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Abstract: It is a privilege for us to examine this unique strategic queuing problem in queuing systems in this research. This area focuses

on multiple decision-making queuing entities, such as servers and consumers. This is not the case with the conventional queuing theory,

which sees them as passive, non-judgmental entities that are endogenously determined. The multiple agents in a queuing system have

conflicting interests, which must be addressed through the use of game theory principles and analytical techniques. Thus, strategic

queuing may be defined as the study of queuing systems from a game-theoretical standpoint. We examine a single-queue system

in which human servers can decide how diligently to process orders that arrive concurrently or in different orders. We discuss the

implications for managers and owners of businesses who are trying to improve service delivery systems. In this paper, we examine

M/M/2/∞ through various game theory modes, including strictly alternating, random alternating, and simultaneous games. We also

derive the expected waiting time for some of these models.

Keywords: High and Low Effort, Iterated Prisoner’s Dilemma Game (IPD), Simultaneous Game, Strictly Alternating Game, Random

Alternating Game, Queue Visibility, Single-Queue Systems, Waiting Time

1 Introduction

Queuing theory is a branch of mathematics that examines
how waiting areas, and operate. It is also known as
waiting queue theory and queuing theory. A queue
scenario essentially consists of two components: someone
who makes a service request; commonly referred to as the
customer and one who delivers the services is as the
server. For instance, keep in mind that the clients in a
bank’s line-up are individuals who wish to deposit or
withdraw money, and the servers are the bank tellers.

The complete queuing system is examined by queuing
theory, including factors like the frequency of customer
arrivals, the number of servers and clients, the capacity of
the waiting space, the average turnaround time for
services, and the orderliness of the queue. The queue’s
discipline is determined by the first-in, first-out,
prioritized, or serve in random order principles.

Agner Krarup Erlang, a Danish engineer and
mathematician, developed the queuing theory in the early

20th century. While working there, Erlang tried to assess
and enhance the operation of the Copenhagen Telephone
Exchange. He attempted to determine how many circuits
were necessary to provide an acceptable quality of
telephone service in order to prevent having clients ”on
hold” (or in a phone queue) for an inordinate amount of
time. He was also curious about the amount of telephone
operators needed to manage a specific volume of calls.
His mathematical research resulted in his 1920
publication ”Telephone Waiting Times,” which included
some of the first queuing models and set the foundation
for applied queuing theory.

The majority of economic activity is driven by
queuing systems made up of servers executing a series of
(randomly) coming jobs. There are many examples, such
as the health care sector, where service providers treat
patients, and networks, where each server or computer
performs some of the orders given to it, and the retail
sector, where individuals and businesses sell goods that
consumers want to buy, the manufacturing sector, where
raw materials are transformed into final things by a blend
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of human and nonhuman employees. Let’s look at two
instances to provide context. A bank’s customers are
those who want to deposit or withdraw money, and the
bank teller employees are the servers in this scenario. The
requests that have been sent to the printer are the
customers, and the server is the printer when examining
the queuing condition of a printer. Thus, it should come
as no surprise that queuing theory has a rich history in a
variety of fields, such as mathematics [1,2], operations
research [3,4], management [5,6], and economics [7,8].

The frequent interaction between servers in
multi-server queuing systems is an essential but
frequently underappreciated aspect. The opportunity for
reputation-building and reciprocity presented by recurrent
engagement allows for more sophisticated
decision-making on the part of servers. The best that we
can tell, these problems have not been researched in the
context of queuing systems, even though such strategies
have been addressed in the theoretical and experimental
literature on repeated games [9]. The stochastic character
of customer arrivals and the dynamic impact of servers’
decisions are what distinguish the queuing scenario.
Particularly, when servers put in a lot of effort, more
customer requests are handled and the wait is probably
going to get shorter. The short-term incentives for the
servers are impacted by the change in the number of open
orders, making the minimal effort more alluring. On the
other side, when servers work inefficiently, few customer
orders are fulfilled and the line is likely to become longer,
making the incentives to work inefficiently less appealing.

More specifically, unless the strategic nature of its
many agents is taken into consideration, an economic
evaluation of a queuing system cannot be realistic. This
viewpoint was first put forth in a seminal study by Naor
[10], who investigated the join-or-balk problem for
consumers in the M/M/1 queue when its queue length is
visible, about 50 years ago. He also gave thought to the
issue of a monopolist and a social planner who, by taking
into account the strategic behavior of their customers,
maximize their profits and, respectively, the welfare of
society. By taking into account the same issues for the
unobservant form of the system, Edelson and Hildebrand
added to Naor’s [11] work by taking into account the
identical issues for the system’s unobservable form. They
assume that the system has attained a stochastic stable
state and restrict the ability of the arriving consumers to
monitor the system’s customer count, forcing them to
base their join-or-balk decisions entirely on its
operational and economic aspects. Since then, a lot more
research has been done on strategic behavior in queuing
systems.

There are many game models, such as the
simultaneous model, in which players make their
decisions without being aware of one another’s choices.
Along with the alternating model, which is used, for

example, in the game of chess, and allows players to
make decisions in turns. This model comes in two
varieties: strictly alternating models, and random
alternating models. We take into account two players and
two options per player for a game in strictly alternating
models. The player who begins the round with his pick is
referred to as the leader, while the other player is referred
to as the recipient. Each player in the random model has a
predetermined probability of becoming the leader. In our
paper, we will study the three models mentioned and we
will discuss theses models through All D S0 = (0,0,0,0),
Grim S8 = (1,0,0,0), TFT S10 = (1,0,1,0) or All C
S15 = (1,1,1,1) strategies.

2 Invisible Queuing

Consider a single-queue system (M/M/2/∞) with
two-server. Suppose that λ is the arrival customer rate to
the queue and µ is the departure rate from system. We are
interested in situations when servers encounter a social
conundrum. We take into account a situation where
servers have control over how much effort they put out,
we’ll assume that each server has a choice between two
levels of effort. For example, each server has the option to
”cooperate” by selecting a high effort or ”defect” by
selecting a low effort. Let e ∈ (h, l) denote the effort
selected by the server.

Figure 1: A Single Queue System with Two-Server

In our paper, we will study a system with two servers
and an infinite number of customers (the queue is not
visible). We will discuss if the servers always do their
work at low effort, begin with high effort then work by
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low effort, determine the effort based on the effort that the
other server will make or always do high effort. From a
game theory point of view, for two-player Iterated
Prisoner’s Dilemma games, we have two options for each
player where each player takes his decision C or D. So,
we have four outcomes (C,C),(C,D),(D,C) or (D,D).
Therefore, there are 24 different strategies denoted by
S0,S1, ...,S15 which can be categorized by (a1,a2,a3,a4)
of zeros and ones where ai = 0 or 1; if the player plays D

or C respectively. Some of these strategies have some
special features such as All D (always plays defect no
matter what the opposing player decides), Grim (begin
with cooperate then plays defect no matter what the
opposing player decides), Pavlov “Win Stay Lose Shift”
(always plays the role of cooperation if the opposing
player makes the same decision and plays the role of
disadvantage if the opposing player makes the opposite
decision), Tit-For-Tat (plays cooperation if the opposing
player also cooperates, and he plays the role of defect if
the opposing player decides to play defect, meaning that
he takes his decision based on the decision of the
opposing player) and All C (always plays cooperate no
matter what the opposing player decides) strategies and
other strategies [12,13,14].

Furthermore, The two players get a reward, (R,R) for
the (C,C) profile, (S ,T ) for the (C,D) profile, (T ,S )
for the (D,C) profile and they get Punishment, (P,P),
for the (D,D) profile. So, the payoff matrix of (2P-IPD)
[12,13] is given by

C D

C R S

D T P

(1)

where

S < P < R < T and R >
T +S

2
. (2)

2.1 Simultaneous Model

A simultaneous game, often known as a static game,
is one in which each server (player) makes his effort
(decision) independently of the efforts made by the other
servers. In a simultaneous game, both servers typically
take action at the same moment. In simultaneous
two-player Iterated Prisoner’s Dilemma game, we
suppose that player I with A = (a1,a2,a3,a4) strategy
matches the opponent using the B = (b1,b2,b3,b4)
strategy, where ai or bi the probability for playing C after
the state i. The Markov transition matrix for simultaneous
games (MS) [12,13] is given by

MS =






a1b1 a1(1− a1) (1− a1)b1 (1− a1)(1− b1)
a2b3 a2(1− b3) (1− a2)b3 (1− a2)(1− b3)
a3b2 a3(1− b2) (1− a3)b2 (1− a3)(1− b2)
a4b4 a4(1− b4) (1− a4)b4 (1− a4)(1− b4)






(3)

Assuming that eigenvalue 1’s corresponding left
eigenvector for the transition matrix is Π , then

Π MS = Π (4)

where

Π = (π1,π2,π3,π4) (5)

4

∑
i=1

πi = 1 (6)

The payoff for the player using A against an opponent
using B is given by

E(A,B) = π1R+π2S +π3T +π4P (7)

Now, we will show an example, If two servers play
with S10

• Case 1: If the two servers play with high effort

ServerI C C C C C C

SeverII C C C C C C

R R R R R R −→ R

• Case 2: If the first server starts with high effort and
the second one with low effort

ServerI C D C D C D

ServerII D C D C D C

S T S T S T −→ T +S

2

• Case 3: If the fist server starts with low effort and the
second one with high effort

ServerI D C D C D C

ServerII C D C D C D

T S T S T S −→ T +S

2

• Case 4: If the two servers play with low effort

ServerI D D D D D D

SeverII D D D D D D

P P P P P P −→ P
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We have three regimes based on the prior situations as

R1 = R,

R2 =
T +S

2
,

R3 = P,

The result of the disturbance is as follows:

Table 1: The perturbation

Regimes Perturbation Results

Regime R1 server I plays D instead of C R1 −→ R2

server II plays D instead of C R1 −→ R2

Regime R2 column 1

server I plays D instead of C R2 −→ R3

server II plays C instead of D R2 −→ R1

column 2

server I plays C instead of D R2 −→ R1

server II plays D instead of C R2 −→ R3

Regime R3 server I plays C instead of D R3 −→ R2

server II plays C instead of D R3 −→ R2

Thus, According to Table 1, the associated transition
matrix changes

P =







R1 R2 R3

R1 0 1 0
R2 1/2 0 1/2
R3 0 1 0






(8)

We obtain the following equations by computing the
left eigenvectors for the eigenvalue 1:

−ν1 +
1

2
ν2 = 0, (9)

ν1 −ν2 +ν3 = 0, (10)

1

2
ν2 −ν3 = 0 (11)

By solving (9), (10) and (11) with ν1 +ν2 +ν3 = 1 as
a linear system of equations, then we obtain

ν = (ν1,ν2,ν3) = (1/4,1/2,1/4) (12)

E(S10,S10) = ν1.R1 +ν2.R2 +ν3.R3

=
1

4
R +

1

2

T + S

2
+

1

4
P

=
1

4
R +

1

4
S +

1

4
T +

1

4
P (13)

Furthermore, the payoff vector is equal to
(1/4,1/4,1/4,1/4) ≡ (1,1,1,1). Using the same
approach, we obtained all payoff vectors as shown in the
following table.

Table 2: The payoff for server I against server II

All D Grim TFT All C

All D (0,0,0,1) (0,0,0,1) (0,0,0,1) (0,0,1,0)
Grim (0,0,0,1) (0,0,0,1) (1,1,1,1) (1,0,0,0)
TFT (0,0,0,1) (0,0,0,1) (1,1,1,1) (1,0,0,0)
All C (0,1,0,0) (1,2,0,0) (1,0,0,0) (1,0,0,0)

2.1.1 Waiting Time for Simultaneous Model

According to the queuing theory, a line can be studied
in terms of six different components: the arrival process,
the service process, the departure process, the number of
servers available, the queue discipline, the queue capacity,
and the number of people serviced. The causes of the
congestion can be found and addressed by building a
model of the complete procedure from start to finish. So,
in this sub-subsection, we will deduce the waiting time in
the system and queuing for simultaneous case depending
on the arrival and departure rates [15]. Let LQ,WQ,LS and
LQ be the expected numbers of customers and expected
waiting time in queuing and in the system, respectively.

Let Λ = λ
µ , we obtain the probability of n-customer in

the system (steady state), where λ is the arrival customer
rate to the queue and µ is the departure rate from system.

Pn =







Λn

n!
P0 i f 0 ≤ n ≤ c

Λn

cn−c c!
P0 i f n ≥ c

(14)

P0 =

[

1+
∞

∑
n=1

Pn

]−1

=

[

c−1

∑
n=0

Λ n

n!
+

∞

∑
n=c

Λ n

cn−c c!

]−1

=

[

c−1

∑
n=0

Λ n

n!
+

Λ n

c!

∞

∑
n=c

Λ

c

n−c
]−1

=

[

c−1

∑
n=0

Λ n

n!
+

Λ n

c!

1

1− Λ
c

]−1

(15)

where Λ
c
< 1
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Then,

P2 =
Λ 2

2
P0

=
Λ 2

2

[

1 + Λ +
Λ 2

2

1

1− Λ
2

]−1

=
Λ 2

2

[

1 + Λ +
Λ 2

2−Λ

]−1

=
Λ 2

2

[

1 +
2Λ

2−Λ

]−1

(16)

The expected number of customers in queuing is given
by

LQ =
∞

∑
n=c

(n− c) Pn

=
∞

∑
n=c

(n− c)
Λ n

cn−c c!
P0

= P0
Λ c

c!

Λ

c

∞

∑
n=c

(n− c)

(

Λ

c

)n−c−1

= P0
Λ c+1

c! c

d

d(Λ
c
)

∞

∑
n=c

(

Λ

c

)n−c

= P0
Λ c+1

c! c

d

d(Λ
c
)

1

1− Λ
c

= P0
Λ c+1

(c− 1)!

1

(c−Λ)2

= P0
Λ c

c!

Λ c

(c−Λ)2

= Pc

Λ c

(c−Λ)2
(17)

Then for our study, the expected numbers of customers
in queuing will be given as

LQ = P2
2Λ

(2−Λ)2

=
Λ 2

2

[

1 +
2Λ

2−Λ

]−1
2Λ

(2−Λ)2

=
Λ 3

(2−Λ)2

[

1 +
2Λ

2−Λ

]−1

(18)

And the expected number of customers in the system
(in queuing and in service) is given by

LS = LQ +Λ (19)

Therefore, the expected waiting time in queuing is
given by

WQ =
LQ

λ
(20)

Then for our study, the expected waiting time in
queuing will be given as

WQ =
Λ 2

(2−Λ)2

[

1 +
2Λ

2−Λ

]−1

(21)

Furthermore, the expected waiting time in the system
(in both queuing and service) is given by

WS =WQ +
1

µ
(22)

Finally, we will deduce the expected number and
waiting time for simultaneous case depending on the
arrival and the departure rates.

For example: If we have a hospital with two
receptionists who receive and serve patients, if each of
them can receive 20 patients per hour and the patients
arrive at a rate of 30 patients per hour.

Now, we have λ = 30 and µ = 20, then Λ = 3/2 and
P0 = 0.14.
The expected number of patients waiting for service
LQ ≈ 2 customer.
And the expected waiting time in the hospital is

WS =WQ + 1
µ =

LQ

λ + 1
µ = 0.11 hours.

2.2 Strictly Alternating Model

In Alternating games, one of the two servers (players)
makes his effort (decision) in a round, while the other
server replays his serves in another round. In strictly
alternating two-player Iterated Prisoner’s Dilemma game,
we suppose that player I with A = (a1,a2,a3,a4) strategy
matches the opponent using the B = (b1,b2,b3,b4)
strategy, where ai or bi the probability for playing C after
the state i as simultaneous model. But the Markov
transition matrix for strictly alternating games (MSA) [16,
17] is given by

MSA =







a1b1 a1(1− b1) (1− a1)b2 (1− a1)(1− b2)
a2b3 a2(1− b3) (1− a2)b4 (1− a2)(1− b4)
a3b1 a3(1− b1) (1− a3)b2 (1− a3)(1− b2)
a4b3 a4(1− b3) (1− a4)b4 (1− a4)(1− b4)






(23)

If we assume Π as the left eigenvector for the
transition matrix corresponding to the eigenvalue 1, we
get the equation (4) but for the matrix MSA and the payoff
for the player using A against an opponent using B as
equation (7) in the previous sub-section 2.1.
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ServerI C C C C C

SeverII C C C C C

R R R R R R R R R −→ R

Now, we will show an example, If two servers play
with S10

• Case 1: If the two servers play with high effort
• Case 2: If the first server starts with high effort and

the second one with low effort

ServerI C D C D C

ServerII D C D C D

S P T R S P T R S
S+P+T +R

4

• Case 3: If the fist server starts with low effort and the
second one with high effort

ServerI D C D C D

ServerII C D C D C

T R S P T R S P T
S+P+T +R

4

• Case 4: If the two servers play with low effort

ServerI D D D D D

SeverII D D D D D

P P P P P P P P P −→ P

We have three regimes based on the prior situations as

R1 = R,

R2 =
T +R+P+S

4
,

R3 = P.

The result of the disturbance is as follows:
Thus, according to Table 3, the corresponding

transition matrix becomes

P =







R1 R2 R3

R1 0 0 1
R2 1/2 0 1/2
R3 1 0 0







Furthermore, the payoff vector is equal to
(1/2,0,0,1/2) ≡ (1,0,0,1). Using the same approach,
we obtained the results shown in the following table:

Table 3: The perturbation

Regimes Perturbation Results

Regime R1 server I plays D instead of C R1 −→ R3

server II plays D instead of C R1 −→ R3

Regime R2 column 1

server I plays D instead of C R2 −→ R3

server II plays C instead of D R2 −→ R1

column 2

server I plays C instead of D R2 −→ R1

server II plays C instead of D R2 −→ R1

column 3

server I plays C instead of D R2 −→ R1

server II plays D instead of C R2 −→ R3

column 4

server I plays D instead of C R2 −→ R3

server II plays D instead of C R2 −→ R3

Regime R3 server I plays C instead of D R3 −→ R1

server II plays C instead of D R3 −→ R1

Table 4: The payoff for server I against server II

All D Grim TFT All C

All D (0,0,0,1) (0,0,0,1) (0,0,0,1) (0,0,1,0)
Grim (0,0,0,1) (0,0,0,1) (1,0,0,2) (1,0,2,0)
TFT (0,0,0,1) (0,0,0,1) (1,0,0,1) (1,0,0,0)
All C (0,1,0,0) (1,2,0,0) (1,0,0,0) (1,0,0,0)

2.3 Randomly Alternating Model

In this model, each player has the same chance to be the
leader in every round (i.e. with probability 1

2
) for each

one. The chance of the player to be a leader in the next
round is independent of the players’ decision. In random
alternating two-player Iterated Prisoner’s Dilemma game,
we suppose that player I with A = (a1,a2,a3,a4) strategy
matches the opponent using the B = (b1,b2,b3,b4)
strategy, where ai or bi the probability for playing C after
the state i as simultaneous model. But the Markov
transition matrix for random alternating games (MRA) [18]
is given by

MRA =
1

2







a1 b2 (1− a1) (1− b2)
a2 b1 (1− a2) (1− b1)
a3 b4 (1− a3) (1− b4)
a4 b3 (1− a4) (1− b3)






(24)

If we assume Π as the left eigenvector for the
transition matrix corresponding to the eigenvalue 1, we
get the equation (4) but for the matrix MRA and the payoff
for the player using A against an opponent using B as
equation (7) in the sub-section 2.1.
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We have

π3 =
1

2
−π1 (25)

π4 =
1

2
−π2 (26)

Then Π = (π1,π2,
1
2
−π1,

1
2
−π2) and 0 < π1π2 <

1
2

We get

2π1(2− a1 + a3)+ 2π2(a4 − a2) = a3 + a4 (27)

2π1(b4 − b2)+ 2π2(2− b1+ 2b3) = b3 + b4 (28)

Therefore, the payoff of Player I (A-player) can be
written in the form

P

2
+π1(R−T )+π2(T −P) (29)

By the same approach, the payoff of Player I
(A-player) against itself can be written in the form

(
1

2
−π1)P +π1R (30)

Using the same approach, we obtained the results
shown in the following table:

Table 5: The payoff for server I against server II

All D Grim TFT All C

All D (0,0,1,1) (0,0,1,1) (0,1,2,1) (0,1,1,0)
Grim (0,0,1,1) (0,0,1,1) (0,1,2,1) (0,1,1,0)
TFT (0,1,2,1) (0,1,2,1) (1,1,1,1) (1,2,1,0)
All C (0,1,1,0) (0,1,1,0) (1,2,1,0) (1,1,0,0)

3 The payoff Using Numerical Values

In this section, we use Axelrod’s values S = 0,P =
1,R = 3 and T = 5 to expect payoff for server I against
server II for simultaneous case as in Table 6, for strictly
alternating case in Table 7 and for randomly alternating
case in Table 8 as

4 Domination

We shall talk about the dominance in this section, we
will discuss the domination [13]. If both anm > ann and
amm > anm, where ann,anm,amn and amm are elements of
the payoff matrix, then Sn is outcompeted by Sm. We
write Sn << Sm, if the strategy Sn is outperformed by Sm.
Furthermore, the domination is given as

Table 6: The payoff with Axelrod’s values for the
simultaneous model

All D Grim TFT All C

All D 1 1 1 5

Grim 1 1 1.25 3

TFT 1 1 1.25 3

All C 0 1 3 3

Table 7: The payoff with Axelrod’s values for strictly

alternating model

All D Grim TFT All C

All D 1 1 1 5

Grim 1 1 1.666 4.333

TFT 1 1 2 3

All C 0 1 3 3

Table 8: The payoff with Axelrod’s values for randomly
alternating model

All D Grim TFT All C

All D 3 3 2.75 2.5

Grim 3 3 2.75 2.5

TFT 2.75 2.75 2.25 2

All C 2.5 2.5 2 1.5

Table 9: A list of strategies outcompeting Sn for
simultaneous model

All D S0 << -

Grim S8 << -

TFT S10 << S15

All C S15 << S0

Table 10: A list of strategies outcompeting Sn for strictly

alternating model

All D S0 << S10

Grim S8 << S10

TFT S10 << S15

All C S15 << S0
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Table 11: A list of strategies outcompeting Sn for
randomly alternating model

All D S0 << -

Grim S8 << -

TFT S10 << S0,S8

All C S15 << S0,S8,S10

5 Conclusion

After checking the results, we concluded that if we
have an invisible queue and only two servers work to
accomplish this work, then for simultaneous or strictly
alternating models, it is better for any server to start with
a low effort and then limit its effort to what the other
server is doing. If the competing server (the second
server) always does with high effort or always does with
low effort, it will continue with low effort, and if the
competing server determines its effort based on the other
server’s effort, it should switch its effort to high. But for
the randomly alternating model, it is better for any server
to do low effort at all.
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