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Abstract: This paper examines the fractional Lotka-Volterra system, a cornerstone in the mathematical modeling of ecological and

chemical processes. The primary objective is to introduce an innovative numerical technique for addressing nonlinear problems

characterized by a nonsingular kernel. The proposed method is designed to be straightforward in implementation while minimizing

computational effort and cost. To achieve this, the operational matrix method is refined and adapted. The study validates the

effectiveness of this approach by applying it to various classes of fractional Lotka-Volterra systems. A thorough comparison is

provided between the results obtained through this method and those generated by Mathematica’s built-in commands for integer-order

derivatives. Additionally, the L2-truncation error is evaluated to highlight the method’s enhanced accuracy and efficiency. The paper

also addresses theoretical aspects, including the existence, uniqueness, error bounds, and convergence of the solutions, providing a

robust foundation for the proposed approach.
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1 Introduction

The field of fractional calculus extends the classical notions of differentiation and integration to non-integer orders,
providing a more general framework for these fundamental operations. The origins of fractional differentiation and
integration trace back to 1695 when Leibniz and Euler first proposed these ideas [1]. A key feature of fractional operators
is their non-local nature, which offers insights into the historical significance of fractional models. In recent times,
fractional differential equations have been extensively applied to model various real-world phenomena. For example,
Matušů [2] explored how this mathematical framework could be leveraged in the analysis and design of control systems.
Magin [3] highlighted three bioengineering research areas where fractional calculus principles are employed to
formulate novel mathematical models. Matlob and Jamali [4] applied fractional differential equations to model the
behavior of viscoelastic systems. In image processing, fractional orders have been utilized to enhance denoising
techniques [5]. Other applications of fractional calculus include finance [6] and solid mechanics [7]. Furthermore,
several applications in mathematical biology are explored in [8]-[29].

A recent advancement in fractional calculus is the Atangana-Baleanu fractional derivative [8]. Introduced by Abdon
Atangana and Dumitru Baleanu in 2016, this fractional derivative is defined using non-singular kernels and the
Mittag-Leffler function. The concept of fractional differentiation was applied in [8] to develop a mathematical model for
heat conduction in materials. This approach has demonstrated success in addressing numerous real-world challenges, as
illustrated in [30]-[59].

The present study focuses on the following problem

DηΨ (t) = aΨ(t)− bΨ(t)Φ(t), Ψ(0) = ψ0, (1)

DηΦ(t) = cΦ(t)Ψ (t)− dΦ(t), Φ(0) = φ0, (2)
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where Dη are in MABC type fractional order derivative, 0 < η ≤ 1, and ψ0,φ0 > 0.

The Operational Matrix Method (OMM) is a powerful numerical technique for solving various differential equations,
particularly those encountered in engineering and applied mathematics [18]-[31]. The method transforms differential
equations into algebraic matrix equations by representing the differential operators as operational matrices [19]. This
transformation enables the immediate computation of solutions without the need for analytical integration or symbolic
manipulation. OMM is particularly effective in problems where solutions can be expressed in terms of polynomials or
where linear combinations of polynomial functions can serve as approximations. It has been widely used in control
system analysis, structural dynamics, heat transfer problems, and fluid mechanics.

The Operational Matrix Method (OMM) has demonstrated its effectiveness across various applications, particularly
where equations are either linear or nonlinear with polynomial forms in terms of the solution. This method excels due to
its ability to accurately approximate solutions by transforming differential or integral equations into algebraic equations.
OMM achieves this by leveraging operational matrices that efficiently handle the underlying mathematical operations
involved. In practical terms, OMM is particularly suited for problems where the solution can be expressed in terms of
polynomial functions or where linear combinations of such functions can approximate the solution well. This approach not
only simplifies the computational process but also enhances accuracy, making it a preferred choice in many scientific and
engineering disciplines. These references provide excellent applications of the Operational Matrix Method (OMM) where
OMM has been successfully applied, underscoring its versatility and robustness in solving a wide range of mathematical
and physical problems.

The structure of the paper is as follows. In the subsequent section, we will present a set of definitions and lemmas
that are crucial for the analysis that follows. In Section 3, we will introduce the modified iteration version of the
Operational Matrix Method (OMM). Section 4 will be focused on proving key theoretical results, including the existence
and uniqueness of solutions, error estimates, and convergence analysis. Section 5 will provide three practical examples to
numerically validate the convergence of the proposed method to the unique solution of Problem (1)-(2). Finally, the
paper will conclude with a summary and concluding remarks in the last section.

2 Fundamental Principles

This section outlines the essential concepts and results employed in this study.

Definition 1.[14] The Atangana-Baleanu fractional derivative of order 0 < n < 1 in the Caputo sense is defined as

ABCDα f (t) =
B(α)

1−α

∫ t

0
En(−µα(t − x)α) f ′(x)dx, t ≥ 0, (3)

where µα = α
1−α , and B(α) is a positive function satisfying B(α) = 1 at x = 0,1.

The corresponding integral operator is introduced in the following definition:

Definition 2.[15] The Atangana-Baleanu integral operator for 0 < α < 1 is given by

ABCIα f (t) =
1−α

B(α)
f (t)+

α

B(α)Γ (α)

∫ t

0
f (x)(t − x)α−1dx. (4)

Building on these definitions, Al-Refai and Baleanu [14] extended the ABC derivative using integration by parts and
the derivative of the Mittag-Leffler function in (3). This modified derivative is as follows:

Definition 3.[14] The modified Atangana-Baleanu fractional derivative of order 0 < n < 1 in the Caputo sense is

expressed as

Dα f (t) =
B(α)

1−α

[

f (t)−Eα(−µα tα) f (0)− µn

∫ t

0
(t − x)α−1Eα ,α(−µα(t − x)α) f (x)dx

]

, (5)

where µα = α
1−α , and B(α) is a positive function that equals 1 at α = 0,1.

The integral operator corresponding to the modified Atangana-Baleanu derivative is presented in [14]:
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Definition 4.[29] For f ∈ L1(0,∞) and α ∈ (0,1), the MAB integral operator is defined as follows:

Iα f (t) =
1−α

B(α)
( f (t)− f (0))+

µα

Γ (α)

∫ t

0
( f (x)− f (0))(t − x)α−1dx, (6)

where µα = α
1−α .

The following lemma highlights key relationships between the operators:

Lemma 1.[29,33] For η > 0 ∈ (0,1), and Φ(t) ∈C[0,T ], the following properties hold:

IηDηΦ(t) = Φ(t)−Φ(0), (7)

Dη IηΦ(t) = Φ(t)−Φ(0). (8)

Next, we introduce the OMM through the following definition:

Definition 5.[30,31,32] Let ts = s∆ ,s ∈ 0,1,2, ...,M− 1,∆ = T
M

, and M ∈ N. The s-block pulse function (BPF) is defined

as

µs(t) =

{

1, ts ≤ t < ts+1,

0, otherwise,
0 ≤ s < M.

The following theorem provides product and orthogonality properties of BPFs:

Theorem 1.[32,33] Let {t0 = 0, t1, ..., tM = T} be a uniform partition of [0,T ], and {µ0(t),µ1(t), ...,µM−1(t)} be the

corresponding BPFs. Then, for any 0 ≤ i, j ≤ M− 1, the following holds:

µi(x)µ j(x) =

{

µi(x), if i = j,

0, otherwise.
(9)

and
∫ T

0
µi(x)µ j(x)dx =

{

∆ , if i = j,

0, otherwise.
(10)

Finally, the completeness property is presented in the following lemma:

Lemma 2.[31,32] If Φ ∈ L2[0,T ), then

Φ(t) =
∞

∑
s=0

φsµs(t), (11)

where

φs =
1

∆

∫ (s+1)∆

s∆
Φ(x)dx. (12)

For practical computations, Φ can be approximated as

Φ(t) ≈
M−1

∑
s=0

φsµs(t), M ≫ 1. (13)

3 Enhanced Iterative Operational Matrix Approach

In this section, we introduce an enhanced version of the iterative operational matrix approach (E-IOMA) for solving
Problem (1)-(2). By applying the fractional integral operator (6) to both sides of (1)-(2), we derive the following system
of equations:

Ψ(t)−ψ0 =
1−α

B(α)
(Ψ(t)(a− bΦ(t))−ψ0(a− bφ0))+

µα

Γ (α)

∫ t

0
(Ψ (x)(a− bΦ(x))−ψ0(a− bφ0)) (t − x)α−1dx (14)
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Φ(t)−Φ0 =
1−α

B(α)
(Φ(t)(cΨ (t)− d)−φ0(cψ0 − d))+

µα

Γ (α)

∫ t

0
(Φ(x)(cΨ (x)− d)−φ0(cψ0 − d))(t − x)α−1dx. (15)

Let {t0 = 0, t1, ..., tM = T} denote a uniform partition of [0,T ], and {µ0(t),µ1(t), . . . ,µM−1(t)} represent the
corresponding Barycentric interpolation functions (BPFs). We approximate Ψ (t) and Φ(t) as linear combinations of
these BPFs:

Ψ (t) =
M−1

∑
i=0

ψiµi(t), Φ(t) =
M−1

∑
i=0

φiµi(t). (16)

Using the collocation method for Equations (14)-(15) at the collocation points t j, where 1 ≤ j < M, we obtain:

Ψ(t j) =
M−1

∑
i=0

ψiµi(t j) = ψ j, Φ(t j) =
M−1

∑
i=0

φiµi(t j) = φ j, 0 ≤ j ≤ M− 1, (17)

which leads to the following system of equations:

ψ j = ψ0 +
1−α

B(α)
(ψ j(a− bφ j)−ψ0(a− bφ0))+

µα

Γ (α)

∫ t j

0
(Ψ (x)(a− bΦ(x))−ψ0(a− bφ0)) (t j − x)α−1dx, (18)

φ j = φ0 +
1−α

B(α)
(φ j(cψ j − d)−φ0(cψ0 − d))+

µα

Γ (α)

∫ t j

0
(Φ(x)(cΨ (x)− d)−φ0(cψ0 − d))(t j − x)α−1dx. (19)

It is important to note that Equation (17) holds because:

µi(t j) =

{

1, i = j

0, i 6= j

By using the properties of the Riemann integral, we can rewrite Equations (18) and (19) as:

ψ j = ψ0 +
1−α
B(α) (ψ j(a− bφ j)−ψ0(a− bφ0))

+ µα
Γ (α) ∑

j−1
k=0

∫ tk+1
tk

((

∑M−1
i=0 ψiµi(x)

)(

a− b
(

∑M−1
i=0 φiµi(x)

))

−ψ0(a− bφ0)
)

(t j − x)α−1dx,

φ j = φ0 +
1−α
B(α) (φ j(cψ j − d)−φ0(cψ0 − d))

+ µα
Γ (α) ∑

j−1
k=0

∫ tk+1
tk

((

∑M−1
i=0 φiµi(x)

)(

c
(

∑M−1
i=0 ψiµi(x)

)

− d
)

−φ0(cψ0 − d)
)

(t − x)α−1dx.

(20)

For any 1 ≤ k, j < M, we have:

µ j(t) =

{

1, j = k

0, j 6= k
, t ∈ [tk, tk+1)

This results in the following expressions:

∫ tk+1
tk

((

∑M−1
i=0 ψiµi(x)

)(

a− b
(

∑M−1
i=0 φiµi(x)

))

−ψ0(a− bφ0)
)

(t j − x)α−1dx

=
∫ tk+1

tk
(ψk(a− bφk)−ψ0(a− bφ0)) (t j − x)α−1dx,

∫ tk+1
tk

((

∑M−1
i=0 φiµi(x)

)(

c
(

∑M−1
i=0 ψiµi(x)

)

− d
)

−φ0(cψ0 − d)
)

(t − x)α−1dx

=
∫ tk+1

tk
(φk(cψk − d)−φ0(cψ0 − d))(t − x)α−1dx.

(21)

Thus, we obtain the following simplified expressions for ψ j and φ j:

ψ j = ψ0 +
1−α
B(α) (ψ j(a− bφ j)−ψ0(a− bφ0))

+ µα
Γ (α) ∑

j−1
k=0 (ψk(a− bφk)−ψ0(a− bφ0))(( j− k)α − ( j− k− 1)α) ,

φ j = φ0 +
1−α
B(α) (φ j(cψ j − d)−φ0(cψ0 − d))

+ µα
Γ (α) ∑

j−1
k=0 (φk(cψk − d)−φ0(cψ0 − d))(( j− k)α − ( j− k− 1)α) .

(22)

Remark.It is essential to note the following points:
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1.To find the coefficients in the approximation (16) using the operational matrix method (OMM), it is necessary to
compute operational matrices, which results in a nonlinear algebraic system that must be solved. This system can be
extensive, often containing over 100 equations, leading to high computational costs and time demands. Solving the
system analytically is generally not feasible, requiring numerical methods that introduce approximation errors. This
accounts for why the errors from using the OMM in nonlinear physical and engineering problems can exceed 10−5.

2.In contrast, our modified approach for determining the coefficients of the approximation (16), as described in
Equations (22), employs a forward method and does not require solving systems. It is evident that each ψk can be
determined from ψ0,ψ1, . . . ,ψk−1. This makes our modified OMM more practical, cost-effective, and accurate since
no nonlinear systems need to be solved.

4 Error Analysis

Let Φ ∈ L2([0,T )) be a function, and let its norm be defined by the following expression

||Φ||=

√

∫ T

0
|Φ(x)|2 dx. (23)

Based on Lemma (2), the function Φ(x) can be approximated by the expression

ΦM(x) =
M−1

∑
i=0

φiµi(x). (24)

The objective of Theorem (2) is to show that the mean square error achieves its minimum when φi is determined
according to Equation (12).

Theorem 2.Let Φ ∈ L2([0,T )) and define ΦM(x) as in Equation (24). Then, the mean square error term

E (φ0,φ1, . . . ,φM−1) =

∫ T

0
(Φ(x)−ΦM(x))2

dx

attains its minimum when φi is given by Equation (12) for each i = 0,1, . . . ,M− 1.

Proof.For 0 ≤ i ≤ M− 1, applying Theorem (1), we compute

∂E

∂φi
= 2

∫ T
0 (Φ(x)−ΦM(x))µi(x)dx

= 2
(

∫ T
0 Φ(x)µi(x)dx−∆φi

)

= 0.

Thus, we obtain

φi =
1

∆

∫ T

0
Φ(x)µi(x)dx.

Furthermore, Theorem (1) gives us the second-order derivatives

∂ 2E

∂φi∂φ j

=

{

2∆ , if i = j,

0, if i 6= j,
0 ≤ i, j ≤ M− 1.

For any 0 ≤ i ≤ M− 1, we compute the determinant of the Hessian matrix:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ 2E

∂φ 2
0

∂ 2E

∂φ0∂φ1
. . .

∂ 2E

∂φ0∂φi

∂ 2E

∂φ1∂φ0

∂ 2E

∂φ 2
1

. . .
∂ 2E

∂φ1∂φi

...
...

. . .
...

∂ 2E

∂φi∂φ0

∂ 2E

∂φi∂φ1
. . .

∂ 2E

∂φ 2
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

2∆ 0 . . . 0
0 2∆ . . . 0
...

...
. . .

...
0 0 . . . 2∆

∣

∣

∣

∣

∣

∣

∣

∣

= (2∆)i+1
> 0.

Therefore, the error E reaches its minimum when φi is computed according to Equation (12) for each i = 0,1, . . . ,M − 1.
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Next, we seek to determine the order of the mean square error in approximating Φ(x) over the interval [0,T ).

Theorem 3.Let Φ(x) be a differentiable function on [0,T ) such that

|Φ ′(x)| ≤ F (25)

for all x ∈ [0,T ), where F is a positive constant. Then,

||E ||2 ≤C∆ 2 (26)

where E (x) = Φ(x)−ΦM(x), x ∈ [0,T ), and C is a positive constant, with ∆ = T
M

.

Proof.Let xi = i∆ and Ai = [xi,xi+1), where ∆ = T
M

and i = 0,1, . . . ,M− 1. By the mean value theorem for integrals and
Equation (12), we obtain

ΦM(x) = φi, x ∈ [xi,xi+1),

=
1

∆

∫ xi+1

xi

Φ(t)dt,

= Φ(νi), νi ∈ [xi,xi+1), i = 0,1, . . . ,M− 1.

Using the mean value theorem for integrals, we have

||E ||2 =
∫ T

0
(Φ(x)−ΦM(x))2 dx

=
M−1

∑
i=0

∫ xi+1

xi

(Φ(x)−ΦM(x))2 dx

= ∆
M−1

∑
i=0

(Φ(ωi)−Φ(νi))
2

where ωi,νi ∈ [xi,xi+1). By the mean value theorem and Equation (25), we obtain

||E ||2 ≤ ∆F
2

M−1

∑
i=0

(ωi −νi)
2

≤ ∆F
2

M−1

∑
i=0

∆ 2

= MF
2∆ 3 = (TF

2)∆ 2 =C∆ 2
.

Thus, C = F 2T .

The result above establishes that the mean square error in our approximation is of order ∆ 2.

5 Numerical Results

In this section, we present three examples to illustrate the efficiency of the proposed method.

Example 1.Consider the following Lotka-Volterra type system:

DηΨ(t) =Ψ (t)(1− 0.1Φ(t)), Ψ(0) = 10,

Dη Φ(t) = Φ(t)(−1.1+ 0.2Ψ(t)), Φ(0) = 20,

where t ∈ [0,50], and 0 < η ≤ 1. We approximate Ψ(t) and Φ(t) using the following series expansions:

Ψ (t) =
M−1

∑
i=0

ψiµi(t), Φ(t) =
M−1

∑
i=0

φiµi(t).
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Figure 1. The solution Ψ for η = 0.85,0.9,0.95,1.
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Figure 2. The solution Φ for η = 0.85,0.9,0.95,1.

Let ∆ = 0.01. We begin by investigating the influence of the fractional order derivative on the behavior of the solution.
Figures 1 and 2 display the approximate solutions for Ψ and Φ for various values of η = 0.85,0.9,0.95,1 using the
MIOMM method.

Figures 3 and 4 illustrate the impact of the fractional derivative on the solution profile within the interval [0,10] for
different values of η = 0.7,0.8,0.9,0.95,1.

Next, we compare the approximate solutions generated by the MIOMM method and the NDSolve function in
Mathematica for η = 1, as shown in Figures 5 and 6.
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2 4 6 8 10
t

5

10

15

20

ψ(t)

η=1

η=0.95

η=0.9

η=0.8

η=0.7

Figure 3. The solution Ψ for η = 0.7,0.8,0.9,0.95,1 on [0,10].
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Figure 4. The solution Φ for η = 0.7,0.8,0.9,0.95,1 on [0,10].

Finally, to assess the accuracy of the approximation, we compute the L2-truncation errors, defined as:

ε(η) =

(

∫ 50

0

∥

∥

∥

∥

(

DηΨm(t)−Ψm(t)(α −β Φ p
m(t))

DηΦm(t)−Φ p
m(t)(−γ + δΨm(t))

)∥

∥

∥

∥

2

dt

)
1
2

The errors are shown in Table 1.
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Figure 5. The solutions of Ψ generated by MIOMM and Mathematica for η = 1.
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Figure 6. The solutions of Φ generated by MIOMM and Mathematica for η = 1.

Example 2.Consider the following Lotka-Volterra type system:

DηΨ(t) =Ψ (t)(2− 0.3Φ(t)), Ψ(0) = 10,

Dη Φ(t) = Φ(t)(−1.3+ 0.4Ψ(t)), Φ(0) = 20,

where t ∈ [0,75], and 0 < η ≤ 1. The procedure from Example 1 is followed to generate Figures 7-10.
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Table 1: The L2-error for η = 0.7,0.8,0.9,0.99,1.

η ε(η)

0.6 3.22×10−15

0.75 2.44×10−15

0.9 2.31×10−15

0.99 1.27×10−15

1 1.11×10−15
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Figure 7. The solution Ψ for η = 0.85,0.9,0.95,1.

Additionally, the approximate solution generated by MIOMM is compared to that produced by the NDSolve command
in Mathematica for η = 1, as shown in Figures 11 and 12.

Finally, to evaluate the accuracy of the approximation, we compute the L2-truncation errors. The results are presented
in Table 2.

Table 2: The L2-error for η = 0.7,0.8,0.9,0.99,1.

η ε(η)

0.6 1.27×10−15

0.75 1.45×10−15

0.9 1.22×10−15

0.99 0.21×10−15

1 0.11×10−15

6 Conclusion

The operational matrix method is a powerful tool for solving systems of fractional initial value problems. The core of
this method lies in approximating the solution of such systems using Block Pulse functions. To compute the coefficients
for this approximation, conventional methods require the determination of operational matrices corresponding to integral,
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Figure 8. The solution Φ for η = 0.85,0.9,0.95,1.
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Figure 9. The solution Ψ for η = 0.7,0.8,0.9,0.95,1 on [0,10].

derivative, and product operators. This often leads to the formation of a large system of nonlinear algebraic equations,
whose solution can be computationally intensive and time-consuming, thereby limiting accuracy.

In this paper, we have proposed a novel modification of this method that eliminates the need to solve for the coefficients
of the solution expansion. Instead, we suggest an alternative approach where the coefficients are determined iteratively and
explicitly based on the previously computed coefficients. We have developed the theoretical framework for this method
and established its convergence properties, proving that the iterative calculation of the coefficients generates a sequence
of functions that converges to the unique solution of the system.
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Figure 10. The solution Φ for η = 0.7,0.8,0.9,0.95,1 on [0,10].
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Figure 11. The solutions of Ψ generated by MIOMM and Mathematica for η = 1.

To demonstrate the effectiveness of our proposed approach, we conducted numerical experiments using a variety of
examples. The L2-norm of the error was used to assess the accuracy of our method.

The following observations can be made based on the results:

1.Example 1 shows that our modified method provides approximate solutions that converge to the exact solution. The
L2-norm remains on the order of 10−14 for different values of η , highlighting both the speed and accuracy of our
method. Moreover, the solutions obtained using our approach match precisely with those obtained from Mathematica’s
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Figure 12. The solutions of Φ generated by MIOMM and Mathematica for η = 1.

NDSolve command. Additionally, the behavior of the solution is largely unaffected by the fractional derivative, and
as η approaches unity, the solution profile converges to that of the integer-order solution.

2.Example 2 reinforces the results from Example 1, confirming that solutions with fractional derivatives exhibit behavior
similar to integer derivatives. The L2-norm error remains around 10−14 for various values of η , and the solutions
generated by our method are consistent with those produced by Mathematica.

3.The results suggest that our proposed method is highly promising and can be applied to a wide range of models in
physics and engineering, even in the presence of significant nonlinearity.
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[15] H. Khan, T. Abdeljawad, C. Tunç, A. Alkhazzan, and A. Khan, Minkowski’s inequality for the AB-fractional integral operator, J.

Inequal. Appl., 2019 (2019), 1–12.

[16] M. M. Syam, S. Cabrera-Calderon, K. A. Vijayan, V. Balaji, P. E. Phelan and J. R. Villalobos, Mini Containers to Improve the

Cold Chain Energy Efficiency and Carbon Footprint, Climate 10 (2022), Paper No. 76, https://doi.org/10.3390/cli10050076.

[17] M. I. Syam, M. N. Y. Anwar, A. Yildirim, et al., The Modified Fractional Power Series Method for Solving Fractional Non-

isothermal Reaction–Diffusion Model Equations in a Spherical Catalyst, Int. J. Appl. Comput. Math., 5 (2019), Paper No. 38,

https://doi.org/10.1007/s40819-019-0624-0.

[18] S. Al Omari, A. M. Ghazal, M. Syam, R. Al Najjar and M. Y. Selim, An investigation on the thermal degradation performance of

crude glycerol and date seeds blends using thermogravimetric analysis (TGA), 5th Int. Conf. Renewable Energy: Generation and

Appl. (ICREGA 2018), 2018-January, pp. 102–106, https://doi.org/10.1109/ICREGA.2018.8337642.

[19] M. I. Syam, M. A. Raja, M. M. Syam, et al., An Accurate Method for Solving the Undamped Duffing Equation with Cubic

Nonlinearity, Int. J. Appl. Comput. Math., 4 (2018), Paper No. 69, https://doi.org/10.1007/s40819-018-0502-1.

[20] A.-H. I. Mourad, A. M. Ghazal, M. M. Syam, O. D. Al Qadi and H. Al Jassmi, Utilization of Additive Manufacturing in

Evaluating the Performance of Internally Defected Materials, IOP Conf. Ser.: Mater. Sci. Eng., 362 (2018), Paper No. 012026,

https://doi.org/10.1088/1757-899X/362/1/012026.

[21] M. Al-Refai, M. Syam and D. Baleanu, Analytical treatment to systems of fractional differential equations with modified Atangana-

Baleanu derivative, Fractals, 31 (2023), Article No. 2340156.

[22] S. M. Syam, Z. Siri, S. H. Altoum, M. A. Aigo and R. Md. Kasmani, A New Method for Solving Physical Problems with Nonlinear

Phoneme Within Fractional Derivatives With Singular Kernel, J. Comput. Nonlinear Dyn., 19 (2024), Article No. 041001.

[23] S. M. Syam, Z. Siri, S. H. Altoum and R. Md. Kasmani, An Efficient Numerical Approach for Solving Systems of Fractional

Problems and Their Applications in Science, Mathematics, 11 (2023), Article No. 3132.

[24] S. M. Syam, Z. Siri, R. M. Kasmani and K. Yildirim, A New Method for Solving Sequential Fractional Wave Equations, J. Math.,

2023 (2023), Article No. 5888010.

[25] W. H. Huang, M. Samraiz, A. Mehmood, D. Baleanu, G. Rahman and S. Naheed, Modified Atangana-Baleanu fractional operators

involving generalized Mittag-Leffler function, Alexand. Eng. J., 75 (2023), 639–648.

[26] K. Maleknejad and B. Rahimi, Modification of block pulse functions and their application to solve numerically Volterra integral

equation of the first kind, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2469–2477.

[27] M. I. Syam and M. Al-Refai, Fractional differential equations with Atangana–Baleanu fractional derivative: Analysis and

applications, Chaos Solitons Fractals X 2 (2019), Article No. 100013.

[28] J. Jia, Z. Wang, X. Huang and Y. Wei, Some remarks on estimate of Mittag-Leffler function, J. Funct. Spaces 2019 (2019).

[29] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[30] A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North Holland

Mathematics Studies, vol. 204, Elsevier, Amsterdam, 2006.

[31] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach,

Yverdon, 1993.

[32] M. I. Syam, M. Sharadga, and I. Hashim, A numerical method for solving fractional delay differential equations based on the

operational matrix method, Chaos, Solitons & Fractals 147 (2021), 110977. https://doi.org/10.1016/j.chaos.2021.110977.

[33] M. Khashan and M. I. Syam, An efficient method for solving fractional Ricatti equations, Advances in Difference Equations 2019

(1) (2019), 1–12.

[34] S. M. Syam, Z. Siri, S. H. Altoum, M. A. Aigo, and R. M. Kasmani, A novel study for solving systems of nonlinear fractional

integral equations, Appl. Math. Sci. Eng. 31 (1) (2023). https://doi.org/10.1080/27690911.2023.2277738.

[35] S. M. Syam, Z. Siri, and R. M. Kasmani, Operational Matrix Method for Solving Fractional System of Riccati Equations, 2023

International Conference on Fractional Differentiation and Its Applications (ICFDA), Ajman, United Arab Emirates, 2023, 1–6.

https://doi.org/10.1109/ICFDA58234.2023.10153350.

[36] V. Volterra, Variazioni e fluttuazioni del numero di individui in specie animali conviventi, Mem. Acad. Lincei. 2 (1926), 31–113.

[37] A. S. V. Ravi Kanth and S. Devi, A practical numerical approach to solve a fractional Lotka–Volterra population model with

non-singular and singular kernels, Chaos, Solitons & Fractals 145 (2021), 110792. https://doi.org/10.1016/j.chaos.2021.110792.

c© 2025 NSP

Natural Sciences Publishing Cor.

https://doi.org/10.1016/j.chaos.2021.110977
https://doi.org/10.1080/27690911.2023.2277738
https://doi.org/10.1109/ICFDA58234.2023.10153350
https://doi.org/10.1016/j.chaos.2021.110792


Progr. Fract. Differ. Appl. 11, No. 2, 397-411 (2025) / www.naturalspublishing.com/Journals.asp 411

[38] C. Gavin, A. Pokrovskii, M. Prentice, and V. Sobolev, Dynamics of a Lotka-Volterra type model with applications to marine phage

population dynamics, J. Phys. Conf. Ser. 55 (2006), 8.

[39] M. M. Syam, F. Morsi, A. Abu Eida, and M. I. Syam, Investigating convective Darcy–Forchheimer flow in

Maxwell Nanofluids through a computational study, Partial Differential Equations in Appl. Math. 11 (2024).

https://doi.org/10.1016/j.padiff.2024.100863.

[40] M. M. Syam and M. I. Syam, Computational study of magnetohydrodynamic squeeze flow between infinite parallel disks, Int. J.

Thermofluids 24 (2024). https://doi.org/10.1016/j.ijft.2024.100847.

[41] M. M. Syam and M. I. Syam, Impacts of energy transmission properties on non-Newtonian fluid flow in stratified and non-stratified

conditions, Int. J. Thermofluids 23 (2024). https://doi.org/10.1016/j.ijft.2024.100824.

[42] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.

[43] M. I. Syam, H. Alahbabi, R. Alomari, S. M. Syam, S. M. Hussein, S. Rabih, and N. Al Saafeen, A Numerical Study for Fractional

Problems with Nonlinear Phenomena in Physics, Progress in Fractional Differentiation and Applications 10 (3) (2024), 451–461.

http://dx.doi.org/10.18576/pfda/100310.

[44] M. M. Syam and M. I. Syam, Investigation of slip flow dynamics involving Al2O3 and Fe3O4 nanoparticles within a horizontal

channel embedded with porous media, Int. J. Thermofluids 24 (2024).

[45] S. Momani and Z. Odibat, Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method,

Appl. Math. Comput. 190(1) (2008), 102–110.

[46] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo (Eds.), Fractional calculus: models and numerical methods, vol. 3, World

Scientific, 2012.

[47] M. Alquran, I. Jaradat, D. Baleanu, and M. Syam, The Duffing model endowed with fractional time derivative and multiple

pantograph time delays, Romanian J. Phys. 64 (2019), Article No. 107.

[48] A. K. Alomari, M. I. Syam, N. R. Anakira, and A. F. Jameel, Homotopy Sumudu Transform Method for Solving Applications in

Physics, Results Phys. 18 (2020), https://doi.org/10.1016/j.rinp.2020.103265.

[49] S. Bourazza, S. H. Altoum, H. Ayed, H. Loukil, M. I. Syam, S. M. Syam, and A. E. A. M. Elamin, Discharging process within a

storage container considering numerical method, J. Energy Storage 66 (2023), https://doi.org/10.1016/j.est.2023.107490.

[50] A. H. Bhrawy and A. S. Alofi, Operational matrix method for solving fractional differential equations: A review, J. Comput. Appl.

Math. 330 (2017), 1056–1066.

[51] A. Ghorbani and S. A. Yousefi, Numerical solution of nonlinear fractional differential equations by operational matrix method

based on difference basis, J. Comput. Appl. Math. 347 (2019), 603–618.

[52] A. A. Elsadany and A. E. Matouk, Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its

discretization, J. Appl. Math. Comput. 49 (2015), 269–283. https://doi.org/10.1007/s12190-014-0838-6.

[53] M. M. Khader, J. E. Macı́as-Dı́az, A. Román-Loera, and K. M. Saad, A note on a fractional extension of the Lotka-Volterra model

using the Rabotnov exponential kernel, Axioms 13 (2024), Article No. 71.

[54] S. Kumar, R. Kumar, R. P. Agarwal, and B. Samet, A study of fractional Lotka-Volterra population model using Haar wavelet and

Adams Bashforth Moulton methods, Math. Methods Appl. Sci. 43 (2020), 5564–5578.

[55] S. Das and P. K. Gupta, A mathematical model on fractional Lotka-Volterra equations, J. Theor. Biol. 277(1) (2011), 1–6.

[56] M. I. Syam, The modified Broyden-variational method for solving nonlinear elliptic differential equations, Chaos Solitons Fractals

32(2) (2007), 392–404.
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