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Abstract: In this paper, we derive recurrence relations for moment generatingfunction of lower generalized order statistics within a
class of doubly truncated distributions. Doubly truncated inverse Weibull, exponentiated Weibull, power function, exponentiated Pareto,
exponentiated gamma, generalized exponential, exponentiated log-logistic, generalized inverse Weibull, extended type I generalized
logistic, logistic and Gumble distributions are given as illustrative examples. Further, recurrence relations for moment generating
function of order statistics and lower record values are obtained as special cases of the lower generalized order statistics, also two
theorems for characterizing the general form of distribution based on moment generating function of lower generalized order statistics
are given.
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1 Introduction

Kamps [1] introduced the concept of generalized order statistics(gos). It is known that ordinary order statistics, upper
record values and sequential order statistics are special cases ofgos . In this paper we will consider the lower generalized
order statistics(lgos). It can be shown that order statistics, lower record values are special cases oflgos . A statistic
X∗(r,n,m,k) is said to be ther−th lgos based on a random sample of sizen drawn from a population whose distribution
function(d f ) is F(x) and probability density function(pd f ) is f (x), if its pd f is given by

fX∗(r,n,m,k)(x) =
Cr−1

(r−1)!
[F(x)]γr−1 f (x)gr−1

m (F(x)), (1)

where

Cr−1 =
r

∏
i=1

γi , r = 1,2, . . . ,n−1, γr = k+(n− r)(m+1), k ≥ 1, m ≥−1,

hm(x) =

{

− 1
m+1 xm+1, m 6=−1

−ln x, m =−1

and
gm(x) = hm(x)−hm(1), x ∈ [0,1).

We shall also takeX∗(0,n,m,k) = 0. If m = 0, k = 1, thenX∗(r,n,m,k) reduces to the(n− r + 1)−th order statistic,
Xn−r+1:n from the sampleX1,X2, . . . ,Xn and whenm = −1, thenX∗(r,n,m,k) reduces to ther− th lowerk record value
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(Pawlas and Szynal [2]). The work of Burkschatet al. [3] may also refer forlgos.

Recurrence relations for marginal and joint moment generating functions ofgos from power function distribution are
derived by Saran and Singh [4]. Al-Hussaini et al. [5], [6] have established recurrence relations for moments and
conditional moment generating functions ofgos and joint moment generating functions ofgos based on mixed
population, respectively. Khanet al. [7] have established recurrence relations for moment generating function of gos
from Gompertz distribution among others.
Characterizations based ongos have been studied by some authors. Keseling [8] characterized some continuous
distributions based on conditional distributions ofgos . Bieniek and Szynal [9] characterized some distributions via
linearity of regression ofgos. Crameret al. [10] gave a unifying approach on characterization via linear regression of
ordered random variables. Khanet al. [11] characterized some continuous distributions through conditional expectation
of functions ofgos.
Kamps [12] investigated the importance of recurrence relations of order statistics in characterization.
In the present study, we have obtained some recurrence relations for marginal moment generating functions oflgos from
doubly truncated a general form of distribution and its various deductions and particular cases are discussed. Furthertwo
theorems for characterizing this distribution are stated and proved.
Now if for given P1 andQ1

∫ Q1

−∞
f1(x)dx = Q and

∫ P1

−∞
f1(x)dx = P, (2)

where f1(x) is thepd f of X , then the truncatedpd f is given by

f (x) =
f1(x)

P−Q
, x ∈ (Q1,P1)

with the correspondingd f

F(x) =
1

P−Q
[F1(x)−Q], x ∈ (Q1,P1).

Suppose the distribution functionF1(x) is of the following general form

F1(x) = e−ah(x), α ≤ x ≤ β , (3)

wherea > 0 is a constant andh(x) is continuous, monotonic and differentiable function ofx in the interval[α, β ].
Then truncatedpd f f (x) is given by

f (x) =
ah′(x)
P−Q

e−ah(x), x ∈ (Q1,P1) (4)

and the corresponding truncatedd f F(x) by

F(x) =−Q2−
f (x)

ah′(x)
, x ∈ (Q1,P1), (5)

where

Q2 =
Q

P−Q
.

2 Relations for marginal moment generating function

Let us denote the marginal moment generating function ofj−th power of ther−th lgos, X∗(r,n,m,k) by M( j)
X∗(r,n,m,k)(t).

Theorem 2.1. For the distribution given in (5), n ∈ N, 2≤ r ≤ n, k ≥ 1, k+m > 0 and m >−1

M( j)
X∗(r,n,m,k)(t) = M( j)

X∗(r−1,n,m,k)(t)+
jt

aγr
E[Ψ(X∗(r,n,m,k))]

−Q2K
{

M( j)
X∗(r,n−1,m,k+m)

(t)−M( j)
X∗(r−1,n−1,m,k+m)

(t)
}

(6)
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and form =−1

M( j)

Z(k)
r
(t) = M( j)

Z(k)
r−1

(t)+
jt
ak

E
[

Ψ(Z(k)
r )

(

1− ea[h(Z(k)
r )−h(Q1)]

)]

, (7)

where

Ψ(x) =
x j−1etx j

h′(x)
, K =

Cr−2

C(n−1,k+m)
r−2

=
r−1

∏
i=1

( γi

γi −1

)

, C(n−1,k+m)
r−1 =

r

∏
i=1

γ(n−1,k+m)
i ,

γ(n−1,k+m)
r = k+m+(n−1− r)(m+1).

Proof. From (1), we have

M( j)
X∗(r,n,m,k)(t) = E

[

etX∗ j(r,n,m,k)
]

=
Cr−1

(r−1)!

∫ P1

Q1

etx j
[F(x)]γr−1 f (x)gr−1

m (F(x))dx. (8)

Integrating (8) by parts treating[F(x)]γr−1 f (x) for integration and the rest of the integrand for differentiation, we get

M( j)
X∗(r,n,m,k)(t) =

(r−1)Cr−2

(r−1)!

∫ P1

Q1

etx j
[F(x)]γr+m f (x)gr−2

m (F(x))dx

−
jtCr−2

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]γr gr−1

m (F(x))dx

= M( j)
X∗(r−1,n,m,k)(t)−

jtCr−2

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]γr gr−1

m (F(x))dx, (9)

the constant of integration vanishes since the integral considered in (8) is a definite integral. On using (5), we obtain when
m >−1 that

M( j)
X∗(r,n,m,k)(t) = M( j)

X∗(r−1,n,m,k)(t)

+
jtCr−2

a(r−1)!

∫ P1

Q1

x j−1etx j

h′(x)
[F(x)]γr−1 f (x)gr−1

m (F(x))dx

+
Q2 jtCr−2

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]γr−1gr−1

m (F(x))dx

= M( j)
X∗(r−1,n,m,k)(t)+

jt
aγr

E[Ψ(X∗(r,n,m,k))]

+
Q2K jtC(n−1,k+m)

r−2

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]γ

(n−1,k+m)
r gr−1

m (F(x))dx

as γr −1= γ(n−1,k+m)
r , Cr−1 = γrCr−2.

On using relation in (9), the result (6) can be established.

Whenm =−1, thenX∗(r,n,−1,k) = Z(k)
r , we have from (9)

M( j)

Z(k)
r
(t) = M( j)

Z(k)
r−1

(t)−
jtkr−1

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]kgr−1

−1 (F(x))dx (10)

= M( j)

Z(k)
r−1

(t)+
jtkr−1

a(r−1)!

∫ P1

Q1

x j−1etx j

h′(x)
[F(x)]k−1 f (x)gr−1

−1 (F(x))dx

+
Q2 jtkr−1

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]k−1gr−1

−1 (F(x))dx
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upon using the relation in (5). Now substituting forf (x) from (4), we find that

M( j)

Z(k)
r
(t) = M( j)

Z(k)
r−1

(t)+
jt
ak

E[Ψ(Z(k)
r )]+

Q2 jtkr−1

(r−1)!

×

∫ P1

Q1

x j−1etx j
[F(x)]k−1

{

−
(P−Q)eah(x)

ah′(x)
f (x)

}

gr−1
−1 (F(x))dx

= M( j)

Z(k)
r−1

(t)+
jt
ak

E[Ψ(Z(k)
r )]−

Q jtkr−1

a(r−1)!

×

∫ P1

Q1

x j−1etx j+ah(x)

h′(x)
[F(x)]k−1 f (x)gr−1

−1 (F(x))dx.

Making use of (2), we get

M( j)

Z(k)
r
(t) = M( j)

Z(k)
r−1

(t)+
jt
ak

E[Ψ(Z(k)
r )]−

jt
ak

e−ah(Q1)E[Ψ(Z(k)
r )eah(Z(k)

r )].

The relation in (7) is derived simply by rewriting the above equation.
By differentiating both sides of equations (6) and (7) with respect tot and then settingt = 0, we obtain the recurrence
relation for moments oflgos whenm >−1

E[X∗ j(r,n,m,k)] = E[X∗ j(r−1,n,m,k)]+
j

aγr
E[φ(X∗(r,n,m,k))]

−Q2K
{

E[X∗ j(r,n−1,m,k+m)]−E[X∗ j(r−1,n−1,m,k+m)]
}

(11)

and whenm =−1

E[(Z(k)
r ) j] = E[(Z(k)

r−1)
j]+

j
ak

E
[

φ(Z(k)
r )

(

1− ea[h(Z(k)
r )−h(Q1)]

)]

, (12)

where

φ(x) =
x j−1

h′(x)
.

Special cases

i) Puttingm = 0, k = 1 in (6) and (11), we can get the relations for marginal moment generating function and moments
of order statistics as

M( j)
Xn−r+1:n

(t) = M( j)
Xn−r+2:n

(t)+
jt

a(n− r+1)
E[Ψ(Xn−r+1:n)]

−
nQ2

(n− r+1)

{

M( j)
Xn−r:n−1

(t)−M( j)
Xn−r+1:n−1

(t)
}

, (13)

E[X j
n−r+1:n] = E[X j

n−r+2:n]+
j

a(n− r+1)
E[φ(Xn−r+1:n)]

−
nQ2

(n− r+1)

{

E[X j
n−r:n−1]−E[X j

n−r+1:n−1]
}

. (14)

That is

M( j)
Xr:n

(t) = M( j)
Xr−1:n

(t)−
jt

a(r−1)
E[Ψ(Xr−1:n)]+

nQ2

(r−1)

{

M( j)
Xr−2:n−1

(t)−M( j)
Xr−1:n−1

(t)
}

,

E[X j
r:n] = E[X j

r−1:n]−
j

a(r−1)
E[φ(Xr−1:n)]+

nQ2

(r−1)

{

E[X j
r−2:n−1]−E[X j

r−1:n−1]
}

.

ii) Settingk = 1 in (7) and (12), relations for lower records can be obtained as

M( j)
XL(r)

(t) = M( j)
XL(r−1)

(t)+
jt
a

E
[

Ψ(XL(r))
(

1− ea[h(XL(r))−h(Q1)]
)]

, (15)
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E[X ( j)
L(r)] = E[X ( j)

L(r−1)]+
j
a

E
[

φ(XL(r))
(

1− ea[h(XL(r))−h(Q1)]
)]

. (16)

Remark 2.1. At Q = 0 andP = 1, (non-truncated case) relations (6), (7), (11), and (12) reduce, respectively, to

M( j)
X∗(r,n,m,k)(t) = M( j)

X∗(r−1,n,m,k)(t)+
jt

aγr
E[Ψ(X∗(r,n,m,k))],

M( j)

Z(k)
r
(t) = M( j)

Z(k)
r−1

(t)+
jt
ak

E[Ψ(Z(k)
r )],

E[X∗ j(r,n,m,k)] = E[X∗ j(r−1,n,m,k)]+
j

aγr
E[φ(X∗(r,n,m,k))],

E[(Z(k)
r ) j] = E[(Z(k)

r−1)
j]+

j
ak

E[φ(Z(k)
r )],

the order statistics and lower record values cases are givenfrom (13), (14), (15) and (16), as

M( j)
Xn−r+1:n

(t) = M( j)
Xn−r+2:n

(t)+
jt

a(n− r+1)
E[Ψ(Xn−r+1:n)],

E[X j
n−r+1:n] = E[X j

n−r+2:n]+
j

a(n− r+1)
E[φ(Xn−r+1:n)].

That is

M( j)
Xr:n

(t) = M( j)
Xr−1:n

(t)−
jt

a(r−1)
E[Ψ(Xr−1:n)],

E[X j
r:n] = E[X j

r−1:n]−
j

a(r−1)
E[φ(Xr−1:n)]

and

M( j)
XL(r)

(t) = M( j)
XL(r−1)

(t)+
jt
a

E[Ψ(XL(r))],

E[X ( j)
L(r)] = E[X ( j)

L(r−1)]+
j
a

E[φ(XL(r))].
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Table 2.1. Examples Based on Theorem 2.1

Distribution F(x) a h(x)
Inverse Weibull e−(θ/x)p θ p x−p

0< x < ∞
Exponentiated Weibull [1− e−(λx)p

]τ τ −ln[1− e−(λx)p
]

0< x < ∞
Power function (x/λ )p 1 −ln(x/λ )p

0< x < λ
Exponentiated Pareto [1− (1+ x)−λ ]θ θ −ln[1− (1+ x)−λ ]

0< x < ∞
Exponentiated gamma [1− e−x(x+1)]θ θ −ln[1− e−x(x+1)]

0< x < ∞
Generalized exponential [1− e−λx]θ θ −ln[1− e−λx]

0< x < ∞

Exponentiated log-logistic
[

(x/σ)β

1+(x/σ)β

]θ
θ −ln

[

(x/σ)β

1+(x/σ)β

]

0< x < ∞
Generalized inverse Weibull e−θ(α/x)β θ (α/x)β

0< x < ∞
Extended type I generalized logistic

(

λ
λ+e−x

)p
p −ln

(

λ
λ+e−x

)

−∞ < x < ∞
Logistic [1+ e−x]−1 1 ln(1+ e−x)

−∞ < x < ∞
Gumbel e−e−x

1 e−x

−∞ < x < ∞

Similarly several recurrence relations based on Theorem 2.1 can be established with proper choice ofa andh(x).

3 Characterization

Theorem 3.1. Let X be a non-negative random variable having an absolutely continuous distribution functionF(x) with
F(0) = 0 and 0< F(x)< 1 for all x > 0, m >−1 then

M( j)
X∗(r,n,m,k)(t) = M( j)

X∗(r−1,n,m,k)(t)+
jt

aγr
E[Ψ(X∗(r,n,m,k))]

−Q2K
{

M( j)
X∗(r,n−1,m,k+m)

(t)−M( j)
X∗(r−1,n−1,m,k+m)

(t)
}

(17)

if and only if

F(x) =−Q2−
f (x)

ah′(x)
, Q1 ≤ x ≤ P1,

where Ψ(x) = x j−1etx j

h′(x) .

Proof. The necessary part follows immediately from equation (6). On the other hand if the recurrence relation in equation
(17) is satisfied, then on using equations (8) and (9), we have

−
jtCr−2

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]γr gr−1

m (F(x))dx

=
jtCr−2

a(r−1)!

∫ P1

Q1

x j−1etx j

h′(x)
[F(x)]γr−1 f (x)gr−1

m (F(x))dx
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+
Q2 jtCr−2

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]γr−1gr−1

m (F(x))dx

which can be written as
∫ P1

Q1

x j−1etx j
[F(x)]γr−1gr−1

m (F(x))
{

F(x)+
f (x)

ah′(x)
+Q2

}

dx = 0.

If t = 1, the generalization of the M̈untz-Sźasz Theorem (Hwang and Lin, [13]) can be applied to obtain

F(x) =−Q2−
f (x)

ah′(x)
, Q1 ≤ x ≤ P1.

Theorem 3.2. Let X be a non-negative random variable having an absolutely continuous distribution functionF(x) with

F(0) = 0 and 0< F(x)< 1 for all x > 0, m =−1, then

M( j)

Z(k)
r
(t) = M( j)

Z(k)
r−1

(t)+
jt
ak

E
[

Ψ(Z(k)
r )

(

1− ea[h(Z(k)
r )−h(Q1)]

)]

(18)

if and only if

F(x) =−Q2−
f (x)

ah′(x)
, Q1 ≤ x ≤ P1.

Proof. The necessary part follows immediately from equation (7). On the other hand if the recurrence relation in equation

(18 ) is satisfied, then on using equations (10), we have

−
jtkr−1

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]kgr−1

−1 (F(x))dx

=
jtkr−1

a(r−1)!

∫ P1

Q1

x j−1etx j

h′(x)
[F(x)]k−1 f (x)gr−1

−1 (F(x))dx

+
Q2 jtkr−1

(r−1)!

∫ P1

Q1

x j−1etx j
[F(x)]k−1gr−1

−1 (F(x))dx

which can be written as
∫ P1

Q1

x j−1etx j
[F(x)]k−1gr−1

−1 (F(x))
{

F(x)+
f (x)

ah′(x)
+Q2

}

dx = 0. (19)

Now, applying a generalization of the M̈untz-Sźasz Theorem (Hwang and Lin, [13]) to equation (19) we get

F(x) =−Q2−
f (x)

ah′(x)
, Q1 ≤ x ≤ P1.
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