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Abstract: In this paper, a variable-order fractional (VOF) hybrid COVID-19 mathematical model with time delay is presented, where

its operator can be written as a combination of VOF derivative of Caputo and VOF integral of Riemann-Liouville (RL), where a new

parameter ϑ consistent with the physical model problem is introduced. The positivity of the solutions and the local stability of disease-

free equilibrium (DFE) of the present model are discussed. Theta nonstandard finite difference method (Θ NFDM) is used to study

numerically the model problem. Particular attention is given to investigating the stability of this method. Several numerical experiments

are performed with different values of variable-order derivative and time delay.

Keywords: Hybrid variable-order fractional operator, theta nonstandard method, COVID-19 mathematical model with time delay.

1 Introduction

As it is known COVID-19 virus is mainly transmitted through contact with saliva droplets or discharge from an infection
person. Symptoms of infection with the emerging coronavirus include shortness of breath, diarrhea, fatigue, fever, and
cough. In the most severe cases, COVID-19 leads to pneumonia and death. Due to a large number of susceptible people
and more routes of transmission, COVID-19 is more contagious compared to SARS and MERS. Since the end of 2019,
The COVID-19 virus broke out around the world at a rapid pace impacting the lives of people and claiming millions
of lives. Fighting the COVID-19 is expensive and difficult. In order to prevent and control its spread, the governments
have implemented very strict disease control and prevention strategies such as: medical quarantine, self-isolation, social
distancing, city closurs, travel restrictions and contact tracing [1,2,3].

Mathematical modeling of infectious diseases is an essential tool to understand and study the mechanism of spread of
a disease like COVID-19 in the human population, predict the future course of an outbreak [4]. By including lag factors
in the system, the proposed model agrees well with real-world events. The delay factor was included in some models. For
details see [5,6,7,8,9,10,11,12,13,14,15]. It is well known that, the VOF derivatives are non-local in nature and they can
describe hereditary properties and memory in multiple materials and processes, for more details see [16,17,18,19,20,21,
22].

In this work, VOF hybrid COVID-19 model with time delay is presented and analyzed. The new hybrid VOF
derivatives which is more general than the Caputo fractional derivative, it is defined as a linear combination of RLVOF
integral and Caputo VOF derivative. Positivity, boundednes and stability of the current model are proved. In addition,
Constant proportional-Caputo (CPC) Θ NFDM is constructed to study the proposed model numerically. Depending on
Θ ∈ [0,1], this method can be an implicit method or an explicit method. Stability analysis is presented.

This work is organized as follows: Some definitions are given in Section 2. A hybrid VOF model is given and positivity,
the local stability are discussed, in Section 3. CPC-Θ NFDM and its stability analysis are studied in Section 4. Numerical
experiments are introduced in Section 5, and in Section 6 the conclusions are ultimately outlined.
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2 Preliminaries

In the following, let us consider α := α(t).

Definition 1. [23] Let α ∈ R
+, −∞ < a < b < +∞, the Caputo VOF derivatives (right and left sides) of order α on

f (t) ∈ ACm[a,b] are given as follows respectively:

CDα
b− f (t) = C

t Dα
b f (t) = (−1)n(Γ (n−α))−1

∫ b

t
(z− t)n−α−1 f (n)(z)dz, b > t, (1)

and CDα
a+ f (t) = C

a Dα
t f (t) = (Γ (n−α))−1

∫ t

a
(t − z)n−α−1 f (n)(z)dz, a < t, (2)

where n = ⌊α⌋+ 1, α /∈ N0, n− 1 < α < n.

Definition 2. [23] Let α ∈ R
+, −∞ < a < b < +∞ , the right and left sides of RLVOF derivatives of order α on f (t),

f (t) ∈ L1[a,b] are given as following, respectively:

RL
t Dα

b f (t) = (−1)n(Γ (n−α))−1 dn

dtn

∫ b

t
(z− t)n−α−1 f (z)dz, b > t, (3)

and

RL
a Dα

t f (t) = (Γ (n−α))−1 dn

dtn

∫ t

a
f (z)(t − z)n−α−1dz, t > a, (4)

where n = ⌊α⌋+ 1, n− 1 < α < n.

Definition 3. [23] Let α ∈R
+, −∞< a< b<+∞, the right and left sides of RLVOF integrals of order α on f (t)∈ L1[a,b]

are given as following, respectively:

t I
α
b f (t) = (Γ (α))−1

∫ b

t
(z− t)α−1 f (z)dz, b > t, (5)

and

aIα
t f (t) = (Γ (α))−1

∫ t

a
f (z)(t − z)α−1dz, t > a, (6)

where 0 < α < 1. For α = 0, we set aI0
t := I, the identity operator.

Definition 4. [24] The proportional-Caputo (PC) VOF hybrid operator can be defined in two ways:

–The first way (as a general form):

PC
0 Dα

t f (t) = (Γ (1−α))−1
∫ t

0

(

f ′(z)L0(α,z)+ f (z)L1(α,z)

)

(t − z)−αdz

=RL
0 I1−α

t

(

f ′(t)L0(α, t)+ f (t)L1(α, t)

)

= (Γ (1−α)tα)−1

(

f (t)L1(α, t)+ f ′(t)L0(α, t)

)

, (7)

where L1(α, t) = tα(1−α) and L0(α, t) = t(1−α)α for 1 > α > 0.

–The second way (as a simpler expression form):
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The constant proportional-Caputo (CPC) VOF hybrid operator:

CPC
0 Dα

t f (t) = (Γ (1−α)(t − z)α)−1

∫ t

0

(

L1(α) f (z)+L0(α) f ′(z)

)

dz

= L1(α) RL
0 I1−α

t f (t)+L0(α) C
0 Dα

t f (t), (8)

for Q is a constant, Q(1−α)α = L0(α) and Qα(1−α) = L1(α).

Definition 5. [24] The inverse operator of the CPCVOF derivative is given by:

CPC
0 Iα

t f (t) = (L0(α))−1
∫ t

0
exp

(

L1(α)

L0(α)

)

RL
0 D1−α

t (t − z) f (z)dz. (9)

3 Mathematical Model

VOF Coronavirus disease model with delay is presented here as an extension of the model given in [25] by using a new
hybrid VOF operator. An auxiliary parameter ϑ is added to the VOF operator to satisfy the dimensional matching
between the two sides of the resulting VOF equations. In this way, the left side has the dimension of day−1 [26].
Below, the updated mathematical model:

1

ϑ 1−α
CPC
0 Dα

t S =πs − e−µτ(β1S(t1)I(t1))− e−µτ(β2S(t1)A(t1))− µS,

1

ϑ 1−α
CPC
0 Dα

t I =ω1E − (ω4 + µ)I,

1

ϑ 1−α
CPC
0 Dα

t A =ω2E − (ω5 + µ)A,

1

ϑ 1−α
CPC
0 Dα

t R =ω3E +ω4I+ω5A− µR,

1

ϑ 1−α
CPC
0 Dα

t E =e−µτ(β1S(t1)I(t1))+ e−µτ(β2S(t1)A(t1))

− (ω1 +ω2 +ω3 + µ)E, (10)

where t1 = t − τ . With initial conditions

E(0) = e0, S(0) = s0, I(0) = i0, A(0) = a0, R(0) = r0, (11)

where s0, e0, i0, a0 and r0 ≥ 0.

Table 1: Variables of System (10).

Variable(t) Interpretation

E Exposed population

S Susceptible population

I Symptomatic population

A Asymptomatic population

R Recovered population
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Table 2: System (10) parameters definition.

Parameter Interpretation Parameter value

πs The recruitment rate 0.5

µ The mortality rate due to disease infection 0.5

β1, β2 Symptomatic, and asymptomatic rate of infection 1.05

ω1 Symptomatic rate infected interaction 0.4787

ω2 The interaction with the infected asymptomatic rate 1.0004

ω3 The exposed person recovered from disease 0.0854

ω4 Symptomatic person recovered after quarantine 0.0987

ω5 The rate of the quarantine of asymptomatic infected persons 0.1234

3.1 Positive Solutions

Lemma 1. Let t ≥ 0, all solutions of (10) remain non-negative under conditions (11) [27].

Proof. Using (11), we have:

CPC
0 Dα

t S(t)|S=0 =ϑ 1−α πs ≥ 0,
CPC
0 Dα

t E(t)|E=0 =ϑ 1−α S(t1)(β2A(t1)+β1I(t1))e
−µτ ≥ 0,

CPC
0 Dα

t A(t)|A=0 =ϑ 1−α ω2E ≥ 0,
CPC
0 Dα

t I(t)|I=0 =ϑ 1−α ω1E ≥ 0,
CPC
0 Dα

t R(t)|R=0 =ϑ 1−α(ω3E +ω4I+ω5A)≥ 0, (12)

where t1 = t − τ .

Thus, all solutions of (10) are non-negative.

3.2 Local Stability

The local stability of DFE is discussed in the following [28,29]:
To find the DFE points of system (10), we study 1

ϑ 1−α
CPC
0 Dα

t (.) = 0, therefore, we have the following equilibrium points:

the first one is DFE which is given as E0 = (πs
µ ,0,0,0,0) in case vanishing all state variables, and the second point is

called endmeic point and given as

E∗ = (S̄, Ē, Ī, Ā, R̄),

where

S̄ =
(ω4 + µ)(µ +ω1 +ω2 +ω3)(µ +ω5)

β1e−µτ ω1(ω5 + µ)+ω2e−µτ β1(µ +ω4)
,

Ē =
πs − µ S̄

µ +ω1 +ω2 +ω3

,

Ī =
ω1Ē

µ +ω4

,

Ā =
ω2Ē

ω5 − µ
,

R̄ =
ω5Ā+ω3Ē +ω4Ī

µ +ω5

. (13)
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The basic reproduction number (R0) can be obtained by generation matrix as follows [30]:

F = ϑ 1−α









0
β1πse−µτ

µ
β2πse−µτ

µ 0

0 0 0 0
0 0 0 0
0 0 0 0









,

V = ϑ 1−α







µ +ω1 +ω2 +ω3 0 0 0
−ω1 µ +ω4 0 0
−ω2 0 µ +ω5 0
−ω3 −ω4 −ω5 µ






,

where F is matrix of a new infectious and V is matrix of the transfer of individuals between compartments.

FV−1 =













πse−µτ (β1ω1(µ+ω5)+β2ω2(µ+ω4))
µ(ω1+ω2+ω3+µ)(µ+ω4)(µ+ω5)

β1πse−µτ

µ(ω4+µ)
β2πse−µτ

µ(ω5+µ) 0

0 0 0 0

0 0 0 0

0 0 0 0













,

R0 = ρ(FV−1) = ϑ 1−α

[

πse
−µτ(β1ω1(µ +ω5)+β2ω2(µ +ω4))

(µ +ω4)(µ +ω5)µ(µ +ω3 +ω2 +ω1)

]

,

where ρ is the convergence radius.

Theorem 1. DFE (E0) of system (10) is locally asymptotically stable if 1 > R0 and it’s unstable if 1 < R0.

Proof. To investigate the local stability of (10), cosider Jacobian matrix of (10) at the DFE.

J(E0) = ϑ 1−α











−µ 0 L L1 0
0 −(µ +ω1 +ω2 +ω3) L L1 0
0 ω1 −ω4 − µ 0 0
0 ω2 0 −ω5 − µ 0
0 ω3 ω4 ω5 −µ











,

where L = −β1πse−µτ

µ , L1 =
β2πse−µτ

µ .

The characteristic equation

λ 3 +λ 2[d1 + d4+ d5]+λ [d5(d1 + d4)+ d1d4 − d2ω1 − c3ω2]+ (d1d2d5 −ω2d3d4 − d5d2ω1) = 0, (14)

where

d1 =(ω1 +ω2 +ω3 + µ)ϑ 1−α > 0;

d2 =
β1πse

−µτ

µ
ϑ 1−α > 0;

d3 =ϑ 1−α β2πse
−µτ

µ
> 0;

d4 =(ω4 + µ)ϑ 1−α > 0;

d5 =(ω5 + µ)ϑ 1−α > 0.

Applying Routh-Hurwitz critertion, equation (14) has roots with negative real part iff 1 > R0. So DFE is locally
asymptotidy stable if 1 > R0.
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4 Numerical Investigation

4.1 CPC-Θ NFDM

Consider following hybrid VOF derivatives equation, 1 ≥ α > 0 :

CPC
0 Dα

t f (t) = ξ (t, f (t)), f (0) = f0. (15)

Using(8) : CPC
0 Dα

t f (t) =
1

1−Γ (α)

∫ t

0

1

(t − z)α
( f (z)L1(α)+ f ′(z)L0(α))dz

= L0(α)C0 Dα
t f (t)+L1(α)RL

0 I1−α
t f (t)

= L0(α)C0 Dα
t f (t)+L1(α)RL

0 Dα−1
t f (t). (16)

We can discretize (16) using the discretizationnof Grünwald-Letnikov as follos:

CPC
0 Dα

t f (t)|t=tn =
L1(α(tn))

τα(tn)−1

(

fn+1 +
1+n

∑
i=1

ωi fn+1−i

)

+
L0(α(tn))

ταn

(

fn+1 −
n+1

∑
i=1

µi fn+1−i − qn+1y0

)

, (17)

L1(α(tn))

τα(tn)−1

(

fn+1 +
n+1

∑
i=1

ωi fn+1−i

)

+
L0(α(tn))

τα(tn)

(

fn+1 −
n+1

∑
i=1

µi fn+1−i − qn+1 f0

)

=(1−θ )ξ ( f (tn+1), tn+1)+ (θ )ξ ( f (tn), tn), (18)

0 ≤ θ ≤ 1, µ1 = α(tn), µi = (−1)i−1
(

α(tn)
i

)

, ω0 = 1, ωi = (1− α(tn)
i

)ωi−1, τ =
Tf

Nn
, tn = nτ, Nn is a natural

number, qi =
iα(tn)

Γ (1−α(tn))
and i = 1,2, ...,n+ 1.

Assume that [31]:

0 < qi+1 < qi < ... < q1 =
1

Γ (−α(tn)+ 1)
,

0 < µi+1 < µi < ... < µ1 = α(tn)< 1.

4.2 Stability of CPC-Θ NFDM

To investigate Stability of the implicit method (θ < 1), consider a model test problem of linear VOF delay differential
equation [32]:

(CPC
0 Dα

t f )(t) = ρ0 f (t)+ρ1 f (t − τ), t ≥ 0, 1 ≥ α > 0, (19)

f (t) =Ψ(t), t ∈ [−τ,0], f (0) = f0,

such that ρ0 < 0, ρ0 > ρ1 and Ψ (t) is bounded and continuous function.
Let fn = f (tn) is an approximate solution, by applying CPC-Θ NFDM with (8) and rewrite (19) as following:

L1(α(tn))

τα(tn)−1

(

fn+1+
n+1

∑
i=1

ωi fn+1−i

)

+
L0(α(tn))

τα(tn)

(

fn+1 −
n+1

∑
i=1

µi fn+1−i − qn+1 f0

)

= θ (ρ0 f (tn)+ρ1 f (tn−q))+ (1−θ )(ρ0 f (tn+1)+ρ1 f (tn−q+1)), (20)

we put:

gg = L1(α(tn))τ
1−α(tn), and gg1 = L0(α(tn))τ

−α(tn),
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we get:

fn+1 =
1

(gg+ gg1)− (1−θ )ρ0

(

gg1
1+n

∑
i=1

µi fn+1−i − qn+1 f0 − gg
1+n

∑
i=1

ωi fn+1−iθ (ρ0 f (tn)+ρ1 f (tn−q))

+ (1−θ )ρ1 f (tn−q+1)

)

, (21)

we have
1

(gg+ gg1)− (1−θ)ρ0

< 1,

f1 ≤ f0,

fn ≤ fn−1 ≤ fn−2 ≤ ...≤ f1 ≤ f0.

So this scheme is stable.

5 Numerical Results

We have used CPC-Θ NFDM (18) to solve the hybrid VOF systems (10) numerically, with initial conditions:
s0 = 0.5, e0 = 0.2, i0 = a0 = r0 = 0.1.
Figure 1 (a)-(e) shows the plot of each compartment of the model at fixed delay term (τ = 0.2) and different values of α ,
where the susceptible population is increasing over time while the exposed population is reduced, and in short time a
slight increment in asymptomatic and symptomatic population, then it becomes stable. However, the recovered
population is declining over time. All compartments reach their minimum or maximum at a lower VOF. At α = 1, the
integer model dynamics [5] represents by the red color curves, and at α = 0.90, the fractional model dynamics [25]
represents by the black color curves. Then we can conclude that the model (10) is generalizes the model in [25].

Let fixed delay term (τ = 0.5) for different values of the VOF α in Figure 2 (a)-(e).
Moreover, for the VOF α = 0.99− sin0.0005t, Figure 3 (a)-(e) simulate each compartment of the proposed model whit
different (τ). When τ increases, the susceptible population increases, while the exposed population decreases. According
to our results, without a shift in the transmission rate, increased delay strategies lead to a reduction in the infected
population. We note that at τ = 3, τ = 2 and τ = 0.8 the number of symptomatically infected individuals decreases, see
figure 3(c). Then, we could overcome the pandemic by delay strategies e.g., quarantine, isolation for about 60 days,
social distancing, holiday extensions, travel restrictions and hospitalization.
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(a) (b)

(c) (d)

(e)

Fig. 1: At τ = 0.2 with different values of α
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(a) (b)

(c) (d)

(e)

Fig. 2: At τ = 0.5 with different values of α
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(a) (b)

(c) (d)

(e)

Fig. 3: At α = 0.99− sin0.0005t with different values of τ .
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6 Conclusion

In this work, we presented and analyzed VOF for COVID-19 mathematical model with time delay. While VOF derivatives
with time delay increases its complexity, it improves of the model dynamics. It is also CPC fractional operator here can
be obtained as a special case from CPC VOF operator. The proposed model Positivity, boundedness and stability are
discussed. In order to make the probosed model physically compatible, we are introduced a new parameter ϑ . Numerically
studies using CPC-Θ NFDM for the model proplem. When Θ = 1, Θ = 0 the numerical scheme is called explicit, fully
implicit schemes respectively. The results obtained by the CPC-Θ NFDM at Θ = 0 are more stable, some graphs are
provided. Accordingly, the approach Taken in this paper opens several avenues for future research.
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