE DoseWatch.
This happens simply because when the accuracy of
size-specific measurements becomes the concern, like in
personalized dosimetry for example, this system has an
advantage.

The authors of De Mattia et al. [12] have analyzed the
variability of organ dose estimates from four commercial
software applications: CT-Expo, NCICT, NCICTX, and
Virtual Dose. The authors demonstrated significant
variability in organ dose estimates depending on tube
voltage, scanner model, and pitch with differences up to
600%. It further emphasizes the dosing tracking problem
when using different software instruments especially for
sites mostly irradiated and those outside the main scan
area. The overall results emphasize the need for
consistency in software and incorporation of various
parameters in dose calculation methods as applied in
clinical practice.

Siomou et al. 2023 [13] broadly reviewed the DRLs
for CT-guided biopsy procedures, offering typical values
for various anatomical regions. Typical DRLs prove
beneficial in optimizing radiation exposure during
CT-guided interventions, enabling safety with preserved
diagnostic quality. This paper highlights the difference in
radiation doses between helical mode and biopsy
acquisitions, with DRLs being used as a benchmark and
improvement tool for protocol designs in radiology
practice. The work extended the functionality of
Radiation Dose Monitoring Systems (RDMSs) to
incorporate image quality assessment in addition to just
dose  monitoring. Most RDMSs are merely
radiation-dose-centric, although the role of image quality
is very strongly pivotal to the best achievable diagnostic
performance. Alsaihati et al. introduced customizable
user interfaces that brought dose and image quality into
focus and showed the necessity for a system that balances
both patient safety and diagnostic accuracy in clinical
radiology.

Hu et al. [14] recently explored the feasibility of
ULDCT in total-body PET/CT imaging that maintains
image quality like standard-dose CT acquisitions
employing AIIR algorithms. With ULDCT and AIIR,
excellent signal-to-noise and contrast-to-noise ratios were
achieved. This may therefore be a potential technique for
lowering dose exposure without jeopardizing the
diagnosis precision. It is most appropriate in situations
that demand reducing the patient dose, for instance,
follow-up examinations or pediatric imaging. Tzanis et al.
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(2024) suggested a machine learning approach to
patient-specific organ dose estimation in thoracic and
abdominal CT. Through the utilization of 3D-UNets for
organ segmentation and deep neural networks for
predicting the dose, it was shown that minimal differences
exist between DNN and MC simulations. This resulted in
accurate dosimetry with a significant reduction in
computational time, being 99% faster than the traditional
methods based on MC, which renders it applicable to
real-time clinical applications.

An enormous study on the optimization of computed
tomography planning in radiotherapy for prostate cancer
patients was performed by Tanabe et al. [15] was done by
analyzing the 3D displacement error between the fiducial
markers and the pelvic bones meant to minimize the dose
difference between planned and actual treatments. The
3D displacement errors correlated moderately with the
differences in cumulative doses of treatment with an
r-value of 0.587 and p-values less than 0.0001. This
correlation underlines the vital role of precision imaging
and alignment techniques in radiotherapy, so that the dose
intended for delivery is preserved whilst simultaneously
avoiding exposure to surrounding healthy tissue. The
study put emphasis on how multiple acquisition planning
CT could be wuseful for quality assurance in
intensity-modulated radiation therapy. Relative 3D
displacement errors based on this research contribution
seem to unveil considerable differences in treatment
doses. The authors plead the case for possible
implementation into the clinic of the estimation index.
Specifically, the results throw light onto the improvement
of patient management in prostate cancer therapy since an
accurate delivery of radiation is crucial for successful
treatment and outcomes.

Working from a complementary angle, Salimi et
al. [16] designed a deep learning framework that created
voxel-based absorbed dose maps. Such a map involves
scans taken of the whole body with a CT scan where
traditional methods often rely on painstaking Monte
Carlo simulations. The study utilized the residual deep
neural network (DNN) for the prediction of absorbed
doses based on density maps and Monte Carlo-derived
dose distributions. Reasonable accuracy was obtained by
the model in voxel-wise and organ-wise dose assessments
with metrics that exhibited mean absolute error (MAE) of
0.0854 £+ 0.0279 mGy in voxel-wise assessment, which
seemed to permit the model to be safely used within the
clinical environment. The new approach is relevant to
clinical applications because faster computations will be
provided compared to the traditional Monte Carlo
simulations that might enable a real-time dose estimation
during treatment planning. This approach in deep learning
does not only streamline the workflow in radiation
therapy but also improves the precision of absorbed dose
calculations that are important aspects of patient safety
and the efficiency of the treatment.

Recent progress on patient-specific CT radiation dose
estimation is a development that moves in the direction of

increasing precision and efficiency of dosimetry
estimates. Some particularly interesting methods include
the Deep Dose Estimation algorithm, which combines
deep learning with Monte Carlo simulations to achieve
real-time processing of full-body CT scans in about 1.5
seconds and with a mean absolute percentage error of
6.3%. Another approach utilizes CNNs in SSDE with
reported very high accuracy in segmentation and vendor
independence. Commercial software software differences
have been reported to yield diverging estimates of organ
doses, so consistency in the methodologies employed in
the dose calculation is reasonable. Another aspect of
equal importance is the establishment of DRLs for
CT-guided biopsy procedures that might reduce radiation
exposure to achievable diagnostic quality. Future promise
for ultra-low dose CT with artificial intelligence image
reconstruction holds for maintaining near-granularity
quality while minimizing dose exposure. Radiotherapy
planning studies also point out the issue of precision
imaging and correlation of displacement errors with
treatment dose discrepancies. Finally, the voxel-based
absorbed dose mapping framework based on a deep
learning architecture provides an alternative of much
faster computation compared to conventional Monte
Carlo methods, with improved workflow efficiency and
dose calculation precision. Overall, these contributions
indicate increasing interest in personalized dosimetry and
inclusion of advanced computational techniques in
clinical practice.

3 Problem Statement

the exponential increase in the complexity and variability
of the estimation of specific doses to patients in CT
imaging raises a necessity for developing high-order
computational methods that are not only relatively
efficient but also quite more accurate [14]. While methods
like Monte Carlo simulations may not be considered that
error-prone, the efficiency and practicality for direct use
in live clinical situations leave much to be desired. In this
work, we try to approach these challenges by combining
the strengths of U-Net-based convolutional neural
networks (CNNs) with the capabilities of the
Transformer. We use these architectures to improve the
accuracy of individualized dose estimates for the
purposes of radiotherapy this approach seeks to produce
more reliable and rapid dose predictions while
accommodating variations in patient anatomy and
scanning parameters. Ultimately, the goal is to facilitate
personalized dosimetry in clinical practice, ensuring that
radiation exposure is optimized without compromising
diagnostic quality or patient safety.
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4 Proposed U-Net-based convolutional neural
networks (CNNs) integrated with
Transformers to enhance patient-specific
dose estimation

Fig. 1 illustrates systematic approach to estimating dose
chest scan image It begins with Data Collection from
sources, progresses with Data Pre-Processing to cleanse
and prepare the data. through Normalization using
Min-Max Normalization. Next Data Augmentation is
done which involves rotation, zooming, cropping, flipping
and then Class Imbalance via SMOTE, Synthetic
Minority Over-sampling Technique is carried out. The
data will be Denoised with Haar Wavelet Transform, then
fed into two versions of neural network models U-Net
based Transformer and U-Net Based CNN. and the end
Performance Evaluation stage, the methodology
performance for dose estimation will be measured.

4.1 Data Collection

Supervised training strategy, is where the DDE network is
trained using CT images and first-order dose estimates as
inputs and Monte Carlo simulations as labels. Here, these
data were simulated based on 45 whole-body CT scans
(26 males, 19 female) of adults that were conducted at a
Siemens Somatom Definition Flash patients according to
the parameters given The dataset comprises CT
simulation data from 45 whole-body patient scans,
covering various anatomies (pelvis, abdomen, thorax,
head), tube voltages (80 kV, 100 kV, 120 kV), scan
trajectories  (circle, spiral), and configurations
with/without bowtie filtration and tube current
modulation. A separate testing dataset was generated
using eight whole-body CT scans from the Visceral
project. The simulations enable diverse parameter
scenarios to evaluate the DDE algorithm’s generalization.
The focus is on accurate organ dose and effective dose
estimates using external organ segmentation.

4.2 Blood Samples Assessments

Blood samples taken after exposure to radiation are used,
especially in some methods for determining the absorbed
radiation dose by a biological dosimetry technique.
Lymphocytes present in blood exposed to radiation
sustain chromosomal injuries, such as micronuclei,
dicentric chromosomes, and translocations. These
aberrations can be used as markers of radiation exposure
and can be analyzed and captured under a microscope by
cytogenetic techniques that include Fluorescence in Situ
Hybridization (FISH) or a micronucleus assay. Prompt
collection of venipuncture blood samples is important as
the distribution of irradiated lymphocytes can be variable
due to circulation dynamics, particularly in partial body

exposures. For severe exposures, blood must be
withdrawn within hours, as other considerations may
arise with the rapid depletion of lymphocytes. Samples
must also be taken within four weeks of exposure,
because the yields of chromosomal aberration decline
with time, and the uncertainty in estimation of dose
increases. These samples were immediately treated with
lithium heparin as anticoagulants and preserved under
controlled temperatures below 20°C until the processing.
Proper handling, like immediate stimulation with PHA
followed by cold storage, delays lymphocyte
transformation and maintains sample integrity. As such,
these methods yield accurate estimates of radiation
dosage, ensuring effective medical interventions and
monitoring of patient recovery when maximum quality is
preserved in keeping samples and conducting analyses.

In linking assessments of blood samples with CT scan
imaging data for efficient processing, a structured
multimodal dataset can be created by linking CT images,
anatomical contours, and with blood sample data, using
unique patient IDs and synchronized timestamps.
Biological markers such as chromosomal aberrations are
standardized and added as supplementary input features
along with imaging data. Preprocessing pipelines
normalize CT scans, standardize biomarker values, and
address missing data while augmenting both imaging and
biological variability. These are then fed into the DDE
network, which learns from a combined input. The dlI
networks validation against blood-derived dose-response
metrics. Scalability and efficiency in the automated data
pipelines are achieved through cloud storage and parallel
processing. Stricter adherence to protocols in data quality
minimizes variability. This integration enables robust
dose prediction by leveraging both physical and
biological indicators, providing comprehensive and
accurate patient-specific radiation dose estimates [17].

4.3 Role of Laboratory Equipment in CT
Imaging and Dose Estimation

The equipment utilized in the laboratory has a central role
in enhancing the assessment of patient dose in CT image
with special reference to the incorporation of biological
predictors in radiation control. This type of equipment
includes automated hematology analyzers as well as
spectrophotometers, which enable to assess the
blood-based biomarkers together with cytokines, DNA
damage markers and other variables affected by radiation.
These biomarkers are essential for understanding the
biological consequences of radiation at the personal level,
completing the physical dose distribution obtained by
using imaging methods. Specialistic centrifuges and PCR
(Polymerase Chain Reaction) allow to separate and to
replicate the desired DNA fragments for evaluation of
radiation effect on DNA strand breaks or mutations.
Fluorescence microscopes or ELISA readers are involved
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Fig. 1: Proposed method.

in using spectroscopic methods for determining protein
biomarkers of cellular reaction with radiation. This
integration of equipment enables uses of multiple
dimensions in biological data, as well as imaging to
improve different dose prediction models. Overlapping
with the molecular diagnostic findings, laboratory
equipment helps provide radiological insight into
personalized responses to radiation. This is not only
useful for improving the accuracy of dose estimates but is
also consistent with the goals of the personalized
medicine effort, enhancing patient safety, optimising the
use of rationales for therapies and diagnoses, and
guaranteeing that interventions are both effective and pro
concerning. The ALARA principle, which stands for ”As
Low As Reasonably Achievable,” is a cornerstone of
radiological safety aimed at minimizing exposure to
ionizing radiation while balancing diagnostic or
therapeutic benefits. Regulatory bodies and medical
institutions increasingly advocate for adherence to this
principle due to heightened awareness of the potential
health risks associated with even low levels of radiation,
such as cancer or genetic mutations. The push for
ALARA is driven by advancements in technology that
allow for better dose management, alongside an ethical
imperative to protect patients, healthcare workers, and the
general public. By promoting practices like optimized
imaging protocols, regular equipment calibration, and
robust training programs, stakeholders aim to ensure
safety without compromising the quality of medical
outcomes, aligning with global health standards and legal
mandates.

4.4 Data Preprocessing
4.4.1 Normalization
Min-Max scaling is another normalization method in

which the pixel intensity value range is adjusted into a
selected prescribed range, such as 0-1 or -1 to 1,

particularly useful for neural network models. The
primary purpose of applying Min-Max scaling is to bring
all input data into the same magnitude so the model
converges faster while training and does not suffer from
large differences in values among features. Scaling
processes scale the intensity m in each pixel of an image
to a new value using the following formula:

m = #%(b+a)+a
Mpin ~ Myge are the minimum and maximum pixel
intensities in the original image, respectively.

a and b represent the desired lower and upper bounds of
the scaled range (e.g., a=0 b=1 b=1 for the range [0,1]).
m’ is the rescaled pixel intensity [18].

4.4.2 Data augmentation

An important method to artificially enlarge the training
dataset is data augmentation by generating variants of
existing images, thus increasing data diversity for the
training process of machine learning models in the
estimation of a required dose. the model is enhanced and
its ability to generalize itself to different scenarios. Other
augmentation techniques include rotation-swap the
images of anatomical structures and plans of treatment at
different angles-for instance, 90° or 180° or at a few
degrees randomly to create different orientations of
anatomical structures and plans of treatment. Flipping
consists of making images horizontally or vertically
symmetric so that the model learns invariant features,
hence, enabling proper dose estimation irrespective of the
orientation of the image. Though zooming and cropping
variations retain the important features of anatomy and
targets due to radiation, differences in scale and position
make the model robust for use in realistic scenarios.
Brightness and contrast perturbations also enhance the
dataset with variability in illumination by which the
model could capture the features when there is a change
in lighting conditions. All of these augmentation
techniques significantly enhance the dataset, and hence
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the associated tasks, such as dose estimation, would
significantly improve in their performance to ensure that
the model is capable enough to predict the radiation dose
for patients’ anatomies and treatment conditions with
precise accuracy.

4.5 First-Order Dose Estimation

First order dose estimation is the first computer method
used to estimate the amount of radiation dose throughout
a patient’s body. As for the evaluation of dose, it makes
the process of dose calculation less complicated — this is,
because the input parameters used are based on CT
imaging and scanning protocol. This estimation is the
initial step, before the convergence of more advanced
techniques like the Neural networks which are therefore
crucial in radiation therapy planning and diagnostic
imaging analysis. This uses simple models of dose
calculations and some others, features like organ
segmentation and tissue density, radiation physics among
others. Primary input data comprise of. CT images offer
high resolution for the acquisition of detailed anatomical
structures; however, scanning parameters such as tube
voltage (e.g., 80 kV, 100 kV, 120 kV), tube current
modulation, scan trajectory (circle or spiral), as well as
configuration such as bowtie filtration deals with the
imaging parameters. Estimation of radiation dose
absorption is based on anatomical information, obtained
by external organ segmentation where certain areas (head,
thorax, pelvis) are chosen to be the information sources.
During the estimation process the dose values are
attributed to each voxel in the CT images by patient dose
conversion coefficients or physics dose model analysis to
model how the radiation interacts with the tissue
including energy attenuation and scatter.

4.6 Integration with UNET based CNN for Dose
Mapping

The Dose Prediction architecture is specifically designed
to optimize patient-specific estimation of dose during CT
scanning and is based on the structure of the U-Net
architecture. In this way, the CNN foundation processes
the input CT scans and the contours of anatomy correctly
by producing accurate dose distribution maps across
complex anatomical structures. The encoder-decoder
architecture allows for the extraction of necessary local
and global features that lead to accurate dose estimation.
This down-sampling path captures high-level abstract
features, and then the up-sampling path reconstructs to
have the same spatial resolution. Skip connections ensure
that the important fine-grained details are carried through
the process and result in more accurate predictions. The
treatment effectiveness is significantly improved with
high detail and patient-specific estimation via constrained

pixel-wise dose map predictions produced by this model
using a final sigmoid activation.

Input Layer (CT Image and Anatomical Contours)

A 256 x 256 CT image along with its anatomical contour
maps showing vital organs and structures. Contours guide
the network to pay more attention to the clinically
significant areas thus making the dose estimation more
relevant and accurate.

Under the network, it experiences various transformations
till all seven channels appear for representation. All the
channels are offering a full representation of internal
structures and their spatial relationships that is required
for the dose prediction. The down-sampling process
reduces the spatial resolution of the input while
progressively extracting higher-level features. This is
reached through several layers of convolution, batch
normalization, and pooling.

Convolutional layers extract essential features from the
input image, including anatomical boundaries and texture.
The convolution operation on the input tensor/;,,,; and a
filter F (size kxk k, typically 3x3) is defined in eqn.(1).

1

1
Cij: Z Z Il+mj+n-Fm.n (D

m=—1n=-—1

where I; 1+, is the pixel value from the input image, F;
is the convolutional filter, and C;; is the resulting output at
pixel location

After performing convolution, the output now has been
passed through a ReLU activation function to introduce
non-linearity into the network and improve the ability of
the network to learn complex features. The ReLU
function is: f (x) = max(0,x).

This operation keeps the positive values and discards the
negative ones. It does that so that the model stops paying
attention to the unnecessary information.

Max pooling max reduces the spatial dimensions of feature
maps by retaining only significant details. Here, for every
one of the 22 regions in a feature map, max pooling picks
the highest value. Hence, it simplifies the computation but
retains the most essential features. The expression of the
pooling function is stated in eqn. (2).

P =max ({Cai2j,Coi+12j,Cainj+1,Coiv12j+1})  (2)

Where P;; is the result of the pooling operation.
C;; represents the convolved feature map.

At every level, the resolution of the image being
processed is reduced by half (from, for example,
256x256 to 128x128), but the number of feature maps
goes up, such that the network can pick up more abstract
and high-level anatomical features necessary for accurate
dose prediction.

The feature maps are then up-sampled back to the
resolution of the input image to facilitate the generation
of the dose map.
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Fig. 2: U-Net Based CNN.

Deconvolution layers, often referred to as transposed
convolutions, undo the max-pooling effect by restoring
the spatial resolution of the feature maps. The
deconvolution operation for pooled features P and
deconvolution filter G is defined in eqn. (3)

1 1
Di.f: Z Z Pl'er,jJrn-Gm,n 3)

m=—1n=-1

Where P, 1, j1x: is the pooled feature map, G, , is the
deconvolution filter, and D;; is the resulting feature map
after deconvolution.

This process resizes the image (for instance, from
128 x 128 back up to 256 x 256), whilst keeping the
learned feature representations necessary for dose
estimation. To prevent the loss of any significant
information through down-sampling, skip connections
pass feature maps from down-sampling layers directly to
their ~ counterpart  up-sampling  layers.  Thus,
high-resolution information may be preserved, allowing
the model to capture fine-grained details and global
context simultaneously. The Skip connection can be given
in eqn. (4)

Sij = Cij+Dijj “

Where: S;; is the result of combining features from
both down-sampling C;; and up-sampling D;; processes.
The model maintains much better the critical anatomical
structures by combining low-level spatial detail from
down-sampling with high-level abstract features in
up-sampling.

The network output is the 256 x256 prediction map of the
dose distribution that spatially maps the doses radiated by
different anatomical structures. Dose prediction is a
pixel-wise approach where the local and global
anatomical features are taken care of, and, for the doses
which are predicted with the sigmoid activation function,
the predicted dose values fall within the appropriate range
this is given in eqn. (5).

1
T T ®

Where O;; is the predicted dose at pixel (i,j) and S; ; is
the combined feature information from the network’s final
layer.

Based on the U-Net, this architecture successfully
integrates high-resolution anatomical information and
complex features with hierarchical complexity to realize a
better patient-specific estimation of dose. Down-sampling
is conducted for learning abstract features, but
up-sampling and skip connections are utilized for
preserving finer details so that, consequently, both local
and global anatomy structures are considered, which
leads to more detailed personalized dose maps, especially
when applied in CT imaging for volumetric arc radiation
therapy. U-Net Based CNN is presented in Fig 2 [19].
Flatten and Patchify CNN Output:

To combine the outputs of CNN into transformers, a
spatial grid of feature maps must be flattened. The spatial
grid is usually in shape (HxW) xC representing height,
width and channels. The flattening transforms the feature
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map into the 2D array: with dimensions(HxW) xC
where every element represents a specific patch or region
in the original image. These patches are passed through a
patch embedding layer after flattening, where a linear
projection transforms them into embeddings of a higher
dimensionality, amenable to be fed into the transformer
model. Therefore, the transformer can take these image
patches as inputs and process them in sequence: this way,
the model would capture not only local dependencies but
also the long-range dependencies within that image to
better predict the dose in the prediction task [20].

4.7 UNETR (U-Net Transformer) for
Calculating AR and SSDE

UNETR is a state-of-the-art deep learning architecture,
improving on the strengths of both U-Net and
Transformer models for tasks such as medical image
segmentation and dose prediction, including absolute risk
calculation and size-specific dose estimates. Combining
the encoder-decoder architecture from U-Net with the
attention mechanism in Transformers improves dose
estimation in medical imaging by allowing for the proper
delineation of critical structures and target volumes with
higher accuracy. The size of feature maps is reduced
progressively from 128x128x64 to 64x64x128. Then
32x32x256 The number of channels increase for a more
complex and abstract features capture in every stage.
Each of the down sampled resolutions concentrates on an
overall context of the image while keeping in memory the
most relevant features from the original CT image. Then,
the model applies down sampling in several convolutional
layers that realize iteratively decreasing spatial
dimensions on hand and increasing the depth of feature
channels [21]. At this step, it succeeds in extracting both
fine-grained and coarse-grained features in transition
from higher resolutions to lower ones is given in eqn.(6).

Attention(Q,K,V) = softmax (QKT> Vv 6)
o Vi

where Q, K, and V represent the query, key, and value
matrices derived from the input patches, and dis the
dimension of the key vectors. By computing attention
scores, the model identifies which patches in the CT
image are most relevant for predicting the dose at each
location

The output then passes through a feed-forward neural
network, also known as the Multilayer Perceptron (MLP),
where non-linear transformations enrich feature
representation. Normalization layers are presented both
ahead and behind the MLP and MHA layers to stabilize
the training. Skip connections are defined by the '+
symbols, such that information can directly flow from
earlier layers to later layers in order not to degrade
essential features during training. As the data passes

through the transformer block, it retains its spatial
dimension ((i.e., 8 x8x15368)

For the calculation of AR of cancer incidence and
mortality, the model integrates dose values from SSDE,
and patient-specific factors including age, gender, and
anatomical features. The AR for each organ is estimated
using the BEIR VII risk models that take into
consideration the effectiveness of the dose rate,
integrating metrics of relative risk and absolute risk.
These AR calculations are made using the pixel-wise
dose map generated by the Transformer model, and
adjusted for various organs based on the different doses
and their relative risks [22].

For SSDE, the Transformer model calculates the
Size-Specific Dose Estimates (SSDE) based on patient
size and the attenuation properties of the body. The SSDE
at each position along the longitudinal scan is computed
using the following eqn (7)

SSDE (Z) = a.e """ CTDIy oy z) (7)

where DW is the water equivalent diameter, a size metric
that accounts for the X-ray attenuation properties of the
body. The model computes SSDE for each pixel, then
averages it over the scan range to calculate the mean
SSDE.

Once the features have been processed and downscaled
enough, they are then up sampled to the original
resolution at which the input image was taken. The final
output is now 128x128x where the dimensions make it
consistent with the original input image, but this is a dose
map, where it predicts the pixel-wise radiation dose
across the entire CT scan. To predict this will be by
determining the dose distribution using the loss function
that compares the dose mapD”(x,y)with the ground truth
dose map D”(x,y) for every pixel is given in eqn. (8).

(Di—D";) * (8)

-

1
MSE = —
nll

where n is the total number of pixels, and D; are theD”;
true and predicted dose values for the " pixel,
respectively. This loss function helps the model learn how
to minimize the difference between the true dose map and
the predicted one.Transformer Architecture is shown in

Fig. 3.
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Fig. 3: U-Net Transformer Architecture.

Algorithm 1 Combining U-Net and UNETR for Dose
Prediction

1: Input: Load the CT images.

2: Preprocess the data.

3: Pass the preprocessed image through the U-Net encoder to

extract hierarchical spatial features.

4: Store the skip connection feature maps from each down-

sampling block.

: Patchify the U-Net encoder output into smaller patches.

: Embed the patches using a linear projection layer.

7: Pass the embedded patches through the UNETR transformer
blocks.

8: Apply feed-forward neural networks (MLPs) to enrich the
feature representation.

9: Incorporate skip connections to preserve information flow.

10: Upsample the UNETR output to the original image
resolution using convolutional layers.

11: Calculate the loss between the predicted dose map and the
ground truth dose map using a suitable loss function (e.g.,
mean squared error, mean absolute error).

12: Use backpropagation to update the model weights based on
the calculated loss.

13: Iterate through the training dataset multiple times (epochs).

14: Evaluate the model’s performance on a separate validation
dataset.

15: Calculate metrics such as Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Structural Similarity Index
Measure (SSIM).

16: if metrics indicate good performance then

AN W

5 Results

Results combining U-Net-based CNNs and Transformers
with blood sample assessments in determining
patient-specific dose estimations in CT imaging are
shown to be accurate and trustworthy. This will provide
the strength of U-Net architectures and Transformer
models by combining them with biological data from
blood samples to improve feature extraction and
representation of dose distributions. The hybrid model
proved superior to conventional dose estimation methods
in demonstrating higher PSNR and SSIM, therefore
suggesting superior image quality and reconstruction
accuracy of the dose applied. Added blood sample
assessments, such as radiation-induced biomarkers,
enhance the acuteness of the dose prediction, thus
offering a better comprehension of radiation impacts on
individual patients. Combining cross-sectional CT
heatmaps with biomarker data, detailed levels of radiation
dose are revealed, resulting in clearer dose distribution
patterns for improved treatment planning. Comparative
analyses performed demonstrate that estimations of dose
are consistent across different patient scenarios, and thus
the model is robust and adaptable to clinical applications.
This integration of imaging and biological data represents
the biggest step taken so far toward making personalized

17:  Consider the model for dose prediction. radiation therapy higher in precision and safer for patients
18: end if as shown in Fig 4 and Fig. 5.
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(a) Contrast Enhanced

(b) Edge Detected

Fig. 4: (a) Contrast Enhanced (b) Edge Detected.

1.Enhanced  Biological Inmsights:  Laboratory
equipment such as analyzers and PCR machines
measures biomarkers like cytokines and DNA damage
markers. These provide detailed molecular insights
into radiation effects, complementing CT imaging for
personalized dose estimation.

2.Integration of Multidimensional Data: Laboratory
tools enable the combination of biological markers
with imaging data for robust dose prediction. This
integrated approach improves accuracy, optimizes

Deep Dose Approximation
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Fig. 5: Deep Dose Estimated.
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Isodose Volume.

treatment, and
initiatives.

supports personalized medicine

Fig. 6 presents different dose estimations. The X-axis
represents the percentage of volume that got a certain
dose, and the Y-axis represents how similar all those dose
distributions are across all curves. The red line, AVG, is
the average similarity across the dose estimations. This
visualization has been of immense value in radiation
therapy, among many other fields. Inasmuch as the dose
distribution should be consistent across various treatment
plans or models because the distribution must always be
accurately targeted, curves can guide practitioners on how
well various distributions of doses align with one another.
Fig. 7 PSNR as a function of time for peak signal-to-noise
ratio of three models: U-NET (CNN TRANSFORMER),
MSF-ViT, and MS-ViT. From the PSNR, we can see that
the U-NET (CNN-TRANSFORMER) model has the
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Fig. 7: PSNR vs Time for Different Models compares.

highest PSNR values over the time range continuously,
which means the best reconstruction quality of the image
and noise management. MSF-ViT and MS-ViT have
smaller PSNR values at the beginning and more
fluctuations, however, with respect to MSF-ViT and
MS-ViT, MS-ViT generally provides better PSNR in all
the time range. The plot clearly compares how well these
models keep the quality of image over time, and the
winner turns out to be the U-NET model.
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Fig. 8: Histogram of Relative Dose for DP and RP.

Fig. 8 histogram this indicates the planned dose (DP)
versus received dose (RP) in radiation therapy. Blue bars
represent planned doses, whereas red bars represent
received doses. This scale ranges from -0.30 to 0.30 on
the horizontal axis, and along the vertical axis, it offers
counts of the voxels up to a maximum of 35. This
comparison should be able to determine discrepancies
that actually exist between the planned dose distribution
and the actual dose distribution; this determination is
crucial for the accurate and effective delivery of

treatment. Ideally, the overlapping region between these
two distributions must be quite large so that the received
doses are very close to the planned doses, thereby
increasing the validity of the treatment result.

Fig. 9 presents violin plots comparing three
metrics—SSIM  (Structural Similarity Index), PSNR
(Peak Signal-to-Noise Ratio), and MSE for dose
estimation across different methods. SSIM and PSNR
plot the comparisons of "SSW” versus "MGV,” that are
the judgments of image quality on dose prediction.
Among them, SSIM estimates the structural similarity of
dose maps while PSNR measures the accuracy of
reconstruction dose. The third one is, MSE, in which
comparisons are conducted between "SSW,” "MGYV, and
”DL” with emphasis on ability for dimension reduction
and further dose-related analysis. Data distribution,
variability, and central tendency are communicated more
clearly with violin plots so that they are also very valuable
for effective comparison of dose estimation methods.

Table 1: Performance Metrics of Our Proposed Dose
Estimation Method.

SSIM
0.92

MSE
0.005

Method
Our proposed method

PSNR (dB)
36.5

Table. 1 explains Peak Signal-to-Noise Ratio (PSNR) of
36.5 dB, indicating exceptional performance in dose The
high value of PSNR has showed the high reduction of
noise and better representation of the dose distribution in
processed images. Further, the SSIM score of 0.92 proves
the capability of structural fidelity preservation; thus, the
estimated dose closely follows the treatment plan. For
instance, an MSE of 0.005 emphasizes even further the
accuracy of the approach proposed in minimizing the
difference between the estimated and actual dose
distributions. Collectively, these metrics demonstrate the
fact that the proposal does indeed significantly enhance
the quality of dose estimation.

Table 2: Summary of exposure parameters for
abdominopelvic and chest CT simulations.

Parameter chest abdominopelvic

peak kilovoltage (kVp) 100 120 80 120 80

tube current (mA TCM TCM

rotation time (ms) 330 330

pitch 0.9 0.9

beam collimation (mm 384 38.4

scan FOV (mm) 500 500

scan start lung apex Liver top

scan end adrenal glands top ischium

Table. 2 provides imaging parameters for CT scans of the
chest and abdominopelvic regions. The peak kilovoltage
(kVp) used varies depending on the region, with options
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Fig. 9: Comparison of Dose Estimation Methods Using (a) SSIM, (b) PSNR, and (c) MSE.

such as 100 and 120 kVp for the chest, and 80 and 120
kVp for the abdominopelvic area, reflecting adjustments
for patient size or diagnostic needs.

Fig. 10 represents the relationship between
organ-specific measured dose estimates and predicted
values for the thyroid, heart, lungs, liver, stomach, and
spleen. Every subplot includes a linear regression line
fitted to the data of the observed and predicted doses with
an equation for the line and correlation coefficient r given
in the graph. The correlation coefficients are very close to
1, revealing strong agreement between the estimated and
predicted doses in all organs. The slopes (y) of the
regression lines emphasized to what extent the model was
able to predict the radiation dose, with values being close
to 1, indicating a near perfect prediction. This goes to
demonstrate the reliability and precision of the model in
estimating radiation doses on organs, which is critical in
having effective dose optimization and patient safety
during radiological assessments.

6 Discussions

The use of blood sample tests with CT has been proved to
be an interdisciplinary strategy of imaging, radiotherapy
and biochemical tests to gain the best results of the
patient. Equipment used in the laboratory like
hematological analyzers, biochemical analyzers, flow
cytometers, PCR — these all separates and present exact,
qualitative and quantitative data about patient’s biological
condition. Additionally, flow cytometry enumerates
indices of DNA damage, apoptotic rate, and immune cell
activation, the basic concepts of the effects of radiation at
the cellular level. PCRs examine gene expression and
mutations related to radiation exposure and, therefore, can
be used to establish individualized dose rates.
Centrifuges, spectrophotometers and ELISA readers are

basic requirements to prepare and analyse samples for
investigating radiation effects [23].

The proposed U-Net-Transformer model, having learnt
the dose distribution and other anatomical features, can be
further developed to include biomarkers provided by blood
tests [24]. This may affect an imaging model’s decision to
set dosage to make sure it is not excessive for the next
treatment round, and control subsequent imaging schemes
to deliver safe radiation levels during treatment. However,
questions persist as to the feasibility of incorporating more
laboratory tests into the usual care processes, for example,
Throughput Issues, and the deployment of protocols for
the execution of tests. The next steps may be to combine
with imaging based dose estimation in a unified approach
for individualized radiotherapy treatment [25].

7 Conclusion and Future work

The use of U-Net-based CNNs and Transformers for
patient-specific dose estimation in CT imaging is a great
leap towards the improvement of radiation therapy of
diseases, providing outstanding image resolution in terms
of dose estimations. This proposed hybrid model
effectively incorporates the segmentation strength of
U-net with the long-range context awareness of
Transformers to improve the ability to accurately map
dose volumes to important anatomical structures. This
integration allows for the clinician to better understand
the anatomical and pathological differences of each
patient, thereby improving the effectiveness of treatment
while avoiding the additional radiation exposure that is so
often incurred during these procedures. The first
application can be in overlay heatmaps over the CT scan
scans to help consultation and dissemination to
multiprofessional teams hence making a lot of sense.
Furthermore, it has some defects regarding reaction time,
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Fig. 10: Correlation Between Organ-Specific Radiation Dose Estimates and Predicted Values.

which may be critical in actual applications, but it has
other facilities when it comes to performance metrics; for
example, the PSNR values show even better noise
reduction and the SSIM values display higher structure
preservation capability of the hybrid approach
accordingly and eventually leading to definitive clinical
usage. These advancements ensure that the important
anatomical details are maintained while the noise and
distortions are minimized, and it is a critical device to
enhance the treatment outcomes. Still, there are such
challenges:.The current dependence on a limited amount
and relatively homogenous set of data is suggestive of
limitations when applied to different patient populations
and different clinical settings. In the future, a large
number of data containing a large number of people of all
age groups, both male and female, and all clinical
conditions should be added to the training set so that it
can be available for clinical examinations. The
incorporation of other imaging procedures such as MRI
and PET with the model may give additional information

in order to enhance the accuracy of the dose distribution
by incorporating the strength of the two models. Another
emerging trend is the concept that offers the ability to
adapt the model in the actual work processes with new
patient data and results of their treatment. The same could
make treatment planning optimal but at the same time
sensitive to clinical context variation.This technology has
applications which are service beyond other advantages in
other fields such as brachy therapy and stereotactic body
radiation therapy (SBT) where delivering focused dose is
essential. These developments can only mean that there is
a need for researchers, clinicians and technologists to
improve and extend this blended models. Only through
such partnership could technical advancements be
accelerated while ensuring that their adoption in clinical
environments leads to optimal actualization of
individualized cancer treatment. In conclusion, higher
integration of this novel deep learning architecture has
potential in enhancing the impacts on patient care and
also the efficiency of radiation therapy.
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