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Abstract: A theoretical inspection of transfer of heat in magnetohydrodynamic micropolar Casson fluid influence of stretching sheet

in porous media with thermal radiation is worked out. The governing nonlinear partial differential equations of the problem after

similarity transformations are used to turn them into a system of ordinary differential equations which are solved numerically via

Differential Transformation Method (DTM). The DTM solution is explored by bvp4c numerical solver built in MATLAB. The effect

of several variables(parameters) on velocity profile, distribution of temperature and microrotation are explained with graphs.
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1 Introduction

Wide-ranging applications of micropolar theory can be found in many branches of research and engineering. For the first
time, Eringen introduced the micropolar fluid theory in [1,2]. Willson [3], Kilne [4], Adan [5], Gorla [6] analyzed the flows
along horizontal and vertical planes. Applications of flow and transfer of heat of viscous fluid(incompressible) across
a stretching sheet are significant in many fields viz. polymer’s extrusion, heating down metallic plates, plastic sheet’s
aerodynamic extrusion, etc. such processes are needed to analyze the quality of the end products. Crane [7] studied the
flow of an ambient fluid across a stretching sheet (linearly) and gave a correspondence solution for the two-dimensional
problem’s steady in the form of closed analytical.

Ariman et al. [8] studied the applications of micropolar and thermo-micropolar fluids in engineering and technology.
Prathap Kumar et al. [9] examined micropolar viscous fluid for fully convective flow via vertical channel. Effect of surface
conditions analyzed by Kelson and Desseaux [10] guided by a porous sheet that has to be stretched on the micropolar flow.
The unsteady flow between two parallel micropolar fluid porous plates analyzed by Srinivasacharya et al. [11]. Bhargava et
al. [12] has illustrated the mixed convection flow with micropolar fluid inclusion of consistent suction via porous sheet with
the help of numerical technique i.e. Finite Element Method (FEM). Ibrahim et al. [13] illustrated the micropolar fluid’s
mixed convection flow situation travelling through a semi-infinite porous plate while experiencing viscous dissipation and
thermal radiation with changing suction velocity normal to the plate.

Ali and Magyari [14] discussed the fluid’s erratic movement along with the heat transfer by a submerged stretched
surface was explored with numerical solutions. Mukhopadhyay [15] expanded on the work of Ali and Magyari [14] by
supposing that thermal diffusivity and viscosity are of temperature’s linear functions and then discussed the boundary
layer flow(BLF) of an unsteady mix convection of viscous fluid(incompressible) along a permeable surface through a
porous media, as well as the thermal radiation impact on heat transfer. The melting heat flow for a micropolar fluid in BLF
because of stagnation point flow towards a shrinking/stretching sheet was studied, with reference to the work of Yacos et
al. [16]. Rosali et al. [17] developed the theory of micropolar fluid in a porous media towards a contracting /stretching
sheet with suction analysis. They solved their system of governing equations numerically. Bhukta et al. [18] developed
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the Magneto hydrodynamic flow across a contracting sheet in porous media and was discussed in detail in their study. The
heat transfer MHD flow across a surface that has been stretched, including the heat generation slip velocity and absorption
effect of a micropolar fluid has been studied by Mahmood and Waheed [19]. Shahzad, et al. [20] discussed thermal
radiation’s impact on magnetohydrodynamic flow at an axisymmetric stagnation point and impact of heat exchange for a
micropolar fluid on top of a contracting sheet. Eldabe, et al. [21] examined Sherwood number and Nusselt number impacts
of physical parameters on MHD peristaltic flow with mass and heat transfer of micropolar bi-viscosity fluid between two
co-axial tubes via a porous material.

There are several practical applications of streaming through a porous material particularly in geo- physical fluid
dynamics. Some examples of naturally porous media include sandstone, beach sand, limestone, the human lung, and the
gall bladder of tiny blood veins with stones. Eldabe, et al. [22] studied pulsatile flow’s impact on heat and mass transport
in MHD with couple stress for Casson fluid through porous medium. Mekheimer [23] stated the non-linear peristaltic
transport in a planar channel which was inclined across a porous medium. The mixed convection Magnetohydrodynamics
flow with the collective transfer of mass and heat with chemical reaction along a porous plate in existence of heat source
studied by Zueco and Ahmed [24] and they observe that the fluid temperature, the flow velocity when the destructive
chemical process is accelerated, the magnetic field is produced decreases. One of the important uses of Casson fluid
model is to forecast the flow of blood at low down shear rate in arteries. Also, it is utilized in perception flow conduct
of printing ink pigment oil suspensions. Mehmoo et al. [25] numerically investigated the micropolar Casson fluid with
internal heating across a sheet(stretching). Iqbal et al. [26] used the Keller box technique to investigate the effect of IMF
(inclined magnetic field) on micropolar Casson fluid. To fill the literature gap discussed above, we formulated the above
problem and discussed the outcomes so obtained.

2 Mathematical formulation

We assumed a two-dimensional flow of an incompressible magnetohydrodynamic micropolar Casson fluid in a porous
material, with heat radiation occurring across a stretched sheet. The X-axis corresponds to the motion direction with
respect to the surface of the sheet that is being stretched or shrunk, while the Y -axis is perpendicular to that surface.
Suppose the surface of stretching sheet has the velocity u = uw = ax, where a is a real constant. For an incompressible
flow the Casson fluid’s state rheological

τi j =

{

2(µB +
py√
2π
)ei j,π > πc,

2(µB +
py√
2π
)ei j,π < πc

The product of the deformation rate component, where the component (i, j)th of ei j represents the rate of deformation
π = ei jei j, µB is the non-Newtonian fluid’s plastic dynamic viscosity , py yields fluid stress. The guiding equations are as
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With the problem’s proper conditions of boundary are provided by

u = uw = ax, v = 0, N =−n
∂u

∂y
, T = Tw at y = 0 (5a)

u → 0, N → 0, T → T∞ at y → ∞, (5b)

here u and ν are the X- and Y -axis velocities; β is the Casson Fluid Parameter; N is the micro- or angular rotation velocity;
P is the fluid pressure; ρ is the fluid density; cp is the specific heat at constant pressure; k is the thermal conductivity;
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j is the micro-inertia density and T is the fluid temperature. The n is the fluid’s boundary concentration parameter, the
case n = 0 and n = 0.5 are represent strong concentration and weak concentrations, respectively. Now, under Rosseland
diffusion approximation the thermal radiation is simulated and in due account of the qr defined as follows:

qr =− 4σ∗

3σk∗
∂T 4

∂y
(6a)

∂qr

∂y
=−16σ∗T 3

∞

3σk∗
∂ 2T

∂y2
, (6b)

In this case, the Stefan-Boltzmann constant is σ∗, and k∗ is the Rosseland mean absorption coefficient. We are expanding
T 4 by using Taylor’s series about T∞. Therefore, we gain the T 4 = 4T 3

∞T −3T4
∞ (when temperature difference is sufficiently

small). The following Similarities variables are now introduced:

u = ax
∂ f

∂η
, η =

√

a

ν
y, ν =−

√
aν f (η), N = a

√

a

ν
xg(η), θ (η) =

T −T∞

Tw −T∞
(7)

By using equations (5a) – (7), equations (2) – (4) transformed into the equations

(1+A+
1

β
) f ′′′(η)+ f (η) f ′′(η)− ( f ′(η))2 − (M+KP) f ′(η)+Ag′(η) = 0 (8)

(1+
4

3R
)θ ′′(η)+Pr f (η)θ ′(η)+PrEc( f ′′(η))2 = 0 (9)

(1+
A

2
)g′′(η)+ f (η)g′(η)− f ′(η)g(η)−A(2g(η)+ f ′′(η)) = 0 (10)

Boundary conditions (5a) and (5b) in similarity variables become

f (0) = 0, f ′(0) = 0,g(0) =−n f ′′(0), θ (0) = 1 (11a)

f ′(η)→ 0, g(η)→ ∞, θ (η)→ ∞(0), as n → ∞, (11b)

Where A = k/µ , (Micropolar Parameter), M = (σB2
0)/ρa, (Magnetic Parameter) Kp = µ/(ρak1), (Porosity Parameter),

Pr = (µCP)/κ , (Prandtl Number) R = (4σ∗T 3
∞)/(3κK∗), (Radiation Parameter), Ec = (a2x2)/(CP(Tw − T∞)), (Eckert

Number)

3 Method of solution

Fundamentals of DTM (differential transformation method) [27] are explored as given below: Differential transformation
of the kthderivative of a function f (η) is defined as

F(k) =
1

k!

[

dk f (η)

dηk

]

η=η0

(12)

Where (k) is called the T function of f (η) at η = η0 in k−domain. Defining inverse transformation of (k) as

f (η) =
∞

∑
k=0

F(k)(η −η0)
k (13)

From Eqs (12) and (13), f (η) can be obtained as

f (η) =
∞

∑
k=0

1

k!

[

dk f (η)

dηk

]

η=η0

(η −η0)
k (14)

In practice, to achieve a finite one, this infinite series truncated as follows

f (η) =
N

∑
k=0

F(k)(η −η0)
k (15)

Equations (12)-(13) can be used to determine theorems to be employed in the transformation process, which are given in
table 1.
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Table 1: Table of conversions

Primary Function Function that has been transformed

f (η) = αg(η)±βh(η) F [k] = αG[k]+βH[k]

f (η) = dn f (η)
d f (η)

F [k] = (k+η)!
k! G[(k+η)]

f (η) = g(η)h(η) F(k) = ∑m=0 kF(m)H(k−m)

f (η) = emη F(k) = mk

k!

f (η) = (η)m F(k) = δ (k−m) =

{

1,k = m

0,k 6= m

f (η) = (1+η)m F(k) =
(m)(m−1)...(m−k+1)

k!

f (η) = sin(ωη +α) F(k) = ωk

k! sin( πk
2 +α)

f (η) = cos(ωη +α) F(k) = ωk

k! cos( πk
2 +α)

4 DTM Solution of the problem

Applying differential transformation method to (7) - (9), we obtain

(

1+A+
1

β

)

(K + 1)(K+ 2)(K + 3)F[K + 3]+

[

K

∑
m=0

F[K −m](m+ 1)(m+ 2)F[m+ 2]

]

−
[

K

∑
m=0

(K −m+ 1)F[K −m+ 1](m+ 1)F[m+ 1]

]

− (M+Kp)(K + 1)F(K + 1)+A(K+ 1)G(K + 1) = 0

(16)

(1+
4

3
R)(K + 1)(K+ 2)θ [K+ 2]+Pr

[

K

∑
m=0

F [K −m].(m+ 1)θ [m+ 1]

]

+PrEc

[

K

∑
m=0

(K −m+ 2)(K−m+ 1)F[K −m+ 2].(m+ 1)(m+ 2)F[m+ 2]

]

= 0

(17)

(1+
A

2
)(K + 1)(K+ 2)G[K + 2]+

[

K

∑
m=0

F [K −m].(m+ 1)G[m+ 1]

]

−
[

K

∑
m=0

G[K −m].(m+ 1)F[m+ 1]

]

−A[2G[K]+ (K+ 1)(K+ 2)F(K + 2)] = 0

(18)

With governing conditions

F [0] = 0, F[1] = 1, F [2] = α1

G[0] =−2nα1, G[1] = α2, θ [1] = α3

At infinity DTM is not possible. So, Pade approximation will be applied to find the value of coefficients α1,α2 and α3

as a result the Pade coefficients α1 = 1.0622,α2 = 0.8829 and α3 = 1.0968 are substituted into the Equations (16)-(18),
therefore, the expressions of f (η),g(η) and θ (η) can be obtained in case of A = 0.5,Pr = 0.7,Ec = 0.3,β = 0.5,Kp =
0.6,η = 0.5 as

f (η) = η +(1.0622)η2+(0.058808369)η3+(0.048868576)η4+(0.0066098416)η5+(−0.000777637)η6

+(2.736432833×10−5)η7 +(−5.72840515×10−7)η8 +(9.658758198×10−6)η9 +(1.668557365×10−6)η10

g(η) = (−1.0622)+ (0.8829)η +(−0.3319375)η2+(0.02224225)η3+(0.052165822)η4+(0.015441056)η5

+(0.000896317)η6+(−0.00209553)η7+(−0.00067914)η8+(2.346214495×10−5)η9

θ (η) = 1+(1.0968)η +(−0.694319286)η2+(−0.147186043)η3+(0.000437754)η4+(0.021277355)η5

+(0.002001387)η6+(−0.001240946)η7+(−0.000591599)η8+(−2.45132473×10−5)η9
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5 Discussion and outcomes

Fig. 1 displays the fluid velocity variation for distinct outcomes of Micropolar parameters i.e. A = 0.5,1.0,1.5,2.0 with
the values Ec = 0.3 ,n = 0.5, β = 0.5, Kp = 0.6, M = 0.1, Pr = 0.7, R = 1.0. We found that outcome of the micropolar
parameter increases, while fluid velocity increases rapidly.
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Fig. 1: Influence of micropolar parameter.

As shown in Fig. 2, the fluid velocity falls with increasing Casson parameter values from β = 0.5 to β = 2.0. The
values of A,Kp,Pr,M,n,R,Ec are taken as 0.5,0.6,0.7,0.1,0.5,1.0,0.3 and 0.5 respectively.
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Fig. 2: Velocity Profile for Different Casson Parameters.
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Fig. 3 determines the effect of fluid velocity for different values of magnetic parameters where M = 0.1,1.0,3.0,4.0
with the values A = 0.5,Kp = 0.6,Pr = 0.7,β = 0.5,n = 0.5,R = 1.0,Ec = 0.3 and it has been noticed that a rise in the
magnetic parameter leads to a drop in fluid velocity, that is, on increasing magnetic field the fluid settled down near the
sheet.
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Fig. 3: Velocity Profile for distinct magnetic parameters.

In Fig. 4, we see how fluid velocity affects for distinct porosity parameters where Kp = 0.2,0.5,0.7,0.9 with the values
A = 0.5,M = 1,Pr = 0.7,β = 0.5,n = 0.5,R = 1.0,Ec = 0.3 which predicts that when the porosity parameter increases,
the velocity profile reduces, that is, in the existence of porous media the fluid seem to settle down near the sheet.
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Fig. 5 elaborates the microrotation for distinct values of micropolar parameters i.e. A= 0.5,1.0,1.5,2.0 with the values
β = 0.5,Kp = 0.6,M = 0.1,Ec = 0.3n = 0.5,Pr = 0.7,R = 1.0, and it is observed that the microrotation near the sheet
rises as the micropolar parameter increases but it settles down away to sheet.
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Fig. 5: Microrotation for distinct micropolar parameters.

Fig. 6 shows the microrotation for distinct Casson parameter values i.e. β = 0.5,1.0,1.5,2.0 with the values A =
0.5,Kp = 0.6,R = 1.0,M = 0.1,n = 0.5,Pr = 0.7,Ec = 0.3 and it is noticed that the microrotation diminishes as the
Casson parameter rises, that is, microelements settle down away the sheet.
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Fig. 6: Microrotation for distinct Casson parameters.
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Fig. 7 demonstrates the effect of microrotation for different values of magnetic parameters M = 1.0,3.0,5.0,10.0 with
the values A= 0.5,Kp = 0.6,Pr = 0.7,β = 0.5,n= 0.5,R= 1.0,Ec = 0.3 and it is examined that as the magnetic parameter
rises, the microrotation decreases, that is, as magnetic field increases the microelements start decreasing near the sheet
and become settled down away the sheet.
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Fig. 7: Microrotation for distinct magnetic parameters.

Fig. 8 shows the effect of microrotation for distinct values of porosity parameters where Kp = 0.1,0.3,0.5,0.7 with
the values A = 0.5,M = 1,Pr = 0.7,β = 0.5,n = 0.5,R = 1.0,Ec = 0.3 and it is noticed that as the porosity parameter
increases, the microrotation decreases, that is, the presence of porous medium reflects the nature of microelements which
first start decreasing in rotation near the sheet and settled down away the sheet.
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Fig. 8: Microrotation for distinct porosity parameters.
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Fig. 9 shows the impact of temperature distributions for various values of Prandtl number where Pr = 0.5,0.6,0.7,1.0
with the values A= 0.5,M = 1.0,β = 0.5, ,Ec = 0.3n= 0.5,R= 1.0,Kp = 0.5 and it has been analyzed that the temperature
distribution falls as Prandtl number rises, that is, the Prandtl number has a destabilizing effect on temperature distributions.
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Fig. 9: Temperature distributions for distinct Prandtl numbers.

Fig. 10 determines the impact of temperature distributions for distinct values of Eckert number where
Ec = 0.2,0.6,1.0,1.5, with the values A = 0.5,M = 1.0,Kp = 0.5,β = 0.5,n = 0.5,Pr = 0.7,R = 1.0 and it has been
observed that the as Eckert number increases the temperature distribution increases. That is, Eckert number has
stabilizing effect on temperature.
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Fig. 10: Temperature distribution for distinct Eckert numbers.

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


272 A. Nandan et al.: Heat Flow in Magnetohydrodynamics Micropolar Casson...

6 Conclusion

The effects of several physical parameters such as the micropolar, the porosity, the Casson, and the magnetic parameters
on the velocity profile, microrotation, and temperature distribution are as follows:

–The micropolar parameter enhances fluid velocity.
–The velocity of the fluid diminishes on increasing Casson fluid parameter.
–The presence of magnetic field with porous medium retards the fluid velocity.
–As micropolar parameter increases the microrotation also increases near the sheet but it settles down away to sheet.
–As Casson parameter increases the microrotation decreases, that is, microelements settle down away the sheet.
–As magnetic field increases the microelements start decreasing near the sheet and become settled down away from the
sheet.

–The presence of porous medium reflects the nature of microelements which first start decreasing in rotation near the
sheet and settle down away from the sheet.

–Prandtl number has a destabilizing effect on temperature distributions.
–Thermal radiation has a stabilizing effect on temperature.
–Eckert numbers have a stabilizing effect on temperature.
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