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Abstract: In this we deal with the existence of weak solution for a Dirichlet problem with tempered fractional derivatives. To this end,
we use variational methods and critical point theory. Our results are new in the literature and as a consequence of our result we get an
existence result to the Dirichlet problem with Riemann-Liouville fractional derivatives.
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1 Introduction

The fractional calculus has more than three centuries of history, and the development of fractional calculus theory is
mainly focused on the pure mathematical field at the first stage. The earliest more or less systematic studies seem to have
been made in the 19th century by Liouville, Riemann, Leibniz, Abel, etc. [1,2,3]. During the last four decades practical
implementations emerged for the fractional calculus theory and it is now recognized to be an important tool to describe
phenomena that classical integer-order calculus neglects [4,5,6,7,8,9,10]. We highlight in a special way, when it comes
to applications in: medicine, engineering, physics, biology among other areas [1,2,11,12,13,14].

Tempered fractional calculus is a natural generalization of fractional calculus. The tempered fractional derivatives
and integrals are obtained when the fractional derivatives and integrals are multiplied by an exponential factor [15,16,
17]. Differential equations with tempered fractional derivatives have appeared in geophysics, statistical physics, plasma
physics or in the context of astrophysics [18,19,20,21,22,17,23]. Moreover, tempered fractional calculus have been
applied in finance [24].

In a recent work, Almeida and Morgado [25] introduced the tempered fractional calculus of variations. More precisely,
they considered the functional

//l:Cl[ZDl,ZDQ] —R

o) = [ 06n(E). DY n(E)dE.

(]

ey

where v € (0,1), £ > 0 and O : [@),®] x R? — R is continuously differentiable with respect to the second and third
variables and showed that if n* is a local minimizer of ., subject to the boundary conditions

n(m)=p and n(@)=p,
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then n* is a solution of the Euler-Lagrange equation
hOM|(§)+Dy= (3:0[n](§)) =0, &€ [@, @), @)

where @[n](§) = O(&, n(i),DZ;in(é)). In particular, if we choose

o 1 =
O DyEn) = 5 DyZ P - A8,

equation (2) can be rewritten as ~ ~
Dy (Dgn(8) —An(§) =0, £ € (@, @,].

Motivated by these previous works and the growing interest by the scientific community in considering tempered models,
in this paper we would like to study variational structure for the tempered fractional derivative operator and we have
justified some fundamental properties in the variational structure. Also, we investigate the following tempered fractional
boundary value problem

V.E (CT\V,E o
Dw{( Dwru(é))*j(évu)v RS (wlva)a (3)
u(®) = u(@,) =0,
where v € (1,1)and £ > 0and I: (@;,®>) x R — R is a continuous function satisfying some suitable conditions.
When = = 0, problem (3) reduces to the following problem:
c —
Dy (DY u(§) =E ), & < (@) N
M((D']) = u((D'Q) =0.

where D;, and CD;j+ are the right Riemann-Liouville and left Caputo fractional derivatives of order v, respectively.
2 1
For some recent results on problem (4), we refer to for example [26,27] and the reference therein. Also, in the case

J(x,u) = h(x,u) = V(E)u, @ =0 and @, = T and impulsive effects where V,h satisfies some general conditions, for
example, see [28], [29], [30] for related discussions.
Now we make precise assumptions on J, that is, we assume:

(M) liminfig . J(f—ﬁ’x) > &y, for some & >0 and ¥ > 2, where 1(&, u) := Jo A&, s)ds.
(J2) There exist positive constants 1y, M; > 0 and §; > 2 such that for all (§,u) € [@, D] X R, |u| > M,

(&) < mul.
(33) There exist positive constants 12, M, > 0 and 6; > {; — 2 such that for any (&,u) € [@), D] X R, |u| > M,

u3(8,u) —23(&,u) = moful®.

(34) limsup maxle[wlaﬁfz]J(‘:au) 1

3 <
u—0 Jul 2(m, — @) ([W<2v1723<?2w1>>]1/2
(E)"20(v)

5, where (-, -) is defined as

W(v,E) = /5 vloigy,

t
0
The first main result is as follows:

Theorem 1. Let v € (1,1) and E > 0. Moreover, assume that I satisfy (31) — (14). Then (3) has at least one nontrivial
weak solution.

To state our second result, we suppose the following conditions:
(Is) A&, u)| < C(Ju) " +1), for some & € [@, @], r > 2, all u € R and a positive constant C > 0;
(J6)  limypy oo ($3(&,u)u — (&, u) + 1_21u2) = +oco uniformly in & € (@, @,);
(J;)  there exists u > Ay such that J(&,u) > Su? for |u| small;
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(Jg)  lim e (% u? fj(é ,ut)) = +eouniformly in & € [@;, @], where A, is the first eigenvalue of the tempered fractional
differential operator D= (CD%).
62 m-]

The second main result is as follows:

Theorem 2. Let Vv € (%, 1) and E > 0. Moreover, suppose that (1s) — (Jg) hold. Then (3) has at least one nontrivial
solution.

In the particular case = = 0, Theorem 1 and Theorem 2 give us an existence results to problem (4) which are new in
the literature.

The rest of this article is arranged as follows In Section 2, we review the tempered fractional calculus theory. In
Section 3, a tempered fractional space of Sobolev type and some principal properties is given. In Sections 4 and 5, we
prove Theorem 1 and Theorem 2, respectively.

2 Preliminaries

For v > 0 and x > 0, we define the incomplete Gamma function as

E
W(v,E) = /0 Ve,

which is convergen for all v > 0. Moreover we have

v v
e*‘i%swv,é)g% 5)
and integration by parts yields that
P(v+1,E) = viP(v,E) —EVe s, (6)
Also, if v € (—1,0) and & > 0, then
(v, )= WV H1,6)+ L&t )

For more details, we can see [31].
Let v € (0,1) and £ > 0. According to [32], the left and right Riemann-Liouville tempered fractional integrals of
order v for a function u are defined as

v.E 1 5 v— _E(E—s

LEu(E) = gy [ 6= 9" e " utsyas, & > o, ®)
and

V.E 1 o Vel —E(s—

]Iwzju(é):m/5 (s— &) e E6-8y(s)ds, & < @y, 9
respectively.

The following properties of these integrals hold.

1.For vi,v, >0, £ > 0 and for all u € LP(@,,®,) with p € [1,o0] we have
T u(x) =% u(x) and  TVS1%u(x) =1 u(x).

>0and p>1, HZ;E is bounded in L? (@), @,). Moreover

(x]

2.For any v > 0,

v.E ((D'z*a)'[)v z.
1Ll @y,m,) < Wﬂe u()llzr(@).@)-
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For more details see [32].
Moreover, for v € (0,1) and = > 0, the left and right Riemann-Liouville tempered fractional derivatives of order v
for a function u are defined as

V.5 _E v = e % d ¢ Ve
Dy (@) = (e DY u(8) = gy g [, (697" ulo)ds, &>, (10
and
Dg“(é):(egéxD%f’Eé)u(é) 1—v d.»:/ [ “u(s)ds, & <@, (1

respectively. Also, the left-sided and right-sided tempered Caputo fractional derivatives of order v for a function u are
defined as

i i SE e -
C]D)Z;,f”(é):(e“é G0 Ju(8) = m/ (& —9)[e*u(s))'ds, &>y, (12)
and
cpvE — (ExCpV ,EE _ 7655_ 2 V[T Es 'd [0 13
siu(@) = (P Db (@) =y (=8 ey, & < (13)
respectively.

Lemma 1. [33]Letv >0, E > 0and u € AC|®,,,]. Then ]I;’fu,]lg,gu are well defined. Furthermore,
1 2

DEu(E) = 2 W 2~ 01)) gy [ ¥ EE ) 5)ds (14
o ) T EVD(v) T e rW) Ja, T ’

and
Hgfu(é) = E”v(ffl)‘l/(v,z(wzé))ﬁ /‘: WV, E(s— &)l (s)ds. (15)

Moreover we have

Theorem 3. [33]Letv € (0,1), £ >0, p €[l,00]. Then ]I;j’f,]l;’,g (L (@),m,) — LP (@), ;) are bounded. Furthermore,
2

Yv 2o —o
W Z@ D) o,
EVI(v) 1,%2

10wl (@, 0 < (16)

and
Y(v,E(m— 1))

sy e a7

||]I:D-,;u|‘LP(G7| ,wz) S

Theorem 4. [33] Let v € (O,%), p>1 E>0and p}, =
Lpi(w],wz).

V,E V,E .
7Vp. Then ]Iw']+ ’Hw; are bounded from LP(@,,®,) into

Using ideas of [34], we have the following integration by parts.

Theorem 5. Letve (0,1),E>0,1<p<oo, 1 <qg<oand

1 1
—+-=-<1+v.
P g
Iff € Lp(wl,afz) and f, € Lq(wl,wz), then
P = [T Fa(E)dE. (18)
[0)] o, ] By
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Theorem 6. [33] Letv € (0,1), & > 0 and u € C[®,,®>]. Then ]I;’fu,ﬂgg are continuos on @y, ®,| and
1

>
(lim T () =0 and lim T Pu(8) =0 "
Moreover,
I Eul < Ev;(v)‘l’(v,E(wz —@1))ull-
and = 1
HH;; oo < Evr(v)y(v,E(wz = @1))||ulle-

The following result were considered by Torres et. all. [33, Theorem 3.9]. More precisely, assuming that v € (%, 1),2>0
and u € L?>(®,,®;), then Torres et. all. proved that H;’f u,H;’f u € C[m,®,]. We note that under a carefully analysis we
1 2

are able to prove that ]I;’j’fu, H;’,Eu are Holder continuous with order v — % We need the following inequality To state our
1 2
result: For any x; > x, > 0and g > 1
(x1 —x)9 < x? - xg. (20)

Theorem 7. Let v € (%,1) and E > 0. Then, for any u € L*(@,®>), ]Izj’fu cHV? (,,®,) and
1

lim IV=u(é) =0,

o o,
where HY 3 (@), ®,) denotes the Holder space of order v — % > 0.
Proof. Let®; < x| <x; < ® and u € L>(®;,®,), then by Holder inequality

|]I;j’lfu(x1) — ]Izj’lfu(xzﬂ

7 L

IN
h]

(xl 7S)v71675(x1 —s) (xZ*S)VflefE(xzfs)

|u(s)|ds

2 v—1_—E(x—s)
+ (rp—5)"""e lu(s)|ds 21
X1
1 * Vel —E(x—s) V=1 —E(n—s)|? V2 2 172
< o) /ar (x1—9)"""e —(rp—s)"""e ds /w |u(s)|“ds
1 1
12 / 1 1/2
1 2 22 2E(xa—s) / 2 2 /
+ 0] (x2—5)" "% ds lu(s)|“ds .
X1 J X1
Using (5) and the change of variable r = 2Z (x; —5), we get
- -2 28 (xy—s = (o —x1)*"!
‘/x] (xz—s)v e (x2 )dS: WW(ZV—],Z&(xz—Xl))ST
Hence i
" V-2 -2 (xs—s) / 1 vol
(XZ—S) e ds < W(xz—xl) 2, (22)
X1 -

X1 —S§
X2 —X]

Also, the change of variable t = yields that
(xl _s)vflefE()qfs) _ (xZ _s)vflefE(xzfs) st

Ja
(23)

_ (x2 *xl)2V71 /"2*"1 tvflefEt(xzfxl) - (1 +t)v71673(1+t)(x27x1) zdt.
0
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. ) .
So, if f(l?nl <1, by (20) we derive

X1 -0

= W(Z?’(va 1,2E(xy—x1)) —¥P(2v — 1,4E(x2—x1))),

tvfl —Et(xp—x1) _ (1 +t)vflefE(l+t)(x27x]) 2

dt

—1,—&t (xp—x1) (1+t)v71675(1+t)(x27x1) zdl‘

2v 2,281 (x2— xl)_(l +t)2v726725(1+z)(x27x1))dt

Now, note that by (5) we obtain
= 2Z (xp —x1) V!
Y2v—1,25(x; — < === 7
( 28 (xp —x1)) < Yo :
and
) [45 (.X2 — X1 )]val
2v—1

874: (o —x1

< lP(ZV* 1,45(X27X])),

consequently,

2= _ 2v—1
2P(2v—1,2E(xs—x1)) — P2V — 1,45 (xs—x1)) < %

(2 _ 22V*1674E(X27X] )) .
Therefore, replacing in (21) we obtain

- — 2
(xl _ S)vflefa(x] —s) (XZ _s)vflefa(xzfs)

x|
/ ds
o)
(24
(22 — x> ( 2v—1 45 (xy— 2 2v—1
27U (a9 E(x X1))< — )2V
=T v ¢ Sy
o X0
Also, if )ﬁ > 1, then
X -0 )
XX tvfl *El(){z*)ﬂ) _ (1 +I)V71675(X27X])(1+[) dt
—1,—&t (xp—x1) (1+t)v71875(x27x1)(1+z) zdl‘
(25)

V 1 7.:t(x2 —x1) (1+t)V71675(x27X|)(]+l) Zdt

+/X2 X]

X|—a
< R
_2v—1+/

In view of he change of variable A = 2Z7(x, — x1) and the mean value theorem, we get

v 1 7:z(x2 —x1) (1+t)v71673(x27x1)(1+[)‘2dt-

X -0

/XZ*XI V1= Erln—xy) _ (1+I)V71675(1+’)(x27x‘) 2dz‘
e 'fl _ - 2
_ / 2-X] o vfzefct(xzf)q) + E(XQ _xl)tvflefat(xzf)ﬂ)) dt

X -0 X1 -0

V) /xzf)f] t2v746725t(x27m)dt+222(x2 7x1)2/x24| 2V=2,281(x2=x1) gy
1 1
25 (x— =2 2E(x—@y)
k2v 4 7)de + X — X3 3-2v AZV*Zefldx'
( '“)2v 1
c) 2

Z(xp—x1)

<2(1-
1
(2(5)2V Sl =)™ [

Z(xp—x1)
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Note that, integrating by parts the first integral of the last expression we get

25 (x;—my) (25)2v73 ~ B
2v—4 -2 _ o 2v—3 —28(x;—@;) - 2v—3 25 (xp—x1)
/25(&7)”) AV e dA v 3 ((x] @) e (xp—x1)7" e )

(25)2v—2 ~ ~
n B =33 ((Xl _ 61)2\/72[2;(@7&;]) ~ (% _xl)2v72ef2:,(x27)q))
1 25 (x;—@7)
s )Lsz 72'6[1.
Tvenv-3) /ZE(foxl) ‘

Consequently, replacing in the last inequality we derive

X -0

/‘ XZ*XI t
1
2(1 —v)2 28 (x)— 25 25 (x1—my)
< ( V) (xz—x1)3’2"/ ! sz S — (xz—x3)3*2"/ U v -4 gy
25 (xp—x1) ( :‘) 2E(xp—x1)

2 m\2v-3
2(1-v) ( xl)372v [(ZH) v ((xl B wl)2V73e*25(XI*WI) — (%2 7xl)2v—3€723(x27x1))

V*lefgt(xzfxl) _ (] +t)V71673(1+t)(xz7x1) Zdt

2

2v—3

2z)>2 22 ,-25(x|-@)) 2v-2,-2E(xx)
- pag (@ e e ~ (g =) 22

25 2(1—v)? 372v/2E(X'7w') 2v-2,-2
’ (25)2"’1+( ) S32v-2)(2v— 3))(x2 ) 28(—x) B
2
< 200-v) (x2 —x1) 3 v (x1 — @) 2V e 2El—m) _ (x2*x')2V736725(X27XI))
- 2v-3
252 2(1-v)? N PR T
-~ ((25)2v1 T aEE v 2y 3)) (x2 — x3) v/zs(xrm A2 2]

By other side, (5) yields that

2E(x)—m))
/ A2 ) w2y 1,28 (0 - @) — W2V — 1,22 (x2— x1)
2

E(x—x1)
(25)2v71 . x| — @ 2v—1 (e
< _ _ e 2E(nx) |
S yoq @) X —x ‘

Hence -
e o)
=X Vol Et(xp—xy) _ (]_’_t)vflefE(lﬂ)(xzfxl) Zdt
J1
2(1—v)? x—a\" —2E(x1— —28(x2—
< E(xy—a) _ ,—2E(xp—x1)
- 2v-3 <(X2X1 ¢ ¢ =

E?2 8(1 —V)ZEZ 5 x; — O vl o5
_ _ o 2E(n—x)
+(2v1+(2v1)(2v2)(2v3))(x2 ) (xle) ¢ '

Finally, combining (23) with (25) and (26) we derive
-
./wl
2v—3
_ 2 + 2(1 — V)Z x| — Y e 2E(x—a) _ ,~2E(x—xy)
2v—1 2v—3 X2 — X1

-2 _y\22 o 2v—1 .
" 25 " 8(1 V) <) (x2 7}([)2 X1 — O _ e 2E(nx) |
2v—1 (2v—-1)(2v—-2)(2v—-3) X2 —X]

© 2024 NSP
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Therefore, by (21), (22), (24) and (27), we get

[ ) — 1 Fu (o)
! ! z T 2 \Y2/ 1/2
SF—\Q(/@ (x1 — )" e FWT) — (xy —5) Ve E L) ds> </ar] |u(s)|2dS)
1 X 22, 25 (xs) 12 / ) 1/2
[ Xy — 8 “ce Z(X—s ds / uls ds>
oy ([ 69 ) ([
gml/Z ol | .
S F(V) (XZ*XI) 2||”||L2(m‘],w'2)+ (2\/_1)1/21"(\/) (X27xl) ZHMHLZ(GI’GZ)
1 1/2 1 B
T T (”” *m) ll2( ) (62 = 21)*72,

which implies that H;;lf ue H =" (@, m).
Finally, by u € L?(®y,®,) and Holder inequality, we obtain

&3 =
L= T s las

= <
| wru(é)l — F(V) @
1 ¢ 2v—1) —E2(E—s) V2o 2\
< ) /ar (& —3) e ds A lu(s)|“ds
1 1
1 [Pv-122¢E-—m))]"?
: 231 (v) Zv—1 lulli2(@, @0)-
Furthermore, (5) yields that
i V-3 L (PQ2v—1,28(x—a)))'/? 2v-3
—-E(¢-o _ -5 ) —
< I)(zvfl)l/z(g ™) < Zv-1 - (2v71)1/2(5 o,
which implies
_12RF(E — 1/2
Iim (P(2v 1,2u(§ o))) _o.
o V=2

So, combining this limit with the last inequality we get

i 7w

I
i

We also have the following result:
Theorem 8. Letv e (0,1), £ > 0 and u € AC[@y,®,). Then
vE ey @) oy sE—@) , cpv.E
D(D-r M(é)— F(l —V) (é (D']) e + D(D-r “(é)a (28)
and (@)
v,E o u(n gV —E(my—§)
DyEu(E) = iy (@ 6) e FO Y LD Eu(E), 29)

Proof.  Using the definition, we get

Note that, for any function v € AC[@), @], the Riemann-Liouville fractional integral has the following representation

v ¢
()= 2 o)+ (" (o

© 2024 NSP
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Combining this equality with the fact that = u € AC[@}, ®,] we derive

1
(1—v)[(1-v)

=0y (m))

¢ —Vvr _Es /
TS [ =9 = uts)as.

(]

a1y Ve tu(f) =

£ E-m) "+

Hence

= e EE-1), 58 £ _
D;}:“(é) = Uli_‘/;é)(é -o) '+ Ta=v) /Iifl (& —s)"V[e*u(s)] ds,

consequently, we get (28).
Since for any v € AC|@), @] we have

£l (1) = o (@2 &)~ s [ (5= 8V ).

Following the same lines as above we get (29).
Remark.Note that (28) and (29) were considered without any proof and with a misprint by [17].

Theorem 9. Forv e (0,1), E > 0 and u € AC[@;, ™), we have

1. o
DYETEu(E) = u(E).
DYELEu(E) = u(E)
2.

LEDyEuE) = u(@) —e =6 u(@))
w, m-]
IEDYEu(E) = (@) — e T u(@y)

The integration by parts theorem for Riemann-Liouville tempered fractional derivative is as follows:

Theorem 10. Lerv € (0,1), & > 0 and u,v € AC[®@), ™), then

/sz u(é)D;’]E,v(x)dx = lim u(x)H;;V’Ev(x) — lim u(x)]I(];,v’Ev(x) + > CD:;Eu(x)v(x)dx. (30)

o] x—at ) X0, 2 o]}

Proof. Note that, as in Lemma 1 we can show that, if ¢ € AC[@;,®], then wlljf(p,xlc‘{,z(p € AC|m,,®,]. Hence,
g, Ve~ ='v € AC[@),®,] and then

— d — =
DYy e v (x) = — 5 e Tv(x) € L[y, m,).

Consequently,

o = "0y = ) =
[ mEvedE = [ 1= eDh,e T vE)la < e [ |l e u(E) I <o
o O Jm 2 o 2

By other side, if u € AC[@), ], then u € C[®@;,®,]. Hence,
@2 v,E @2 v,E @2 )
| u@pyEvE)E < | [ u@DLEEE| < ulle [ DT E)IAE <o
[0]] 2 [0]] 2 o) 2
Now, we are going to show (30). So, by Theorem 5 and integration by parts, we obtain

[ wEyEne1as = [ u(E)e Dhe Fu(EE = - [ u(@re rath e Sn&)as

(] (]

—- [we v

o [, e @]

(] [0]]

= Jim (@)~ Tim W@ )+ [ DLt

E—o) E—my @

© 2024 NSP
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3 Tempered fractional Sobolev type space
We begin this section by considering the following definition.

Definition 1. Let v € (0,1) and E > 0. A function ¢ € C' (@, ®,) is called a solution of (3) if: ely, (e’sgCD;’]f (é))

is continuously differentiable for any & € (@,,®,), CDL’f(ﬁ is continuous for every & € (@, ™), and ¢ satisfies (3).
1

Now, let ¢ € Ci’ (@), @») be a solution of (3) according to Definition 1 and choose y € C5’ (@, ®>), then

DO eEWENE = [ IE0EWENE G

[o]] G)'{

Theorem 10 yields that

[T DD 0@) Wi = lim w(@)T, T (CDLT0(E) ~ lim y(E)TL (DL 0())

o]} {—o) E—m,
@2 = =
+ | D 0(8) Dy w(&)de.
1
By definition C]D);’f ¢ is continuous, hence by Theorem 6 we get
1
lim I"%(“DY* =0.
S 1o, ("D 9(5))
So, as y € C5 (@, @), next
®2 v ECrv.E e v,E CyV-&
D =Dy o(8))w(E)dE = D 9(8) D~ w(8)dE.
o O o o o o
Hence, (31) can be written as
®2 e vE CTyV,E @2
L DE o@D e = [ T3 0@)wiE)de. (32)
1 1

Motivated by this expression, we define the tempered fractional Sobolev type space H(‘)' = (o,,m,) as

[-lIv.2

Hy* (@1, @) = Cg (@1,@,) ",
where
N0 5 o)) CovE 5 1/2
M= ([ @R+ [~ eDyEvRaE ) (3)
J W [oJ} 1
with the inner product

(V3= [0 g + [ D) DyFAEIaz. G4

As in [26, Theorem 3.7] we can show that (H(‘)"E((Ifl , @), (-,-,)v.z) is a Hilbert space.
Now we study some properties of this function space.

Lemma 2. Foranyu € H(‘;’E (), @), we have

H;?CD;’?M(‘@) =u(&), ace. in (@),).

Proof. By the definition of Hg’g (@1,®), there exists (@,),en C Cy (@1, ®2) such that

Tim [l gullv. =0.
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Hence
. _ : CmV,& —
Jim llu = @ull 2@y @) =0 and - lim [FDE (= @n)llp2 (@) my) = O- (35)

Fatou’s Lemma yields that

[03) (03]

/ lu(€)?dx < liminf/ |(p,,(§)|2dx< e and

[o]] n—oo [o]] (36)
@ cryv.E cnyvs 2

/w] DY u(E)Pdx < limin | | Dy 9u(&)Pdx < oo

n—oo

By other side
2D~ ) < D% (0= 0020y ) + TS D L 90 = Bl ) + 190 = 2y BT)

Since @, (a) = 0, Theorem 9 implies that
]IV’HC]D)V o (&) = @u(8),

next
|\H"“C]]))"+<pn Oullr2(@.0y) =0 Vn €N, (38)
By other side, Theorem 3 yields that
5 5 lP(V, E(ﬁz 5
||]IV, CDV, ( - (pn)HL2(G)'1,G)'2) S EVF(V) HCDV, ( - (pn)HL2(G)'1,G)'2)' (39)

Therefore, by (35), (38), (39) and (37) we obtain that
||]I HCDG)-+ u— u”Lz(Gﬂ,wz) = O’
which we have the conclusion.

Corollary 1. Letv € (0,1), E > 0. Then,

( ®))

”””Lz(wl,@) S ||C]])v+u||L2 (o1,m,)> (40)

for any u € Hy’ (@), m).

Proof. Since u € Hy’ ((Dl , @), Theorem 3 and Lemma 2 imply that

(v,

1

@))

C
VF(V) || Dw+MHL2(CU],G72)'

EC
1l 2@, @) = Ty walle@.@)S

(x] [x

Remark. By Corollary 1 we can endowed ]HI(‘)' = (@, ®,) with the norm

i = ([ emzgucyrae)

which is equivalent with || - ||y =.

In the following result we are able to show that H ((D] ,®,) is continuously embedded into C(®;,®,), more precisely
we get:

Theorem 11. Let v € (1,1) and E > 0, then Hg’g (o), @) is continuously embedded into C(@y, D).
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Proof. Letue H(‘)"E (), ®>), Lemma 2 implies that u,CD;’fu € L*(m),®,) and
1

u(€) = H;?C]D);Ifu(é) ae. & c(m,m).

Hence, Theorem 7 yields that

Jule = DY

<————[¥v-1.22(@— o)) "|DT Ul 20,y
: ,
- [PV 1,25(@ — @)))] | ul,

which implies the desired result.
The following compactness result will be crucial for our purpose.

Theorem 12. Let v € (3,1) and £ > 0. Then the embedding
H(‘;’E((D[ R (D'Q) — C((D'] , 072)
is compact.

Proof.  Assume that X be a bounded subset of H(‘)’: (@), @), so we must show that X is relative compact in C(®@;,®). So,
by virtue of the Arzeld-Ascoli theorem, we will prove that X is equibounded and equicontinuous in C(@;,®, ). Theorem
11 implies that ]HI(‘)": (@), @) is continuously embedded in C(@;, @, ), and

P2V —1,2Z(m, —@))]'/?
(2E)V-I0(v)

[luefloo < |lu||, foreveryu e X. 41)

So, X is equibounded in C(®;,®,). Furthermore, in view of Lemma 2 and Theorem 7, there is a constant % > 0 such
that

_mv.ECmV,.E _ Vv.ECHV,.E

()~ ()] = L ZEDYFu(E) ~ TP (o)
= _1

< %|‘CDZ;]+ “|‘L2(w,,a72)|é -7,
so X is equicontinuous. Therefore, we have the conclusion.
Remark. 1f v € (3,1)and E > 0, then for any u € ]HI(‘)"E((D[ ,@2), there exists (¢ )nen C Gy (@1, @) such that

J

Then, by Theorem 11, we obtain

1

m[‘l’(z\,_ 1,22 (@2 — @1))]"2[|u — @] — 0 as n— oo.
= 21 (v

0 < [u(@)| = u(@) — gu(@1)| <

Therefore, u(@;) = 0. By Similar argument we have that u(@,) = 0.
Also, Lemma 2 implies that
Dl Fue l’(@),m).
1

Hence, Hj™™ (@, @) can be rewritten as

HE)/’E(G)],WQ) = {Lt S LQ(wl,WZ) : C]D);’lfu S L2(wl,ﬁ)'2) and M(G)'l) = u(ﬁz) = 0}.
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4 Proof of Theorem 1

We first present the following important theorem and remark to prove of Theorem 1.

Theorem 13. [35, Theorem 4.10] Assume that & be a Banach space and 7 € C'(&,R) satisfy the Palais-Smale

condition ((PS)-condition). Let there exist Ny, € & and a bounded open neighborhood  of Ny such that N} € &\ Q
and

max{_7 (o), 7 (M)} < nf ().
Set

I'={weC([0,1],&): ®(0)=no,0(1)=n},
[ = inf max #(o(7)).

ol 1€(0,1]

Then [ is a critical point of 7, that is, there exists M* such that J'(n*) = © and Z(n*) = 1, where
[>max{_7 (M), .7 ()}

If for any {n,} C &, {n.} has a convergent subsequence if _#(1,) is bounded and (1+ |[n,[))|| _#'(1n.)|| — 0 as
n — oo, then we say that ¢ satisfies condition (C).

Remark. In [36] be proved that Theorem 13 holds true when we replace the (PS)-condition with the condition (C).

Proof of Theorem 1. Define
_ L™ epve 2 [s
V=g [ DR~ [ e @)

First, we prove that _# satisfies the condition (C). Let {n,} C Hy’ % (@), ®,) is a sequence such that 7 (n,) is bounded
and

L+ lmalDI 7 ()| = 0 asn— oo,

SO,

/M)l <D, (14 malDILA ()l <D, VneN, (42)
positive constant D. By (J3), there exists §; > 0 such that

(& u) —21(&,m) > mn|® - & 43)
for all (£,u) € [@), @] x R. (42) and (43) yield that
3D>2 7 (M)~ /’(nn)nn

= [ (30 mEma(&) - 3E mu(&)

> [ ma(E) g — (@ - @)
1
So, far2 [N (€)]9dE is bounded. In view of (J4), we can fix ¥ satisfying

¢,
lim sup max; cioy ) (5, 1) <x< ! : (44)

n—0 n|? 2(m, — @) (szl,zs(wzwl»]'ﬁ)z
(zs)v’%r(v)

By (J2) and (44), there exists ); > 0 such that

&) <xmP -+l (45)
forall (§,7m) € [@),®,] x R. In view of (41), (42), (44) and (45), we get
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D>

: / |C1D>“+nn P |36 m(&)a
P = [ Geimn )P + 2 €)1

— 1/2 g (0]
[;—m@—m)(”’(” L2 0)) )]mnntxl/m M (ENITdE.

v

Y

(2E)-3r(v)

If 1 > {1, Holder’s inequality yields that
(0)) ¢ u-4 ) 0 7%]1

[ mieniag < @ - a ([ mi&)an

[0)] J @)
(46) and the above inequality yields that {n,} is bounded in H = (O1,@). If 31 < &, (41) implies that

[0)) ¢ ) ¢—
[ mu@nidx = [ ina@)Ienna&)mae

[0} J W

G-n [ 0
< nfl& [ e ag

1

B - B 12 Gi-n @
< ([‘P(Zv (217,?:(;17—2‘(‘/;31))] ) Hnn”C]*X] /wl |nn(«é))|61d‘g'.

By (46) and {; — x1 < 2 we get that {n,,} is bounded in Hg’d(wl,zzb). From compactly embedded Hg’i (@,®) into
C([m,,®,]) and a standard argument, we obtain {1,} has a strong convergent subsequence, and so, _¢ satisfies the
condition (C).

(44) yields that there exists § > 0 such that for every 1 € R with || < § and & € [®@;,®>], one get

J(&.m) < xnl* (46)

5(22)"" 21"( )
Y(2v—125(m—m)))]

Hence, for any 1 € Hy’ (wl,wz ) with ||n]| < 77> from (41) and (46) we have

s =3 [ eDgEn @) Pac- [ 3 @)
> 3P = [ i@ Pag

1 P2y - 1,25(@ @)
> [Ex(@wl)([ (v(z;)v(f;f(vf"m )]HW. 47)
Choose
| Wy —1,28(@ -]\ 5
5 ——x(wz—an)<[ 2v—1, 7(1672 @))] ) .
2 (28)"20(v) <[a"<zvl,zs<wzw]>>1l/2>
(22)""3r(v)

SQ2E) "I (v)
Y(2v—1,2E(@m — wl))]]/z,

pl:[

then #(n) > i > 0forany n € dX, , where £, = {n € H(V)’E(w,,wz) s Imll < pi}-
For this py, from (J;), we take a sufficiently large p, such that for any ||n|| > p, > p; satisfying

3(&,m) > &nl”. (48)
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So, for every finite dimensional subspace X C H(‘)"E (),®,), for every 1 € X by ||n|| > p2 > p1 and T > 0, in view of
(41), (48) and (J;), we get

s =5 [0 @ Rag - [ ue))ag
2 1 o 1
<SP =ae” [ (@)

l2
< Zll* = prColn]|”, (49)

for come constant Cy > 0 and so 7 (t1) — —oo as t — oo, since ¥ > 2, then there exists a sufficiently large ko such that
7 (kom) < 0. Hence, we choose 11 = 791 with |71 || > p» large enough such that _# (1);) < 0. Let 9 =0, s0 _# (19) =0,

then Theorem 13 yields that ¢ possesses a critical value d; > 0 given by

di = agg;frg[gﬁ]/(w(f)),

where
I ={w e C([0,1],Hy*(@,@,)) : (0) =m0, (1) =1}.

Hence, there exists ) € H(‘)’: (@), @) such that _# (1)) = d; and 7' () = 0. Therefore, 7 is a weak solution of (3). Since
d; > 0 then 7] is a nontrivial weak solution. (J

5 Proof of Theorem 2

Before proving our main second results, we recall the eigenvalues of the following eigenvalue problem

{ Dy (Dt u(8)) = Au(§), & € (@1,@), 50)
M(G)'l) = u(ﬁz) =0.
Its weak solution ¢ € H(‘)”E((Dl , @) satisfies

[ emio@ DiFu@ns = u [ (06). wiE)de 61

for every ¥ € Hy™® (@, ®,). Note that,

JSCDYFu(E)PdE

. @, ) 5

A= _min & 5 = inf ||ul?,
ey @m0y Jo, u(8)[*dE ue.s

where ./ = {u € Hy ™ (@1, m) : [5* |uPdx=1}.
By similar methods in [37,38], we can define

E; 1= @j<iker(Dy = (‘D Fu()) — 4y),

o
where 0 < Ay <--- < A; <---, are the eigenvalue of (D;’,E (CDZ;fu(é)),H(‘;’E(wl,wz)).
2 1

Theorem 14(Mountain Pass Theorem [39,40]).  Assume that & is a real Banach space and ¢ € C 1(&,R) satisfying
the (C) condition. Let ¢ (0) =0,

(i)there are positive constants G, > 0 such that /|8E; > o where

Le={neé:|nl<ch
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(ii)there is My € & and ||M || > ¢ with _# (1) < 0.

Then / possesses a critical value 6 > o Furthermore, ¢ be characterized as

6—;2;”53&31 S M), I'={oec([0,1]): 0(0)=0, o(1)=m}

Lemma 3. Suppose that (1s) and (J¢) hold. Then ¢ : Hy’ = (@,®,) — R satisfies the (C) condition.
Proof.Assume that {n,,} C ]HI(‘)": (@,,@,) be a (C) sequence for o € R,

S (M) =0, (L+[ml).7 (1) =0 asn— ee. (52)
We claim that {n,,} is a bounded. By (52), we get

1
l+o=> /(M) - _//(nn)nn
. (33)
= Il [ (GHE M E) - 3E (&) ae.
By (J6), there exists ¢y > 0 with
1 < A
~q < ZIEmn =& m+ P, VEe(m.@m] neR. (54)
We now define 71, = u,, + y,,, where u,, € Ey and y,, € ElL In view of (53) and (54), we get
1 A
1+0> 2|l = Imallz.
< A
+ [ (MM ) ~E )+ (&) (59
1 k
2 2 (1=l - qo(@: — @),
So, ||yx|| is bounded. Let {1’],,} is unbounded sequence, so there exists a subsequence {1, } of {1, } satisfying ||[| — +oo
as n — +o0. So, we get IITI T 0e H (671,672) Since Hn i is bounded in finite dimensional E7, we have ”f’"H — win
E;. Using
k. — M Mrz+ll/n_ Un + Yy Sk
Imall— Amall il lImall
in Eq, yields
1|7n(€|) S k(E) ae.in[@,®). (56)
So, by this fact ||k|]| = 1 (because ||k,|| = 1), k € E| and (56), we obtain
[N (8)] — +oo asn — oo, (57)
From the Fatou’s lemma, (J¢), (55) and (57), we get
1
I+o= 7(m) - —/’(nn)nn
— i+ [ (3 5nn>m4®—1nm@»yﬁ
(58)

z/z(b@nA&)Aﬁ & m(E)+ L@

o)
—> oo asn —> oo,

that is a contradiction. Then, {1, } is bounded in H(V)*E(afl,afz). By (Js), {n,} has a convergence subsequence. Hence, ¢
satisfies the (C) condition.
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Proof of Theorem 2. From Lemma 3, ¢ : H(‘)' = (0, m,) — R satisfies the (C) condition. So, we must show that (i) and
(i1) of Theorem 14 hold.

Now, we show that there are positive constant gy, & > 0 such that _# (1) > a for all ||n|| = ¢. From (Js) and (Jg),
we obtain

< A
3&.m) < Zinf+cinl” (59)

for any n € R and & € [@},®,]. Hence, the definition of A; and (59) yields that

# =3P - [*3En(E)as

> 2l Il = Sl ¢ [ @) ras
=i 2 1M 2 1Mz o n
1 r
> ZlInlP* =Ccrlinll”
Since r > 2, so for gy > 0 small enough, there exists & > 0 such that ¢ (1) > « for all ||n|| = g.

Now, we prove that there exists 7] € H(‘)"E (@,@,) and ||7; || > g such that _# (1;) < 0. From the definition of A,,
for small enough € > 0, we can choose 1 € . satisfying

€
Mt >l (60)
Also, by (Js5) and (J7), one has
A+ 2e
1. > F5=n*~C. (61)

Hence, In view of (60) and (61), we obtain

#0em) = 5lnIP - [ 36 xn(@))a

A
1+28K2
2

€
:7§K2+C((D’2*wl).

1
< 5€nl*~ 72 +C(@ — @)

Then, 7 (kn) — —oo as k — oo. Hence, there exists 1) € H(‘)”E((Dl,wg) and ||| > ¢ such that _# (1) < 0. Therefore,
we have the conclusion. [J
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